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Abstract

The field of reinforcement learning concerns the question of automated action se-

lection given past experiences. As an agent moves through the state space, it must

recognize which state choices are best in terms of allowing it to reach its goal. This is

quantified with value functions, which evaluate a state and return the sum of rewards

the agent can expect to receive from that state. Given a good value function, the

agent can choose the actions which maximize this sum of rewards. Value functions

are often chosen from a linear space defined by a set of features; this method offers a

concise structure, low computational effort, and resistance to overfitting. However,

because the number of features is small, this method depends heavily on these few

features being expressive and useful, making the selection of these features a core

problem. This document discusses this selection.

Aside from a review of the field, contributions include a new understanding of

the role approximate models play in value function approximation, leading to new

methods for analyzing feature sets in an intuitive way, both using the linear and

the related kernelized approximation architectures. Additionally, we present a new

method for automatically choosing features during value function approximation

which has a bounded approximation error and produces superior policies, even in

extremely noisy domains.
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1

Introduction

Imagine you are a graduate student and a fan of a college basketball team. At the

last minute, you have been offered tickets to attend an important game. Unfortu-

nately, the game overlaps a group meeting with your advisor. When you make your

decision of whether to attend the game, there are some things to consider. The first is

long-term versus short-term benefit; in the long term, attending the game may dam-

age your relationship with your boss, while in the short term you may experience

tremendous excitement if your team wins. The second is the likelihood of receiving

these benefits; your advisor may not notice your absence, or your team may not win.

Therefore, you must weigh the expected short- and long-term benefit of attending

the game versus the expected short- and long-term benefit of not attending the game.

The only information you have to base your decision on is past experience watching

the team and in past experiences with your advisor.1

Now imagine you are a shopkeeper purchasing wares to sell for a profit. Just

as the graduate student was risking his advisor’s wrath for a win which may not

1 The author would like to note that he attended the game, that Davidson won its first NCAA
Tournament game in 39 years, and that his advisor absolutely did notice his absence. He will leave
the question “was it worth it” unanswered until such time that this document has been approved.
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happen, you are now risking capital and overhead. Perhaps your product will fall

out of fashion, or perhaps the overhead of storage will increase. Again, the only

information you can base your decision on is past experience.

Finally, imagine you are a child, new to bicycling, who has found himself in a

race. At a turn in the race, do you bank sharply, risking injury in the short-term for

a possible long-term victory? Or, has your past experience led you to channel the

tortoise, causing you to choose to ride slower and steadier?

These questions, for which we must use past experience to inform decision-making

in an uncertain environment, are at the heart of intelligence. Smart people notice

features in the world around them which tend to be correlated with particular out-

comes; for example, experienced bicyclists know they cannot turn as sharply on

gravel as they can on asphalt, and shopkeepers know not to buy short-sleeved shirts

in November. In other words, there are characteristics of the current state (the road

material or the month) which hint at the desirability of our current situation and

inform our decision-making.

The goal of the field of reinforcement learning is to automate this process, so

autonomous agents can use past experiences to make good decisions, even when the

outcomes of those decisions are uncertain. We refer to our title, “Feature Selection for

Value Function Approximation.” The purpose of a value function is to quantify the

desirability of a state (a state in which your wheels have slipped is undesirable, and so

has low value), and the purpose of feature selection is to choose those characteristics

which imply a low or high value (“gravel road” or “November”). If we know what

from our past experience to pay attention to, we can make good decisions. Choosing

those characteristics to help us accurately judge the value of a state is the subject of

this document.
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1.1 MDPs and Value Functions

In reinforcement learning, we model problems as Markov Decision Processes (MDPs).

Because of their applicability, MDPs are studied not only in reinforcement learning’s

superfields of Artificial Intelligence and Machine Learning, but also in Economics,

Statistics, and Operations Research. The MDP framework includes several assump-

tions. First, we assume the world is perfectly-observable; that is, any question we

choose to ask about the current state can be answered with certainty. “The road is

probably gravel” is not a feature that fits into our framework; “the road is gravel”

is. The second assumption we make is the Markovian assumption, which is that his-

tory is irrelevant in determining the outcome of taking an action in a certain state.

The fact that our graduate student is holding a ticket is relevant; how he came to

acquire that ticket is not. Finally, we assume there is some preference towards receiv-

ing short-term benefit over long-term benefit; we would choose a path which would

deliver some benefit now over a path which will deliver the same benefit in ten days.

An MDP consists of a set of states, a set of actions, a reward function, a transition

function, and a discount factor, which we explain in turn.

• The state space defines the set of all possible situations an agent can be in. A

state is a complete description of the agent; a bicycle’s state could consist of

the velocity of the bicycle, the angle of the bicycle from the road, the angle

of the bicycle’s handlebars, the coefficient of friction of the road material, and

the distance to the finish line.

• The actions are the options available to the agent; the bicyclist could shift his

weight, turn the handlebars, pedal harder, or apply the brakes.

• The reward function maps a state to the immediate benefit of being at that

state. Reward is a numerical measurement of how much benefit we receive at
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a particular state. A state in which you have just won a race delivers a high

reward; a state in which you have fallen and have hurt your knee delivers a low

reward.

• The transition function determines the rules of moving through the space. It

is impossible to go from a mile away from the finish line to being at the finish

line without traversing several other states; this is captured in the transition

function.

• Finally, the discount factor determines how much we prefer current reward to

one received in the next state.

When choosing between actions, the agent will choose the action which it expects

will provide the highest sum of discounted rewards; this expected sum of discounted

rewards is the definition of value. In other words, a state in which the bicyclist is

about to fall does not have an associated negative reward, as nothing immediately

bad is occurring. However, it will have a low value, as we can expect to receive

negative reward soon.

This expectation, of course, depends on a knowledge of the reward and transition

functions; we have learned that being at too steep of an angle tends to lead to falling,

and that falling tends to hurt, giving us negative reward.

The problem of value function approximation is the problem of using past data

to calculate this expectation. The problem of feature selection is the discovery of

which calculations on the state space correlate with high or low value and thus, allow

us to predict value.

1.2 Topics

The contributions in this document revolve around the application of several simple

ideas to value function approximation. We review these topics from a high level here.
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1.2.1 Regression

Regression and value function approximation are similar in several ways, and different

in one major one. Regression is the process of reproducing a function based on data

drawn from that function; that is, given a set of data ((x1, y1), (x2, y2), . . . , (xn, yn)),

where a single datum (xi, yi) means yi = f(xi) + εi for some function f and noise

term εi. We create a predictive function f̂(x) such that for all (xi, yi), f̂(xi) ≈ yi.

Value function approximation is similar; we have a data set, and from that data set,

we are constructing a function.

The difference is that in value function approximation, we cannot sample values;

we can only sample transitions and rewards. Nevertheless, regression can be a helpful

tool for value function approximation, and appears in Chapters 3, 4, and 5.

1.2.2 Models

The model of an MDP consists of the transition and reward functions. As noted

above in Subsection 1.2.1, we cannot perform regression on value functions, but we

can perform regression on our transition and reward functions. One of the main

contributions of this document is that accurate approximations of the transition and

reward functions imply an accurate approximation of the value function. In fact, we

show that even value function approximation methods which make no explicit at-

tempt to perform model approximations are equivalent to easy-to-understand meth-

ods which first perform regression on the transition and reward functions, and then

use those approximations to calculate a value function. This enables us to analyze

approximation schemes and feature sets in an intuitive way. Model approximations

appear in Chapters 3, 4, and 5.
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1.2.3 Regularization

MDPs are not deterministic; taking a certain action at a specific state will not always

have the same effect. For example, if our graduate student attends the game, we

do not know if he will enjoy a win or suffer a loss; there is chance. The effects of

this chance in the data is samples which deviate from expectation; this deviation

is referred to as “noise.” The danger of noise is that an approximator may fit each

individual data point too precisely, losing the overall shape of the function; this is

known as “overfitting.”

This problem is common to regression as well, and has resulted in the applica-

tion of regularization. Regularization limits the expressiveness of the approximation

function f̂(x), limiting it to approximating the general curve of the function, rather

than reach each datum. Previous work by Farahmand et al. (2008) and Kolter and

Ng (2009) has demonstrated the benefits of regularization in value function approxi-

mation. Chapters 4, 6, and 7 not only expand on this use of the smoothing effect of

regularization, but also apply a specific form of regularization to perform automatic

feature selection.

1.3 Document Organization and Contributions

This document explores different approaches to understanding and performing fea-

ture selection. Chapter 2 introduces notation and fundamental value function ap-

proximation algorithms. Chapter 3 encapsulates a discussion on methods for ap-

proximation in which the feature set has been determined a priori. This chapter

introduces linear model approximations in Section 3.2. It also includes our first

contribution, a demonstration of equivalence between model-free and model-based

linear value function approximators, which is useful for analyzing feature sets. We

presented this work in Parr et al. (2008); it was also discovered independently by

6



Schoknecht (2002) and Sutton et al. (2008), though each paper uses this observation

to make different contributions.

Chapter 4 contains results regarding kernelized value function approximation

methods, which were first presented by Taylor and Parr (2009). Kernelized methods

are an approach to avoiding the feature selection problem by replacing linear features

with kernel functions between states. We contribute a general kernelized, model-

based approximation method which is presented in Section 4.2, and demonstrate its

equivalence to previously presented methods in Section 4.3. This equivalence not only

allows us to analyze kernelized methods and regularization through a model-based

lens, but also unifies the field by showing equivalence between methods previously

thought to be different.

Chapter 5 contains results from both Parr et al. (2008) and Taylor and Parr (2009)

regarding approximation error analysis given a previously-selected set of features or

kernel and regularization parameters. Section 5.1 demonstrates a model-based Bell-

man error decomposition convenient for analyzing feature selection, as demonstrated

by experiments in Subsection 5.1.1. Section 5.2 contains a similar analysis of Bell-

man error in the kernelized approximation context, and Subsection 5.2.1 contains

demonstrative experiments. Finally, Section 5.3 expands this decomposition to any

fixed-point approximation architecture. This chapter uses the equivalencies of Chap-

ters 3 and 4 to analyze feature selection in an intuitive way.

Chapter 6 then shifts from feature sets chosen a priori to automatic feature

selection using L1 regularization. Section 6.2 discusses our method, L1-regularized

Approximation Linear Programming (RALP), which was first introduced by Petrik

et al. (2010). This chapter includes both bounds on approximation error (Section

6.3) and experimental results which demonstrate the utility of RALP (Section 6.4).

Section 7.2 then addresses RALP’s frailty in noisy environments, by introducing

Locally Smoothed L1-Regularized Approximate Linear Programming (LS-RALP). It

7



then presents proof of LS-RALP’s benefits in Section 7.3 and experimental results

in Section 7.4.

Finally, we present some ideas for future work in Chapter 8, and make some

concluding remarks in Chapter 9.
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2

Notation and Past Work

This chapter fulfills two purposes. The first is to introduce the notation we will use

in this document. The second is to introduce important past work in value function

calculation which is not directly related to our contributions. Work that is directly

related will be introduced in the relevant chapters.

2.1 Formal Problem Statement and Notation

In this section, we introduce notation and the mathematical underpinnings of the

problem.

2.1.1 MDPs, Value Functions, and Policies

This work concerns controlled Markov processes, which are referred to as Markov

decision processes (MDP): M = (S,A, P, R, γ). Given a state si ∈ S, the probability

of a transition to a state sj as a result of action a ∈ A is given by P (sj|si, a) and

results in an expected reward of R(si).

We are concerned with finding value functions V that map each state si ∈ S to

the expected total γ-discounted reward for the process. In particular, we would like

9



to find the solution to the Bellman equation.

V ∗(si) = R(si) + max
a∈A

γ∑
sj∈S

P (sj|si, a)V ∗(sj)


Because the max operator results in the best action being taken at each state, V ∗ is

also known as the optimal value function.

Value functions can be useful in creating or analyzing a policy π, which maps

each state si ∈ S to an action a ∈ A. The value function of a policy π is

Vπ(si) = R(si) + γ
∑
sj∈S

P (sj|si, π(si))Vπ(sj).

Ultimately, we seek an optimal policy

π∗(si) = argmax
a∈A

R(si) + γ
∑
sj∈S

P (sj|si, a)V ∗(sj)

 .

If the policy for an MDP is treated as a constant, then the MDP induces a Markov

reward process (MRP). The task of computing the value function for the resulting

MRP is sometimes referred to as policy evaluation.

For a given policy π and a finite state space, we can denote the transition function

P as a matrix, where Pπ(i, j) = P (sj|si, π(si)).

2.1.2 Sampling and the Bellman Operator

The goal of reinforcement learning is to gain intelligent behavior by learning from

samples, or experiences. The question of sampling is therefore an important one.

In this document, we will discuss two types of samples: samples with expectation,

and simple samples. Samples with expectation consist of σ = (s, a, R(s), P (·|s, a))

tuples. We will denote a set of samples with expectation as Σ. Simple samples

consist of σ̇ = (s, a, r, s′) tuples, where r and s′ are not the expected reward and

10



next state, but are instead the reward and next state that were actually experienced.

A set of simple samples will be denoted Σ̇. Clearly, samples with expectation are

more useful. However, these types of samples require either a priori knowledge of

P and R or a great deal of control over the sampling agent; practically speaking,

this may be unrealistic. Therefore, simple samples are often more attainable. An

element of a sample σ will be denoted with superscripts; that is, the s component of

a σ = (s, a, R(s), P (·|s, a)) sample will be denoted σs.

We will refer to the Bellman operator T , where

TV (s) = R(s) + γmax
a∈A

[∑
si∈S

P (si|s, a)V (si)

]
,

and Ta refers specifically to

TaV (s) = R(s) + γ
∑
si∈S

P (si|s, a)V (si).

Because the summation captures the expected value at the next state, we also refer to

T as the Bellman operator with expectation. Simple sampling also has an associated

sampled Bellman operator Ṫ , where

Ṫσ̇V (σ̇s) = σ̇r + γV (σ̇s
′
).

2.1.3 Value Function Approximation Architectures

As the state space grows larger, it becomes more and more difficult to calculate

the Bellman equation for every state, making it necessary to approximate the value

function. In this document, we will discuss two related approximation architectures,

linear approximation and kernelized approximation.

Linear approximation consists of the linear weighting of possibly non-linear fea-

tures. The problem of feature selection in value function approximation refers to the
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construction of a basis matrix Φ of size |S|× k, preferably where k � |S|. The basis

matrix consists of k basis functions or features defined over the states of the MDP.

For continuous or very large MDPs, where |S| is too large, features are calculated on

a set of sampled states. A basis matrix is a successful one when a linear combination

of feature values produces an approximate value function V̂ = Φw, which is close to

V ∗. We use s and r to represent vectors of sampled states and rewards, respectively.

The row vector of feature values at a state s will be denoted Φ(s).

This form of linear representation allows for the calculation of an approximate

value function in a lower-dimensional space, which provides significant computational

benefits over using a complete basis, as well as guarding against fitting any noise in

the samples.

Another approach to feature selection is to define the problem differently by using

the kernel trick to replace dot products between features with a kernel function. A

kernel is a symmetric function between two points, denoted k(si, sj) = k(sj, si), often

collected into a kernel matrix K, where Kij = k(si, sj), and k(x) is a column vector

with elements kn(x) = k(sn, s). Note that because the kernel function is symmetric,

K is also symmetric.

The kernel trick is allowed by Mercer’s theorem, which states that if the kernel

is continuous and positive semi-definite, the function can be interpreted as a dot

product between the two points in a higher-dimensional space; that is, k(si, sj) =

Φ(si)
TΦ(sj), where the number of features is large (Mercer, 1909). This creates an

implicit, highly-expressive approximation space, without having to actually calculate

feature values.

In feature selection, we try to define an expressive space by defining useful basis

functions; the more we use, the more expressive our approximation can be. In

kernelized approaches, we use kernels to gain the expressiveness of a high number of

basis functions without actually calculating the functions themselves. Kernel-based

12



methods are well suited for dealing with large or infinite state spaces due to this high

expressiveness. However, the expressiveness of kernels come with a risk of overfitting

training data and a risk of heavy computation despite the efficiency of the kernel

trick.

2.2 Value Function Calculation Algorithms

The purpose of this section is to introduce value function calculation and approxi-

mation methods which are not directly related to our own contributions, but are too

fundamental to omit. We introduce three methods for calculating a value function,

Value Iteration, Policy Iteration, and Linear Programming, as well as ther approxi-

mate analogues.

2.2.1 Value Iteration

Assume |S| is small, and that R and P are known. In this case, we can perform

value iteration to calculate a close approximation to the optimal value function. We

start with an arbitrary value function vector V̂0 and perform the following update:

V̂k+1 = T V̂k

until ‖V̂k+1 − V̂k‖∞ ≤ ε.

Value iteration makes use of the fact that the Bellman operator is a contraction

in max-norm; that is, for any two vectors V̂ and V̂ ′, ‖T V̂ − T V̂ ′‖∞ ≤ γ‖V̂ − V̂ ′‖∞.

If we consider the case where V̂ ′ = V ∗, we see ‖T V̂ − V ∗‖∞ ≤ γ‖V̂ − V ∗‖∞. Note,

this is because TV ∗ = V ∗.

This means value iteration converges to the optimal value function V ∗ by a factor

of γ each iteration. Value iteration ends when ‖V̂ −T V̂ ‖∞ ≤ ε, where ε is a stopping

parameter. This distance between V̂ and T V̂ is known as the Bellman error ; this

term can also apply to the norm of this vector. The Bellman error of an approxi-
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mation V̂ , denoted BE(V̂ ), bounds the actual error of the approximation (Williams

and Baird, 1993):

‖ V ∗ − V̂ ‖∞≤
‖ BE(V̂ ) ‖∞

1− γ
.

Our reason for assuming |S| is small is it quickly becomes unwieldy to apply

the Bellman operator for each state. For continuous or infinite state spaces it is

impossible to even store the vector V̂ .

If the update above is replaced with

V̂k+1 = TπV̂k,

for some policy π, value iteration will converge to Vπ.

2.2.2 Fitted Value Iteration

Fitted Value Iteration (FVI) is a general approach to adapt value iteration to large or

infinite state spaces by using approximation architectures. If V̂ is an approximation

of V ∗ in some approximation architecture (such as linear approximation), and ΠF

projects a vector into the approximation’s function space, then fitted value iteration

performs the following:

V̂k+1 = ΠFT V̂k.

FVI was extended to the approximation of Q-functions, in which values are as-

signed not just to states, but to state-action pairs (Ernst et al., 2006). Approxima-

tions on Q-functions can make greedy policy generation simpler, but the addition

of action dimensions to the approximation space make approximation more difficult.

Fitted Q-Iteration works by performing the following steps:

• For each sample σ ∈ Σ, calculate TσaQk(σ
s, σa).

• For each action a ∈ A, regress on the set of samples TσaQk(σ
s, σa) for which

σa = a to calculate an approximate function on s: ΠFTaQk(s, a).
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• Qk+1(σs, σa) = ΠFTaQk(σ
s, σa)

• Repeat until stopping conditions are met.

While FVI does extend value iteration to approximation architectures capable of

handling large state spaces, it loses value iteration’s convergence guarantees. This

was demonstrated by Boyan and Moore (1995) and Tsitsiklis and Van Roy (1996),

who showed that divergence can occur even when V ∗ lies in the space defined by Φ.

2.2.3 Policy Iteration

We note that any value function approximation algorithm which can approximate

Vπ for a given policy π can be the policy evaluation step of policy iteration. Policy

iteration starts by defining an arbitrary policy π0. It then alternates between two

steps, policy evaluation, in which Vπi is calculated, and policy improvement, in which

a new greedy policy πi+1 is calculated, where

πi+1(s) = argmax
a∈A

TaVπi(s).

Policy iteration stops when the policy no longer changes.

If V is calculated exactly, every iteration of policy iteration can be shown to

result in a better policy; with a finite state space, there is a finite number of policies.

Therefore, policy iteration must arrive at the optimal policy.

2.2.4 Least-Squares Policy Iteration

Least-Squares Policy Iteration (LSPI) was introduced by Lagoudakis and Parr (2003)

as a policy iteration algorithm using linear approximation for the value function. As

with Fitted Q-Iteration, LSPI approximates Q-functions to ease policy construction,

using a different feature set for each possible action. This has the additional benefit

of allowing off-policy samples. The weighting of the features is done by LSTDQ,
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a Q-function version of Least-Squares Temporal Difference Learning, which will be

discussed further in Subsection 3.1.1.

LSPI guarantees convergence to a policy, and guarantees this policy’s performance

is close to the performance of an optimal policy.

2.2.5 Linear Programming

Finally, we present the linear programming formulation initially presented by

d’Epenoux (1963):

min
V

∑
s∈S ρ(s)V (s)

s.t. TaV (s) ≤ V (s) ∀s ∈ S, a ∈ A,

where ρ is a distribution over the initial states; that is
∑

s∈S ρ(s) = 1. The intuition

behind this formulation depends on the fact that the Bellman operator is a contrac-

tion and TV is therefore closer to V ∗. Additionally, because the error is one-sided,

that is, V (s) ≥ TV (s) ∀s ∈ S, the Bellman operator is also monotonic. Therefore,

for some feasible point V , V ≥ TV ≥ V ∗. Solving this LP, therefore, results in the

vector V approaching V ∗ from above.

Note that it is not necessary to have the max operator be explicit in the LP

formulation; because a constraint exists for every possible action, only the best action

will have a tight constraint.

As with value iteration, the LP formulation is only useful if |S| is small; a large

number of states means a uselessly large number of variables for the solver to handle.

The approximate version of the LP formulation, called Approximate Linear Pro-

gramming (ALP), was introduced by Schweitzer and Seidmann (1985) and will be

introduced in Subsection 6.1.1.
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3

Linear Value Function Approximation

It has been traditionally believed that there was a tradeoff between model-free and

model-based linear value function approximation schemes. The main contribution of

this chapter is to demonstrate this line of thinking is misleading; the two approaches

actually result in identical approximations. We believe this to be important, as

model-based approximation schemes are extremely intuitive and easy to understand.

This approachability has value while analyzing the effects of different feature choices.

The results in this chapter were independently presented by Schoknecht (2002), Parr

et al. (2008) and Sutton et al. (2008), though each paper used this insight to con-

tribute in different ways.

We introduce previous work in two areas in Section 3.1. First, we discuss model-

free linear value function approximation schemes which arrive at the linear fixed-

point. Next, we discuss feature generation methods and feature selection.

Then, Section 3.2 introduces linear models that approximate the underlying dy-

namics of the system, and uses those models to produce a novel model-based linear

value function approximation scheme. Finally, Section 3.3 demonstrates the value

function resulting from the approximate linear model is equal to the solution pro-
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duced by the linear fixed-point value function approximators. This result allows us

to conclude that in the linear approximation setting, successfully approximating the

model explicitly results in successfully approximating the value function.

In this chapter, we are more interested in analyzing the approximation schemes

than in the effects of sampling. Therefore, we assume that we know the optimal

policy π∗ and that Pπ∗ and R are known and can be represented by a matrix and a

vector, respectively.

3.1 Previous Work

This section introduces previous work in two areas crucial to the contributions of this

chapter. First, Subsection 3.1.1 introduces linear fixed-point methods. Subsection

3.1.2 then introduces methods of generating sets of useful features, which will later

be used in experiments and analyzed.

3.1.1 Linear Fixed-Point Methods

The methods presented in this subsection are methods to weight a set of provided

features such that the approximation lies at the linear fixed-point. The linear fixed

point for a feature set Φ is the value of w such that

V̂ = ΦwΦ = Πρ(R + γPΦwΦ). (3.1)

Here, Πρ is an operator that is the ρ-weighted L2 projection into span(Φ), and

where ρ is a state weighting distribution, typically the stationary distribution of P .

If % = diag(ρ), Πρ = Φ(ΦT%Φ)−1ΦT%. For convenience, an unweighted projection

(uniform ρ) or some other ρ is often used. Our results do not depend upon the

projection weights, so we shall assume uniform ρ. An illustration of the linear fixed

point appears in Figure 3.1.

We can use Equation 3.1 and the definition of the projection operator Π to solve
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ΦwΦ = Πρ(TΦwΦ)

Figure 3.1: Illustration of the linear fixed point. Applying the Bellman operator
almost certainly removes the approximation from the column space of Φ. The point
at which the projection back into the span of Φ is equal to the point prior to the
application of the Bellman operator is the linear fixed-point.

for wΦ Bradtke and Barto (1996):

wΦ =(I − γ(ΦTΦ)−1ΦTPΦ)−1(ΦTΦ)−1ΦTR

=(ΦTΦ− γΦTPΦ)−1ΦTR. (3.2)

Methods for finding this fixed point given Φ defined on a set of samples include

linear TD(λ) (Sutton, 1988), LSTD (Bradtke and Barto, 1996) and LSPE (Bertsekas

and Ioffe, 1996).

In linear TD(λ), after each sample σ̇ is drawn, the weight vector is updated such

that

w← w + α
(
σ̇r + γΦ(σ̇s

′
)w − Φ(σ̇s)w

) t∑
i=1

λt−i∇wΦ(σ̇si )w. (3.3)

Here, α is a learning rate between 0 and 1, ∇wΦ(σ̇s)w is the vector of partial

derivatives of Φ(σ̇sk)w with respect to each element of w, and λ is a number between

0 and 1 which weights recent experiences heavier than past experiences. It is common

to set λ = 0, so as to use only the most recent experience. Sutton (1988) showed

that for absorbing MDPs with linearly independent features, with samples drawn
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from a policy π, and for a properly chosen α which shrinks as data are added, TD(0)

converges. Convergence of TD(λ) for general λ and linearly dependent features was

proven by Dayan (1992), while Tsitsiklis and Van Roy (1997) showed this convergence

was to the linear fixed-point for the Bellman operator Tπ.

Unless α is chosen carefully, TD(λ) is susceptible to oscillation. However, values

of α which guarantee convergence are often extremely small, forcing users of TD(λ)

to choose between risking nonconvergent behavior or extremely slow convergence. To

address this problem, Bradtke and Barto (1996) introduced Least-Squares Temporal

Difference Learning (LSTD). In LSTD, least square function approximation is used

to arrive at the following calculation for w, which is equivalent to Equation 3.2:

wt =

[
1

t

t∑
i=1

Φ(σ̇si )
(

Φ(σ̇si )− γΦ(σ̇s
′

i )
)T]−1 [

1

t

t∑
i=1

Φ(σ̇si )σ̇
r
i

]
. (3.4)

Bradtke and Barto showed that as data are added, the LSTD solution converges

to the linear fixed point faster than TD(0), and without the selection of a sensitive

design parameter α. This algorithm and convergence proof was later generalized to

LSTD(λ) by Boyan (1999).

LSTD is the policy evaluation step of a notable policy iteration algorithm, Least

Squares Policy Iteration (LSPI) Lagoudakis and Parr (2003). The policies generated

by LSPI will be a point of comparison for later experiments.

The third linear fixed point algorithm of note is Least-Square Policy Evaluation or

LSPE(λ) (Bertsekas and Ioffe, 1996). LSPE assumes a series of I sample trajectories,

where each trajectory is of some length Ji. The update is then

wt+1 = argmin
w

I∑
i=1

Ji∑
j=0

[
Φ(σ̇si,j)w − Φ(σ̇si,j)wt −

Ji∑
k=j

λk−jdt(σ̇i,k)

]
,

where

dt(σ̇) = σ̇r + Φ(σ̇s
′
)wt − Φ(σ̇s)wt.
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LSPE(λ) not only converges to the linear fixed-point, but does so at the same

rate as LSTD(λ) (Yu and Bertsekas, 2006).

3.1.2 Linear Feature Generation

The previous subsection discussed ways of calculating appropriate weights for a given

feature set. This subsection discusses methods of constructing that feature set in the

first place. One approach to feature generation, presented by Mahadevan and Mag-

gioni (2006), is proto-value functions (PVFs). This method involves first construct-

ing a graph between sampled states in which an edge indicates a transition between

states which has either been observed or has been inferred to be possible given the

right action. This graph approximates a manifold which attempts to represent the

true distances between states more accurately than the ambient space does. Proto-

value functions, then, are the eigenvectors of the graph Laplacian, enumerated in

increasing order of eigenvalues. These features are added to the feature set in order

of smoothness on the manifold approximated by the graph. Proto-value functions are

described as “task-independent” basis functions, as they do not consider the reward

structure of the problem; the goal of the task can be changed without altering the

feature set. Proto-value functions will be explored further in Section 5.1.

Another approach is to construct basis functions using the Bellman error (Wu

and Givan, 2004; Sanner and Boutilier, 2005; Parr et al., 2007; Keller et al., 2006).

In this framework, features are added iteratively, as feature φk+1 is the Bellman error

resulting from the approximation using features φ1 . . . φk. Parr et al. (2007) called

these Bellman Error Basis Functions (BEBFs) and showed the addition of one more

BEBF causes the distance between the approximation and V ∗ to improve at least

as quickly as the Bellman operator does; in other words, iteratively adding BEBFs

causes the bound on the approximation to converge at least as quickly as it does

in value iteration. BEBFs were shown to be equivalent to the Krylov basis, which
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consists of powers of P multiplied by R (Parr et al., 2008). The Krylov basis was

first applied to feature selection for value function approximation by Petrik (2007).

BEBFs will also be discussed further in section 5.1.

3.2 Linear Models

This section introduces linear models and a novel, model-based approach to calculat-

ing w for a feature set Φ based on linear regression. The model of an MDP consists

of the transition and reward dynamics of the MDP, that is, it consists of P and R.

As in the case of linear value functions, we assume the existence of a set of linearly

independent features φ1 . . . φk for representing transition and reward models, with

φi(s) defined as the value of feature i in state s. While value-function approximation

typically uses features to predict values, we will consider the use of these same

features to predict rewards and next feature values. We begin by discussing feature

value prediction.

For feature vector Φ(s) = [φ1(s) . . . φk(s)], we define Φ(s′|s) as the random vector

of next feature values:

Φ(s′|s) s′∼P (s′|s)
= [φ1(s′), . . . , φk(s

′)].

Our objective will be to produce a k × k matrix PΦ that predicts expected next

feature vectors,

Φ(s)PΦ ≈ Es′∼P (s′|s){Φ(s′|s)},

and minimizes the expected feature-prediction error:

PΦ = argmin
Pk

∑
s

‖Φ(s)Pk − E{Φ(s′|s)}‖2
2. (3.5)

(We shall henceforth leave s′ ∼ P (s′|s) implicit). One way to solve the minimization

problem in Equation 3.5 is to compute the expected next feature values explicitly as

22



the n×k matrix PΦ and then find the least-squares solution to the over-constrained

system ΦPΦ ≈ PΦ, since the ith row of ΦPΦ is PΦ’s prediction of the next feature

values for state i and the ith row of PΦ is the expected value of these features. Using

standard linear regression, the least-squares solution is

PΦ = (ΦTΦ)−1ΦTPΦ, (3.6)

with approximate next feature values P̂Φ = ΦPΦ. To predict the reward model

using the same features, we could perform a standard least-squares projection into

span(Φ) to compute an approximate reward predictor:

rΦ = (ΦTΦ)−1ΦTR, (3.7)

with corresponding approximate reward: R̂ = ΦrΦ.

Because the approximate model transforms feature vectors to feature vectors,

any k-vector is a state in the approximate model. If x is such a state, then in the

approximate model, rΦ
Tx is the reward for this state and PΦ

Tx is the next state

vector. The Bellman equation for state x is:

V (x) =rΦ
Tx+ γV (PΦ

Tx)

=
∞∑
i=0

γirΦ
T (PΦ

i)Tx.

Expressed with respect to the original state space, the value function becomes

V = Φ
∞∑
i=0

γiPΦ
irΦ,

which is obviously a linear combination of the columns of Φ. Since V = Φw for some

23



w, the fixed-point equation becomes:

V =R̂ + γP̂Φw

V =ΦrΦ + γΦPΦw

Φw =ΦrΦ + γΦPΦw

w =(I − γPΦ)−1rΦ. (3.8)

We call the solution to the system above the linear model solution. A solution will

exist when PΦ has a spectral radius less than 1/γ. This condition is not guaranteed

because PΦ is not necessarily a stochastic matrix; it is simply a matrix that predicts

expected next feature values. The cases where the spectral radius of PΦ exceeds

1/γ correspond to the cases where the value function defined by PΦ and rΦ assigns

unbounded value to some states.

3.3 Linear Fixed-Point Solution and Linear Model Solution Equiva-
lence

The notion that linear fixed-point methods are implicitly computing some sort of

model has been recognized in varying degrees for several years. For example, Boyan

(1999) considered the intermediate calculations performed by LSTD in some special

cases, and interpreted parts of the LSTD algorithm as computing a compressed

model. In this section, we show that the linear fixed-point solution for features Φ

is exactly the solution to the linear model described by PΦ and rΦ. Aside from

our paper, this result was shown independently by Schoknecht (2002) and Sutton

et al. (2008). These results hold for λ = 0; they were later extended to λ > 0

by Szepesvári (2010). Our results concern unweighted projections, but generalize

readily to weighted projections.

We seek to show that for any MRP M and set of features Φ, the linear-model so-

lution and the linear fixed-point solution are identical. We begin with the expression
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for the linear-model solution from Equation 3.8 and then proceed by substituting

the definitions of PΦ and rΦ from Equation 3.6 and Equation 3.7, yielding:

w =(I − γPΦ)−1rΦ

=(I − γ(ΦTΦ)−1ΦTPΦ)−1(ΦTΦ)−1ΦTR

=(ΦTΦ− γΦTPΦ)−1ΦTR (3.9)

=wΦ.

Note the final step occurs because step 3.9 is identical to the linear fixed-point

solution of Equation 3.2.

This result demonstrates that for a given set of features Φ, there is no difference

between using the exact model to find an approximate linear fixed-point value func-

tion in terms of Φ and first constructing an approximate linear model in terms of Φ

and then solving for the exact value function of the approximate model using Equa-

tion 3.8. Although the model-based view produces exactly the same value function

as the model-free view, the model-based view can give a new perspective on error

analysis and feature selection, as shown in Chapter 5.
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4

Kernel-Based Value Function Approximators

In scenarios where more expressiveness is needed from features, many have tried

kernel function approximators. As stated in Section 2.1, a kernel is a symmetric

function between two points, and through the kernel trick, can be used to place the

problem in a high-dimensional space without explicitly calculating the features that

define that high-dimensional space (Aizerman et al., 1964). This chapter presents

techniques for performing kernel-based value function approximation, before demon-

strating all presented approaches are equivalent to a novel and intuitive model-based

approach. This offers both a unification of the disparate techniques in the field and

an intuitive approach to analyzing regularization and kernel selection. This work

was first presented by Taylor and Parr (2009).

4.1 Previous Work

In this section, we offer an overview of kernelized methods. As an introduction to

kernelized methods, we first introduce kernelized regression; regression is intuitive,

and will be used in the construction of our model-based approximator. We then in-

troduce previously-presented techniques for using kernels to approximate value func-
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tions, namely Kernelized Least-Squares Temporal Difference Learning (KLSTD) (Xu

et al., 2005), Gaussian Process Temporal Difference Learning (GPTD) (Engel et al.,

2005), and Gaussian Processes in Reinforcement Learning (GPRL) (Rasmussen and

Kuss, 2004).

4.1.1 Kernelized Regression

If linear least-squares regression is rederived using the kernel trick to replace dot

products between features as described in Subsection 2.1.3, we arrive at the dual

form of linear least-squares regression,

y(x) = k(x)TK−1t, (4.1)

where t represents the target values of the sampled points, K represents the kernel

matrix, where Kij = k(xi,xj), and k(x) is a column vector with elements kn(x) =

k(xn,x).

Because K is necessarily n×n, where n is the number of samples in t, overfitting is

a concern. Therefore, we present the standard regularized form of kernel regression,

which again follows easily from applying the kernel trick to regularized linear least-

squares regression (Bishop, 2006):

y(x) = k(x)T (K + λI)−1 t, (4.2)

where λ is the regularization parameter.

It is worth noting that due to the symmetry of K, if K is invertible, performing

kernel regression is identical to performing linear regression with a feature set Φ

defined by K and weights w = K−1t, as shown here:

y(x) =k(x)T
(
KTK

)−1
KT t

=k(x)T (KK)−1 Kt

=k(x)TK−1t.
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Another approach to kernelized regression is by using Gaussian Processes (GPs).

GPs return not a prediction y(x), but a full Gaussian distribution from which to

draw a prediction, with mean equal to the kernelized regression solution in Equation

4.2, where λ is the standard deviation of noise in the function. The covariance of this

Gaussian process depends upon a prior on the noise in the data, and the variance

and density of the data set itself. If training data around the testing point are dense

and of low variance, or if the prior indicates a small amount of noise, the variance of

the returned Gaussian will be smaller; similarly, if relevant training data are sparse

or of high variance, or the prior predicts a large amount of noise, the variance of

the returned Gaussian will be larger. As a result, the width of this Gaussian can be

interpreted as a measure of uncertainty in the prediction.

4.1.2 Kernelized Value Function Approximation

There have been several kernelized reinforcement learning approaches proposed in re-

cent years, with few obvious similarities in the algorithms. One example is Kernelized

Least-Squares Temporal Difference Learning (KLSTD) (Xu et al., 2005). KLSTD

begins with the general LSTD(λ) algorithm (Boyan, 1999) and uses the kernel trick

discussed in Subsection 2.1.3 to derive a kernelized version of LSTD; every place a

dot product between features appears, that dot product is replaced with a kernel

matrix. This is equivalent to performing LSTD with a large number of features. We

focus on the λ = 0 case, for which the approximate value function solution is

V̂ (s) = k(s)T (KHK)−1 Kr, (4.3)

where

H =


1 −γ 0 . . . 0
0 1 −γ . . . 0
...

...
0 0 . . . 1 −γ
0 0 . . . 0 1

 .
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KLSTD was presented without any form of regularization, but the authors did use

sparsification, in which data points that were similar to previous data points were

removed from the sampled set. This may have helped regularize their solution some-

what and may have also helped improve the conditioning of K in their experimental

results.

Another example is Gaussian Process Temporal Difference Learning (GPTD)

(Engel et al., 2005), which takes a GP approach to direct value function approxi-

mation. The GP approach builds a jointly Gaussian model over the training data

and implies a predictive distribution over novel states. As with GP regression, the

variance of this distribution can be interpreted as a measure of certainty. GPTD

begins by modeling the residual:

R(σ̇s) = V (σ̇s)− γV (σ̇s
′
) +N(σ̇s, σ̇s

′
).

for all samples σ̇ ∈ Σ̇. N is modeled with a Gaussian process, N(s, s′) ∼ N (0,Σ).

This formulation results in the approximate value function represented as a Gaussian

distribution. The mean of this distribution is

V̂ (s) = k(s)THT
(
HKHT + Σ

)−1
r, (4.4)

where H is defined as in KLSTD.1 As with KLSTD, they propose a sparsification

technique that approximates the above solution with less computation.

A third approach, Gaussian processes in reinforcement learning (GPRL) (Ras-

mussen and Kuss, 2004), is a model-based approach which first uses Gaussian Pro-

cesses to approximate the transition and reward models, and then solve for the value

function of the approximate transition and reward models. Additionally, kernels are

assumed to be the sum of a Gaussian kernel and a weighted delta function; the re-

1 GPTD actually defined H without the last row of KLSTD’s H. The last row corresponds to
the assumption that the trajectory ends with a transition to an absorbing state, an assumption we
preserve for our version of GPTD for the convenience of having a square H.
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sulting kernel matrix is denoted Kv. Rewards are assumed to be noiseless. This

construction makes the value function

V̂ (s) = R̂(s) + γ

∫
P̂si,s′V̂ (s′)ds′

difficult to calculate in closed form, as P̂si,s′ and V̂ (s′) are both Gaussian. Using a

result from Girard et al. (2003), GPRL approximates
∫
P̂si,s′V (s′)ds′ with WiK

−1
v V ,

replacing the integral over the entire state space with a product of Wi, which is the

expected next kernel values given state si, and the kernelized representation of the

value function, K−1
v V . The final result is a Gaussian distribution for the value of all

sampled points with mean

V̂ =
(
I− γWK−1

v

)−1
r,

where W is a matrix of expected next kernel values with Wij = E [k(s′i, sj)]. Because

the kernel function consists of a sum, Kv can be decomposed such that Kv = K +

σ2∆, where K is the kernel matrix resulting from the Gaussian kernel, and ∆ij =

δ(i, j), producing the value function

V̂ =
(
I− γW(K + σ2∆)−1

)−1
r. (4.5)

Each of these approaches are differently motivated and produce seemingly differ-

ent approximations; two approximate the value function directly, while one looks to

first approximate the model, then solve for a value function. However, Section 4.3

will show that they are in fact very similar.

4.2 A General Kernelized Model-Based Solution

We now present a general, kernelized approach to model-based RL built upon kernel-

ized regression. Using Equation 4.2 with Σ = 0, we can formulate our unregularized
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approximate reward model for state s ∈ S as

R̂(s) = k(s)TK−1R, (4.6)

and the regularized version:

R̂(s) = k(s)T (K + ΣR)−1R. (4.7)

The approximate transition model is similar. Our approach differs from GPRL

in one important way: GPRL learns an approximate model that predicts next state

variables given current state variables. Our approximate model does not seek to

predict the state itself, but seeks to predict kernel values, i.e, k(s′) given k(s). This

defines the relationship of our predicted next state to our sampled points in the

space implicitly defined by the kernel function. We first define the matrix K′ = PK,

in which K ′ij = E [k(x′i, xj)]. Here, K′ can be thought of as target data consisting

of the vectors k(s′). To approximate the transition model, we again use kernelized

regression:

k̂(s′) = k(s)TK−1K′. (4.8)

As with the reward model, we can construct a regularized version of the approximate

transition model,

k̂(s′) = k(s)T (K + ΣP )−1 K′ (4.9)

We can use the models expressed in Equations 4.6 and 4.8 to construct an un-
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regularized approximate value function.

V̂ (s) =k(s)TK−1R + γ k(s)TK−1K′︸ ︷︷ ︸
k̂(s′)T

K−1R

︸ ︷︷ ︸
R̂(s′)

+γ2k(s)T
(
K−1K′

)2
K−1R + . . .

=k(s)T
∞∑
i=0

[
γi
(
K−1K′

)i]
K−1R

=k(s)T
(
I− γK−1K′

)−1
K−1R

Distributing K−1, we arrive at our final value function,

V (s) = k(s)T (K− γK′)
−1
R. (4.10)

It is also possible to perform this derivation using the regularized reward and

model approximations from Equations 4.7 and 4.9, resulting in the following value

function:

V̂ (s) = k(s)T
[
(K + ΣR)− γ (K + ΣR) (K + ΣP )−1 K′

]−1
R (4.11)

Regularization is often necessary, as real RL problems exhibit noise and the high

expressiveness of the kernel matrix can result in overfitting. Also, there is no guar-

antee the kernel matrix K will be invertible and regularization tends to improve the

conditioning of the matrix inversion problem. A benefit of the model-based solu-

tion presented here is that it offers the ability to regularize reward and transition

approximations separately.

So far, our derivation has assumed that K′ could be computed and represented

explicitly for the entire state space. In practice one would typically apply kernel-

based approximation algorithms to large or continuous state spaces. In these cases,

it is impossible to create a kernel matrix K representing the kernel functions between
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every state. Instead, we use samples Σ̇, and construct a sampled K, K′, and r. In

this case, k(si, sj) = k(σ̇si , σ̇
s
j ), where σ̇i, σ̇j ∈ Σ̇, and K′ij = k(σ̇s

′
i , σ̇

s
j ). In the special

case where the samples are drawn from trajectories, σ̇s
′
i = σ̇si+1, and k(σ̇s

′
i , σ̇

s
j ) =

k(σ̇si+1, σ̇
s
j ). Therefore, K′ = GK, where

G =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
0 0 0 . . . 1
0 0 0 . . . 0

 .

4.3 Equivalence

With the model-based value functions defined, we are ready to state our equivalence

theorems.

Theorem 4.3.1. Given the same trajectories and same kernels, the KLSTD value

function is equivalent to the unregularized model-based value function.

Proof. Note H = I−γG. Our first step is to show that KHK = KK−γKK′, using

H = I− γG and K′ = GK:

KHK =K (I− γG) K

=KK− γKGK

=KK− γKK′.

Starting from the solution to KLSTD in Equation 4.3,

V (s) =k(s)T (KHK)−1 Kr

=k(s)T (KK− γKK′)
−1

Kr

=k(s)T
(
K−1KK− γK−1KK′

)−1
r

=k(s)T (K− γK′)
−1

r,
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which is equal to our unregularized approximate model-based value function in Equa-

tion 4.10.

The implication of this theorem is that we can view KLSTD as implicitly approxi-

mating the underlying transition and reward functions of the system. We can prove a

similar theorem about the relationship of GPTD to the model-based approximation.

Theorem 4.3.2. Given the same trajectories and same kernels, the mean value

function returned by GPTD is equivalent to the regularized model-based value function

with ΣR = ΣP = Σ(HT )−1.

Proof. We begin with the GPTD mean approximate value function introduced in

Equation 4.4, and show it is equivalent to Equation 4.11:

V̂ (s) =k(s)THT
(
HKHT + Σ

)−1
r

=k(s)T
(
HK + Σ(HT )−1

)−1
r

=k(s)T
(
K− γK′ + Σ(HT )−1

)−1
r

=k(s)T
[
(K + ΣR)− γ (K + ΣR) (K + ΣP )−1 K′

]−1
r,

when ΣR = ΣP = Σ(HT )−1.

In the noiseless case when Σ = 0, GPTD is equivalent to the unregularized

model-based value function in Equation 4.10.

This theorem assumes that (HT )−1 exists, but this is ensured by the structure of

H. As with KLSTD, we see that GPTD can be viewed as implicitly approximating

the underlying transition and reward models of the system. It is not surprising that

GPTD’s Σ appears in both the transition model and reward regularization since

GPTD does not have separate noise terms for the reward and transition.
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The appearance of (HT )−1 may be somewhat surprising. Loosely speaking, we

can say that it propagates the regularizer Σ through the transition model since:

(HT )−1 = (I − γP T )−1 =
∞∑
i=1

γi(P T )i,

but we believe that empirical study of the role of (HT )−1 is warranted.

In contrast, GPRL explicitly models the transition model of the system, but uses

a very different starting point from our model-based approximation. However, we

can show the final results are still closely related.

Theorem 4.3.3. Using the same sample data and same kernel functions, the mean

value function returned by GPRL is equivalent to the regularized model-based value

function with ΣR = ΣP = σ2∆.

Proof. Recall that Wij = E [k(x′i, xj)]. GPRL’s regularization term is part of the

definition of the kernel, but GPRL uses a trick to ensure that regularization is applied

only to the training data and not to test data: the regularizer is multiplied by a delta

function which ensures that it is applied only to on-diagonal entries in K. Since

GPRL assumes that data are drawn from a Gaussian, P (δ(x′i, xj) > 0) = 0, and σ2

is not expected to appear in K′. We therefore assume Wij = K′ij. Beginning with

the GPRL value function in Equation 4.5:

V̂ =
(
I− γW(K + σ2∆)−1

)−1
r

=
(
I− γK′(K + σ2∆)−1

)−1
r

=(K + σ2∆)
(
(K + σ2∆)− γK′(K + σ2∆)−1(K + σ2∆)

)−1
r

=(K + σ2∆)
(
K + σ2∆− γK′

)−1
r.

To change this value function from one that defines approximate values over all

experienced points to one that defines a value function on an arbitrary point s, we
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replace K + σ2∆ with the kernel evaluated at s:

V̂ (s) =
(
k(s)T + σ2δ(s)T

) (
K + σ2∆− γK′

)−1
r,

where δ(s) is a column vector with elements δi(s) = δ(si, s). For an arbitrary point

in a continuous space, δ(s) will be the zero vector, so

V̂ (s) =k(s)
(
K + σ2∆− γK′

)−1
r

=k(s)T
[
(K + ΣR)− γ (K + ΣR) (K + ΣP )−1 K′

]−1
r,

when ΣR = ΣP = σ2∆.

When σ2 = 0, this is equivalent to the unregularized model-based value function

in Equation 4.10.

In summary, KLSTD, GPTD, GPRL, and our novel model-based value function

differ only in their approaches to regularization and their assumptions about the

manner in which the samples are drawn; these relationships are tabulated in Table

4.1 below. Even though these algorithms are basically identical, it can nevertheless

be useful to consider different approaches to regularization to get insight into pa-

rameter selection since overfitting with kernel methods is a genuine concern. This

section also shows that even seemingly direct approaches to kernelized value function

approximation have a model-based interpretation. In Section 5.2, we show that the

model-based interpretation lends itself to a useful error decomposition.

Method Value Function Model-Based Equivalent
KLSTD w = (KHK)−1Kr ΣP = ΣR = 0

GPTD w = HT
(
HKHT + Σ

)−1
r ΣP = ΣR = Σ(HT )−1

GPRL w =
(
K + σ2∆− γK′

)−1
r ΣP = ΣR = σ2∆

Model-Based w =
[
(K + ΣR) + γ (K + ΣR) (K + ΣP )

−1
K′
]−1

r

Table 4.1: Previously introduced methods of kernelized value-function approximation
are equivalent to the novel model-based approximation

36



5

Analysis of Error

Chapters 3 and 4 demonstrated that many existing linear and kernel-based approxi-

mation schemes were equivalent to novel model-based approaches; it is clear that the

better an approach approximates the reward and transition dynamics of the system,

the better the value function approximation is likely to be. This chapter formalizes

this intuition in order to aid with feature selection and regularization tuning.

We show that for fixed-point solutions, the Bellman error can be decomposed

into reward error and transition error. Reward error expresses how well the approx-

imation represents the reward function, while transition error expresses how well

the approximation represents the transition function of the system. This view can

provide insight into the performance of the approximation algorithm.

5.1 Error in Linear Value Function Approximations

Error in value function approximations can come from two sources. First, the feature

set institutes bias; second, noise in sampling causes variance. For the duration of

this section, we will assume that Φ can be constructed with a row for every s ∈ S,

and that there is no noise in our samples. This assumption allows us to characterize
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the representational power of the features as a separate issue from the variance

introduced by sampling.

In the context of linear value functions and linear models, we shall define the

Bellman error for a set Φ of features as the error in the linear fixed-point value

function for Φ:

BE(Φ) = BE(ΦwΦ) = R + γPΦwΦ − ΦwΦ.

To understand the relationship between the error in the linear model and the Bellman

error, we define two components of the model error, the reward error:

∆R = R− R̂,

and the transition error:

∆Φ = PΦ− P̂Φ.

The Bellman error can be related to these model errors with the following theo-

rem.

Theorem 5.1.1. For any MRP M and features Φ,

BE(Φ) = ∆R + γ∆ΦwΦ. (5.1)

Proof. Using the definitions of BE(Φ), ∆R, and ∆Φ:

BE(Φ) =R + γPΦwΦ − ΦwΦ

=(∆R + R̂) + γ(∆Φ + P̂Φ)wΦ − ΦwΦ

=(∆R + γ∆ΦwΦ) + R̂ + (γΦPΦ − Φ)wΦ

=(∆R + γ∆ΦwΦ) + R̂− Φ(I − γPΦ)wΦ

=(∆R + γ∆ΦwΦ) + R̂− ΦrΦ

=∆R + γ∆ΦwΦ.

The final step follows from the definition of R̂, and the penultimate step follows from

Equation 3.8.
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In Chapter 3, we discussed that the model-based and model-free equivalence

meant every fixed-point method was actually approximating the model; this theorem

formalizes that intuition. If a feature set’s reward and transition errors are both low,

then the Bellman error must also be low. More pessimistically, it means that if

a feature set is unable to capture the structure of the reward function or predict

expected next features, then this may result in a poor value function. In Subsection

5.1.1 we show this view of the Bellman error can give insight into the problem of

feature selection; in particular, we demonstrate that several methods fail to predict

the reward function, resulting in high reward error and high Bellman error. This

finding is consistent with the observation of Petrik (2007) of the problems that arise

when the reward is orthogonal to the features.

We caution that there can be interactions between ∆R and ∆Φ. For example,

consider the basis composed of the single basis function φ∗ = V ∗. Clearly, BE(φ∗) =

0, but for any non-trivial problem and approximate model, ∆R and ∆Φ will be

nonzero and will cancel each other out in Equation 5.1.

5.1.1 Experimental Results

We present policy-evaluation results using linear value function approximation on

three different problems, a 50-state chain, a two-room problem, and blackjack. Our

objective is to demonstrate how our theoretical results can inform the feature-

generation process and explain the behavior of known feature-generation algorithms.

We consider four such algorithms:

PVF: This is the proto-value function (PVF) framework described by Mahadevan

and Maggioni (2006). PVFs were introduced in Subsection 3.1.2. We reproduced

their method as closely as possible, including adding links to the adjacency matrix for

all policies, not just the policy under evaluation. Curiously, removing the off-policy
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links seemed to produce worse performance. We avoided using samples to eliminate

the confounding (for our purposes) issue of variance between experiments. Because

it offered better performance, we used the combinatorial Laplacian for the 50-state

and blackjack problems, but used the normalized Laplacian in the two-room problem

to match Mahadevan and Maggioni (2006).

PVF-MP: This algorithm selects basis functions from the set of PVFs, but selects

them incrementally based upon the Bellman error. Specifically, basis function k+1 is

the PVF that has highest dot product with the Bellman error resulting from the pre-

vious k basis functions. It can be interpreted as a form of matching pursuits (Mallat

and Zhang, 1993) on the Bellman error with a dictionary of PVFs.

Eig-MP: The form of the Bellman error in Equation 5.1 suggests that features for

which ∆Φ = 0 are particularly interesting. If a dictionary of such features were avail-

able, then the feature-selection problem would reduce to the problem of predicting

the immediate reward using this dictionary. The condition ∆Φ = 0 means that,

collectively, the features are a basis for a perfect linear predictor of their own next,

expected values. More formally, feature Φ are subspace invariant with respect to P

if PΦ is in span(Φ), which means there exists a Λ such that PΦ = ΦΛ.

It may seem like subspace invariance is an unreasonable requirement that could

hold only for a complete basis of P . However, it turns out many such subspaces exist,

including any set of eigenvectors of P . For eigenvectors χ1 . . . χk with eigenvalues

λ1 . . . λk, Λ = diag(λ1 . . . λk). Other subspaces are described by Parr et al. (2008),

but are not germane to this discussion.

The Eig-MP approach, therefore, is similar to PVF-MP, but selects from a dic-

tionary of the eigenvectors of P .

The Eig-MP approach is similar to one proposed by Petrik (2007), in which the
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eigenvectors of P were added to the basis in order of decreasing eigenvalue.

BEBF: This is the Bellman Error Basis Function (BEBF) algorithm described by

Parr et al. (2007), and introduced in Subsection 3.1.2. In this scheme, the first

feature is equal to the reward function of the space. From this point, feature k + 1

is the Bellman Error resulting from the previous k features.

Our experiments performed unweighted L2 projection and report unweighted L2

norm error. We also considered L∞ error and L2 projections weighted by stationary

distributions, but the results were not qualitatively different. We report the Bellman

error, the reward error, and the feature error, which is the contribution of the transi-

tion error to the Bellman error: γ∆ΦwΦ. These metrics are presented as a function

of the number of basis functions.

These algorithms were applied to three different problems:

50-state Chain We applied all four algorithms to the 50-state chain problem from

Lagoudakis and Parr (2003), with the results shown in Figure 5.2(a–c). This problem

consists of 50 states, with reward given in states 10 and 41. The actions were a choice

of moving left or right; the chosen action succeeded 90% of the time, but moved the

agent in the opposite direction 10% of the time. The policy was the optimal policy

of moving towards the nearest reward. The discount factor was γ = .9.

As demanded by the property of subspace invariance, Eig-MP has 0 feature er-

ror, which means that the entirety of the Bellman error is expressed in ∆R. This

remaining error, however, is substantial. For this problem, PVFs appear to be ap-

proximately subspace invariant, resulting in low ∆Φ. Because PVFs PVFs are defined

entirely on transition data, this makes intuitive sense. However, both Eig-MP and

the PVF methods do poorly because the reward is not easily expressed as linear
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combination of a small number of features. This illustrates that targeting only one

of the two sources of error may not succeed.

BEBFs represent the other extreme since ∆R = 0 after the first basis function

(which, after all, isR itself) is added and the entirety of the Bellman error is expressed

through ∆Φ. PVF-MP does better than plain PVFs because it is actively trying to

reduce the error, while plain PVFs choose basis functions in an order that ignores the

reward. In fact, PVF-MP accepts substantial feature error to more quickly minimize

reward error.

Two-room Problem We tried all four algorithms on an optimal policy for the two-

room navigation problem from Mahadevan and Maggioni (2006), illustrated in Figure

5.1. It consists of a discrete 20-by-20 grid bisected by a wall with a small door in the

middle. This complicates the problem, as it is possible for two points on opposite

sides of the wall to be very near each other in the state space, but have very different

values and not be able to transition to each other. The policy was an optimal policy,

and the discount factor was γ = .9.

Figure 5.1: An illustration of the two-room problem from Mahadevan and Maggioni
(2006). The yellow state in the upper-right corner provides a reward.

For this problem, we do not show results for the Eig-MP method; the transi-
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tion matrix for this problem is not diagonalizable, and so its eigenvectors do not

make a complete basis. In theory, the existing eigenvectors can be augmented with

generalized eigenvectors, but methods for calculating these proved unreliable.

Figure 5.2(d–f) shows the breakdown of error for the remaining algorithms. In

this case, the Laplacian approach produces features that behave less like an invariant

subspace, resulting in high ∆R and ∆Φ. However, there is some cancellation between

them.

Blackjack We tested a version of the bottomless-deck blackjack problem from Sutton

and Barto (1998), evaluating the policy they propose. In this game, the common

rules of blackjack apply, but the dealer has a fixed policy. If the dealer has a 16 or

lower, he hits; otherwise, he stays. The state space consists of the player’s cards, the

dealer’s visible card, and whether or not he holds an ace which is usable. A usable

ace is one which can be counted as 11 without going bust. The rewards of 1, -1, or

0 are given if the player wins, loses, or draws. The policy we evaluate is that of the

player sticking if he has a 20 or 21, and hitting otherwise.

For the model described in the book, all methods except BEBF performed ex-

tremely poorly. To make the problem more amenable to eigenvector-based methods,

we implemented an ergodic version that resets to an initial distribution over hands

with a value of 12 or larger and used a discount of 0.999. The breakdown of error for

the different algorithms is shown in Figure 5.2(g–i), where we again omit Eig-MP. As

expected, BEBFs exhibit ∆R = 0, and drive the Bellman error down fairly rapidly.

PVFs exhibit some interesting behaviors: when the PVFs are enumerated in order

of increasing eigenvalue, they form an invariant subspace. As a result, the feature

error for PVFs hugs the abscissa in Figure 5.2(i). However, this ordering completely

fails to match R until the very last eigenvectors are added, resulting in very poor

performance overall. In contrast, PVF-MP adds basis eigenvectors in an order that
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does not result in subspace invariant features sets, but that does match R earlier,

resulting in a more consistent reduction of error.

These examples demonstrate the benefit of the Bellman error decomposition; with-

out the decomposition, it would have been challenging to explain why individual

feature-selection algorithms succeeded or failed. The implicit model approximations

provide a starting point for algorithm improvement.

5.2 Error in Kernel-Based Value Function Approximation

In this section, we perform a similar breakdown of the Bellman error. However, the

difference between linear and kernelized approximations lead to this decomposition

having a different use in the kernelized case. In the linear case, we worried about

having sufficient expressiveness; we sought the very few features which were sufficient

to approximate both components of the model. In the kernelized case, we have the

opposite problem; kernelized methods are extremely expressive and tend to overfit,

leading to a need for regularization. In the following subsection, we demonstrate

that this breakdown can assist in the tuning of regularization parameters.

As in Section 5.1, we define reward error and transition error. First, however,

we must elaborate on our notation, and introduce some new terms. Our goal is to

represent an entire state space containing |S| states with n sampled points, where

n � |S|. Therefore, r is an n-vector, and P̂ and K are n × n matrices, where P̂ is

our estimation of P , such that P̂K ≈ K′. Let K be a |S| × n matrix, where Kij is

equal to k(si, sj), where si is an element of the set of all states in the state space,

and sj is one of our experienced points. Therefore, our approximate reward values

for the entirety of the state space follows from Equation 4.6, and is represented as

R̂ = KK−1r. (5.2)
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(a) Chain Bellman Error (b) Chain Reward Error (c) Chain Feature Error
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(g) Blackjack Bellman Error (h) Blackjack Reward Error (i) Blackjack Feature Error

Figure 5.2: Decomposition of the Bellman error for three different problems. First
row: 50-state chain; Second row: Two-room problem; Third row: Ergodic Blackjack.
First column: Bellman error; Second Column: reward error; Third Column: feature
error

We can also introduce reward error in the kernel context as a vector indicating

the difference between the actual reward values, and our approximation R̂.

∆R = R− R̂ (5.3)

Similarly, we introduce transition error. In the kernel context, this is a measure
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of our error in predicting k(s′).

∆K′ = PK −KK−1P̂K (5.4)

For readability, we define w = (K− γPK)−1 r, which is extracted from our value

function defined in Equation 4.10.

Theorem 5.2.1. For any MRP M and kernel matrix K,

BE(K) = ∆R + γ∆K′w. (5.5)

Proof. Our proof closely follows the proof of Theorem 5.1.1. We again begin with

the definition of the Bellman error, and use our definitions of ∆R and ∆K′ from

Equations 5.3 and 5.4.

BE(K) =R + γV (s′)− V (s)

=R + γPKw −Kw

=∆R + R̂ + γ
(
∆K′ +KK−1PK

)
w −Kw

=∆R + R̂ + γ∆K′w + γKK−1PKw −Kw

=∆R + R̂ + γ∆K′w +K
(
γK−1PK− I

)
w

=∆R + R̂ + γ∆K′w +KK−1 (γPK−K) w

=∆R + R̂ + γ∆K′w −KK−1 (K− γPK) w

=∆R + R̂ + γ∆K′w −KK−1 (K− γPK) (K− γPK)−1 r

=∆R + R̂ + γ∆K′w −KK−1r

=∆R + R̂ + γ∆K′w − R̂

=∆R + γ∆K′w.
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This result means that just as in the linear model case, when using kernel-based

methods we can view the Bellman Error as having two direct sources of error, the re-

ward error and transition error. We can use this information to analyze the behavior

of value-function approximation algorithms.

5.2.1 Experimental Results

In Section 4.3, we showed several kernel-based value function approximators to be

equivalent, except for their treatment of regularization. The Bellman error decom-

position provides insight into the behavior of regularization and can facilitate the

selection of regularizing parameters.

To demonstrate this use of the Bellman error decomposition, we consider a con-

tinuous, two-room maze navigation problem similar to problems explored by Ma-

hadevan and Maggioni (2006) and Engel et al. (2005). A vertical wall separates the

state space into equal-sized left and right rooms. A small opening in the middle

of this wall acts as a passage between the rooms. An agent can be at any empty

point. The actions are 1-unit long steps in one of the four cardinal directions, with

added two-dimensional Gaussian noise with covariance 0.5I. The agent cannot travel

through walls, so movements that would cross walls are truncated at the point of

intersection. When the agent reaches a 1-unit-wide goal region along the entire right

wall of the right room, it deterministically receives a reward of 1. In our version of

the problem, the agent can loiter in the reward region, making the maximum achiev-

able value 1/(1 − γ). The discount factor was γ = 0.9. The domain is illustrated

in Figure 5.3(a), and the optimal value function for an optimal policy is shown in

Figure 5.3(b).

Our training set Σ̇ consisted of 3750 samples drawn uniformly from the space.

The action used at each state was from an optimal policy for this problem. We

used a Gaussian kernel with a diagonal covariance matrix 3I, and varied the ΣP
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Figure 5.3: Two-room domain

regularization term to demonstrate the effects on the value function and Bellman

error decomposition. Figures 5.4(a), 5.4(b), 5.4(c), and 5.4(d) show the approximate

value function and absolute value of the error components at the grid points resulting

for ΣR = ΣP = 0. We used SVD to handle the ill-conditioned matrix inversion

problems that resulted in this case. Note that the scale of the error plots is different

from the scale of the value function plot. The large errors at the edges of the space are

due to our sampling strategy, which provided fewer neighboring points at the edges

and corners. More interestingly, however, the value function is extremely uneven and

inconsistent throughout the space. It is difficult to identify why by looking only at

the Bellman error in Figure 5.4(b). However, it is clear from examining 5.4(c) that

the Bellman error is dominated by the transition error component and that there is

overfitting across much of the domain. However, the reward error in Figure 5.4(d)

is much less uneven, indicating that the reward approximation is not overfitting.

This is not surprising since the reward is deterministic for this problem. Overall,

these results are consistent with a need for greater regularization in the approximate

transition function. This is precisely what one would expect with a priori knowledge

of a noisy transition function and deterministic rewards; in practice, however, we

would not have such knowledge of the noise sources in the model.

Figures 5.4(e) and 5.4(f) show the value function and transition error resulting
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from the same approximation, but with ΣP = 0.1I. Reward error is not shown as it

remained unchanged. As we expected, the value function is smoother. Figure 5.4(f)

shows the transition error of the regularized approximation. Note again that the

scale of the error plot is different from the scale of the value function plot. There

are still areas of high error, as the large amount of noise relative to the number

of samples still makes an approximation difficult. However, the transition error is

much better controlled, demonstrating that the regularization has performed as we

might expect. Overall, the value function has a far more reasonable shape, and the

remaining problems with the value function are primarily attributable to a scarcity

of samples in the corners.

In this particular example, the Bellman error decomposition is less useful for

revealing an excess of regularization. Under the optimal policy for this problem, the

agent does not bump into any walls, except in cases where it is caused by noise. The

transition function is therefore a fairly smooth function and excessive regularization

has the effect of making the approximation too flat. This has a global effect of

squashing the value function, but, in contrast with the case of too little regularization,

the effect is not particularly salient from a graph of the transition error alone.

This simple example demonstrates both the advantage of separate reward and

transition regularizers, and the insight offered by the Bellman error decomposition.

From a wider perspective, the model-based viewpoint decouples the transition and

reward approximation aspects of the problem, and the Bellman error decomposition

provides a window into understanding the behavior of otherwise opaque approxima-

tion schemes.

5.3 Generalized Analysis

This section presents the somewhat parenthetical note that the Bellman error decom-

positions presented in the previous two sections are special cases of a decomposition
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(b) Bellman error with
ΣP = 0
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(c) Transition error with
ΣP = 0
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(d) Reward error with
ΣP = 0
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(e) Value function with
ΣP = 0.1I
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(f) Transition error with
ΣP = 0.1I

Figure 5.4: Bellman error decomposition for the continuous two-room problem,
with two different values for the transition regularization matrix Σp. Note that the
scale on the value function plots is different from the scale on the error plots.

on any fixed-point approximation architecture. That is, let us define R̂ and P̂ as our

reward and transition approximations in an arbitrary approximation architecture.

In the previous sections, our P̂ predicted next feature values and next kernel values.

Because we are working in an arbitrary approximation architecture, we cannot be so

precise; instead, we define P̂ such that P̂ V is approximately equal to the values at the

next states. Similar to previous sections, if we define ∆R = R− R̂ and ∆P = P − P̂ ,

and we define an approximation V̂ to be the fixed point, that is V̂ = R̂ + γP̂ V̂ , we

can prove the following theorem:

Theorem 5.3.1. Regardless of the approximation architecture of V̂ , R̂, and P̂ , if V̂

is a fixed point, then

BE(V̂ ) = ∆R + γ∆P V̂ .

Proof. Using the fact that V̂ is a fixed-point, plus our definitions of ∆R and ∆P , we
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can perform the following:

BE(V̂ ) =R + γP V̂ − V̂

=(∆R + R̂) + γ(∆P + P̂ )V̂ − V̂

=(∆R + γ∆P V̂ ) + R̂ + (γP̂ − I)V̂

=(∆R + γ∆P V̂ ) + R̂− (I− γP̂ )V̂

=∆R + γ∆P V̂

This theorem demonstrates that analysis of all fixed-point approximations would

benefit from understanding the underlying model approximation. At the risk of over-

simplifying, we note that the concept of model-based and model-free approximations

is misleading, as a good implicit model approximation always leads to a good value

function approximation.
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6

L1-Regularization For Feature Selection

The previous chapters discussed methods for analyzing previously chosen sets of

features. This analysis is important, as there tends to be a process of approximating

the function, analyzing features, tweaking them, and re-running the approximator

until the approximation is good. This is ultimately unsatisfying, as this iterative

process of trying different feature sets until success depends on human intuition,

scuttling the idea of autonomous, artificially intelligent behavior. Additionally, we

would prefer to have faith in our methods even when we don’t have good intuition

about the solution. After all, if we know the solution, why are we bothering?

The remainder of this document instead focuses on methods for approximating

value functions while simultaneously, and automatically, choosing basis functions

from a large, possibly overcomplete dictionary. To ease the feature selection problem,

this dictionary can consist of the union of all candidate feature sets. By combining

feature selection with value function approximation in the same step, we allow the

approximator to choose the most useful linear space, rather than employing human

intuition.

The work in Chapter 4, along with the work of Farahmand et al. (2008) and Kolter
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and Ng (2009), has demonstrated the usefulness of regularization in value function

approximation. We can combine this benefit from regularization with automatic

feature selection by using L1 regularization.

The contributions of this chapter include the presentation of a novel value func-

tion approximation scheme, called L1-Regularized Approximate Linear Programming

(RALP) (Petrik et al., 2010), which has the following desirable characteristics:

• RALP performs automatic feature selection during the approximation step.

• The RALP approximation approximates V ∗, that is, the value function of the

optimal policy, not of a predetermined intermediate policy from policy itera-

tion.

• The average approximation error ‖V̂ − V ∗‖1,ρ is bounded.

• The empirical performance of greedy policies based on RALP value function ap-

proximations outperform those of existing value function approximation tech-

niques.

6.1 Previous Work

6.1.1 Approximate Linear Programming

The work in this chapter is built on Approximate Linear Programming (ALP). ALP

addresses a weakness of the LP formulation originally presented in Subsection 2.2.5.

Because the number of variables in the LP formulation equals |S|, this formulation

is extremely unwieldy and time-consuming to solve in large state spaces. Therefore,

Schweitzer and Seidmann (1985) introduced the ALP, which takes the following form:

min
w

ρTΦw

s.t. TaΦ(s)w ≤ Φ(s)w ∀s ∈ S, a ∈ A.
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To ensure feasibility, one of the features is assumed to be the constant vector 1,

where 1 is a vector of all ones; we will keep this assumption throughout all our LP

discussions.

Note that while the number of variables has diminished from the number of

states to the number of features, the number of required constraints in ALP is still

|S|×|A|, which is oftentimes impractically large or infinite. One solution, which was

presented by de Farias and Van Roy (2004), is to sample a small set of constraints

from a distribution based on the optimal policy and a Lyapunov function on the

state space. It is then possible to state that with high probability, the solution

will not change too much. Unfortunately, if the optimal policy is not known, as is

usually the case, guarantees are lost not only on the solution quality, but also on the

boundedness of the linear program.

To understand the source of unboundedness, let us consider the simple MDP

shown in Figure 6.1. This gives us the following ALP:

min
w

ρTΦw

s.t. R(s1) + γΦ(s2)w ≤ Φ(s1)w
R(s2) + γΦ(s3)w ≤ Φ(s2)w
R(s3) + γΦ(s4)w ≤ Φ(s3)w
R(s4) + γΦ(s4)w ≤ Φ(s4)w

s1 s2 s3 s4

Figure 6.1: A simple four-state chain with no action choices.

If we use indicator functions as our feature set, where φ1 = 1, and φi(sj) = 1 if

i = j and 0 otherwise, and remove the third constraint, it is clear the LP is free to

drop the value of state s3 to negative infinity, demonstrating the unboundedness of

the LP.
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It is clear this example is an extreme case. However, any time a feature has

significantly more support on the left side of the constraints than the right, the LP

is susceptible to this behavior.

In addition to its theoretical problems, ALP has also often under-performed ap-

proximate dynamic programming methods in practice; this issue has been recently

studied and only partially remedied (Petrik and Zilberstein, 2009; Desai et al., 2009).

6.1.2 L1 Regularization for Regression

L1 regularization for feature selection was originally devised as a method applicable

to linear regression. Regression and value function approximation differ in that in

regression the data are sampled directly from the target function (plus noise), while

this is obviously untrue for value function approximation. However, the goal of

feature selection remains the same: choose a small set of features Φ and weights w

such that for a given function f , f̂(x) = Φ(x)w is close to the desired f(x). Noise

in the function or a lack of sampled points may cause this approach to overfit, so it

is common to use regularization.

Regularization forces the parameters to be small. To understand the effects of

small parameters, we take the derivative of f̂ = Φw:

df̂

dx
=
dΦ

dx
w.

By forcing the weights to be small, we are also limiting the rate at which our ap-

proximation can change. This helps to reduce overfitting, by not allowing the ap-

proximation to change quickly enough to fit every data point.

Traditionally, regularization has taken the form of L2 regularization, which en-

courages the sum of the squares of the parameters to be small. However, L1 regu-

larization, while still requiring weights to be small by limiting the sum of absolute

values of the parameters, has the additional benefit of encouraging sparsity (Tibshi-
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rani, 1996). A weight vector is sparse when many weights are equal to 0. Therefore,

L1-regularized methods can be given a large, overcomplete basis, and the regulariza-

tion will force only a small number of features to have non-zero weights, effectively

performing feature selection.

To understand the geometry of L1 constraints and the source of sparsity, consider

the illustration in Figure 6.2, in which the shape of the L1 ball encourages a sparse

solution at a vertex, while the L2 ball encourages a non-sparse solution.

w1

w2

w?

(a) w2
1 + w2

2 ≤ ψ

w1

w2

w?

(b) w1 + w2 ≤ ψ

Figure 6.2: The concentric circles indicate error from the best solution in span(Φ),
while the orange regions indicate the region allowed by the regularization constraint.
In Figure 6.2(a), we see that the shape of the L2 ball causes the solution to be non-
sparse. In comparison, in Figure 6.2(b), we see that the shape of the L1 ball has
encouraged a solution at a vertex, where w2 = 0. This figure was taken from Bishop
(2006).

Tibshirani (1996) first applied L1 regularization to regression via the lasso esti-

mate, which was

argmin
w

∑
x∈S

(f(x)− Φ(x)w)2

s.t. ‖w−1‖1 ≤ ψ,
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where w−1 is the vector of all weights that do not correspond to the feature 1.

The weight on the constant vector is not included in the constraint because it is

unreasonable to penalize constant shifts in the approximation. The lasso estimate

can be calculated with quadratic programming techniques. Figure 6.3 illustrates

both the smoothing and sparsity effects of increasing regularization by decreasing

the value of ψ.
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(b) ψ = 0.87, 4 features
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(c) ψ = 0.46, 2 features

Figure 6.3: This series of graphs illustrates the effect of tightening the L1 regu-
larization parameter in the lasso estimate. The features for this illustration were
monomials of x. It is clear that as ψ decreases, there is an increase in smoothness
and a decrease in number of features weighted with a nonzero.

It was later shown that the lasso estimate could be calculated quicker with a

technique called Least Angle Regression (LARS) (Efron et al., 2004). The authors

show that the optimal solution of the lasso estimate could be computed iteratively,

updating subsets of weights until solutions for all values of ψ are calculated. LARS

takes advantage of the fact that the path through w-space as ψ increases is piecewise-

linear; additionally, the points at which the slope changes can be calculated in closed

form. As a result, a homotopy method which gradually increases the value of ψ can

calculate weights w for all values of ψ without solving the approximator for every

intermediate value of ψ.
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6.1.3 L1 Regularization for Value Function Approximation

LARS was later brought into the value-function approximation domain with LARS-

TD (Kolter and Ng, 2009). LARS-TD applies L1 regularization to the LSTD solution

for finding an approximate value function given a set of features Φ and a policy π;

this was the first method to find an L1 regularized fixed point while performing

automatic feature selection. Under certain conditions, LARS-TD was guaranteed to

arrive at a solution for each value of ψ.

Kolter and Ng (2009) implemented LARS-TD as a value function generation

step for LSPI (Lagoudakis and Parr, 2003); however, because LARS-TD approxi-

mates the value function of a specific policy, a change in policy forces LARS-TD to

completely retrace its solution path. This is slow and wastes many of the benefits

of the homotopy method. An improvement to address this problem, called LC-MPI,

was introduced by Johns et al. (2010). LC-MPI returns not just a value for every

value of ψ, but also the optimal policy. This removes the need to surround it with a

policy improvement step, and greatly improves the computational speed.

While LC-MPI improves on the guarantees of LARS-TD by promising a unique

solution for each setting of ψ, neither method offers a guarantee on approximation

quality. In fact, even these guarantees only hold if samples are drawn from the policy

being evaluated; this is rare, especially for LC-MPI, where the policy being evaluated

is itself changing.

6.2 L1-Regularized Approximate Linear Programming

In this section, we introduce L1-regularized ALP (RALP) as an approach to automate

feature selection and approximate value functions. Adding L1 regularization to ALP

permits the user to supply an arbitrarily rich set of features while decreasing the

risk of overfitting. Additionally, RALP alleviates the problems of ALP presented
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in Subsection 6.1.1; in particular, the requirement to have a constraint for every

possible state-action pair can be removed. In comparison to the work by de Farias

and Van Roy (2004), this requirement can be removed without knowing the optimal

policy.

We first present RALP for sampling with expectation, in which our samples are

of the form defined by Σ; this corresponds to sampling in noiseless domains. We

then present RALP for sampling without expectation, in which our samples are of

the form defined by Σ̇ in Section 2.1.

The noiseless RALP for basis Φ and L1 constraint ψ is defined as follows:

min
w

ρTΦw

s.t. TσaΦ(σs)w ≤ Φ(σs)w ∀σ ∈ Σ
‖w‖1,e ≤ ψ,

(6.1)

where ρ is a distribution over initial states, and ‖w‖1,e =
∑

i |e(i)w(i)|. It is generally

assumed that ρ is a constant vector and e = 1−1, which is a vector of all ones but

for the position corresponding to the constant feature, where e(i) = 0. Note we are

using the expected Bellman operator T .

Note that noiseless RALP is a generalization of ALP; when ψ approaches infinity,

the RALP solution approaches the ALP solution.

The noisy RALP looks very similar to the noiseless version, except in the use of

the sampled Bellman operator Ṫ :

min
w

ρTΦw

s.t. Ṫσ̇aΦ(σ̇s)w ≤ Φ(σ̇s)w ∀σ̇ ∈ Σ̇
‖w‖1,e ≤ ψ,

(6.2)

RALP also introduces a new parameter ψ, which needs to be tuned. We offer

two possible methods for doing this. The first is a homotopy method reminiscent

of LARS-TD presented by Petrik et al. (2010). The second is cross-validation on
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solutions calculated at many different values of ψ. This process is extremely fast; if

we consider two regularization values, ψ1 and ψ2 = ψ1 + ε, the feasible space in the

RALP when ψ = ψ2 is a superset of the feasible space when ψ = ψ1. Therefore, a

warm start with the solution for ψ1 can eliminate most of the processing time for ψ2.

The RALP is faster to solve than the ALP with all constraints; assuming the

samples RALP is defined on do not consist of all possible state-action pairs, the

constraints required are a subset of the ALP constraints. Additionally, assuming

sufficient regularization, most variables are equal to 0; this means only a very few

Bellman constraints are tight, making constraint generation an attractive approach.

In constraint generation, we iterate between solving an LP with only a subset

of the constraints, and identifying the constraint which was left out that is most

violated by our resulting solution. That most violated constraint is then added to

the LP, which is then re-run. This process continues until no constraints are violated.

Obviously, an LP with fewer constraints results in a faster solve time; however, it

would seem there would be a tradeoff between this faster solve time and the repeated

solving of the LP. Fortunately, we can warm-start each LP with the dual solution of

the previously solved LP, which is still feasible.

In our LP, with only a few constraints which end up being tight, this approach

works very well; our initial constraint set is all constraints necessary to perform L1

regularization and a small, randomly chosen set of the Bellman constraints. Problems

with several thousand samples which took several hours to run without constraint

generation took merely minutes with it.

The next two sections demonstrate the effectiveness of RALP, first by proving

theoretical bounds on the approximation error, and second by comparing policies

generated from RALP value functions with the policies generated by other value

function approximation algorithms.
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6.3 Theoretical Bounds

The purpose of this section is to show that RALP offers two main benefits over

ALP. First, even when the constraints are sampled and incomplete, it is guaranteed

to provide a feasible and bounded solution (Lemma 6.3.1). Since feasibility does

not imply that the solution is close to optimal, we then show that under easy-to-

satisfy assumptions — such as smooth reward and transition functions — RALP

guarantees that the error due to both the missing constraints and noise in sampling

is small. While this bound is too loose to be of practical value, it does provide a

perspective on the potential for L1 regularization to control the damage caused by

missing constraints. We first present a bound for the noiseless RALP of LP 6.1, and

then for the more realistic noisy RALP of LP 6.2.

L1-regularized ALP differs from standard ALP in two significant ways. First,

most obviously, L1-regularized ALP adds an additional constraint on the L1 norm of

the weights. Additionally, we claim that given reward, transition, and basis functions

which change a bounded amount between states, L1-regularized ALP can still pro-

vide a reasonable value function when performed with fewer than a complete set of

constraints, rather than enumerating every state in the space with rows in the design

matrix. The construction of our performance bound will help us tie L1-regularized

ALP to standard ALP despite these differences.

We will assume that every feature that is not 1 is of mean 0 and scaled such

that ‖φ‖1 = 1. Features are also standardized in lasso and LARS, but are scaled

such that ‖φ‖2 = 1; using the L1-norm will be more useful for our performance

bound. Additionally, using the L1-norm is arguably more natural for features that are

Gaussian kernels, as they already exhibit an L1 norm of 1. Intuitively, standardized

features ensure that features are added because shape is helpful, not because they

are of larger magnitude. Also, standardization ensures orthogonality with 1, and
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keeps constant shifts from being penalized by the L1 regularization.

6.3.1 Noiseless RALP

We first show that even with missing constraints, the L1 regularization guarantees a

feasible, bounded solution as long as 1 ∈ span(Φ).

Lemma 6.3.1. Let M1 be an MDP on which we have defined a RALP, with con-

straints defined on a set of samples Σ. Assume 1 ∈ span(Φ). The RALP will be

feasible and bounded.

Proof. We first show that a feasible solution exists. Let us set w−1 = 0, where 0 is

the vector of zeros. Clearly, the L1 constraint is satisfied.

Let us now define Rmax to be the maximum reward attainable in the MDP. Every

other constraint now takes the form

Rmax + γw1 ≤ w1,

where w1 is the weight corresponding to the 1 feature. As long as w1 ≥ Rmax

1−γ , w is

a feasible solution.

We now show the RALP is bounded. Let ψ be the L1 regularization parameter,

so ‖w−1‖1 = ψ. This guarantees w−1 is bounded. We now show w1 is also bounded.

If we expand the Bellman operator, every constraint has the form

R + γPσaΦ−1(σs)w−1 + γw1 ≤ Φ−1(σs)w−1 + w1,

for some σ ∈ Σ. Therefore,

w1 ≥
R + γPσaΦ−1(σs)w−1 − Φ−1(σs)w−1

1− γ
.

Because ‖φ‖1 = 1 for all φ ∈ Φ−1, and because ‖w−1‖1 = ψ

−ψ ≤ Φ−1w−1 ≤ ψ.
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We now define Rmin to be the minimum reward attainable in the MDP. If we replace

R with Rmin, and every instance of Φ−1(s)w−1 with either ψ or −ψ, we show that

the constraints guarantee

w1 ≥
Rmin − (1 + γ)ψ

1− γ
.

The RALP is both bounded and feasible.

We now show that for discrete state spaces, the RALP minimizes ‖V ∗ − Φw‖1,ρ

with constraints on ‖w−1‖1 in a lemma that will be used later to prove a performance

bound. This lemma extends a lemma presented by de Farias and Van Roy (2003).

Lemma 6.3.2. If every state-action pair is represented with a constraint in the

RALP, a vector w∗ solves the RALP if and only if it solves

argmin
w

‖V ∗ − Φw‖1,ρ

s.t. TaΦ(s)w ≤ Φ(s)w ∀s ∈ S, a ∈ A

‖w−1‖1 ≤ ψ

Proof. For any policy π, the Bellman operator Tπ is a contraction in max norm. If

the Bellman error is one-sided, T is also monotonic. Therefore, for any V such that

V ≥ TV ,

V ≥ TV ≥ T 2V ≥ V ∗.

Therefore, any w that is a feasible solution to a RALP satisfies Φw ≥ V ∗. From

this, we can conclude

‖V ∗ − Φw‖1,ρ =
∑
x∈S

ρ(x)|V ∗(x)− Φ(x)w|

=ρTΦw − ρTV ∗.

Because V ∗ is constant, minimizing ρTΦw with RALP constraints is equivalent to

minimizing ‖V ∗ − Φw‖1,ρ with RALP constraints.
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We next assume every state is represented by rows in Φ, and calculate a similar

bound to the one demonstrated for the standard ALP by de Farias and Van Roy

(2003). This lemma shows the addition of the L1 constraint does not radically

change this bound.

Lemma 6.3.3. Assume 1 is in span(Φ), and let n = |S|. Then, if w̃ is an optimal

solution to the RALP, and W is the set of weight vectors such that ‖w−1‖ ≤ ψ,

‖V ∗ − Φw̃‖1,ρ ≤
2

1− γ
min
w∈W
‖V ∗ − Φw‖∞.

Proof. Let w∗ be a vector minimizing ‖V ∗−Φw‖∞ such that ‖w∗−1‖1 ≤ ψ. For ease

of notation, define ε = ‖V ∗ − Φw∗‖∞. We look to construct a point w̄ such that w̄

is both a feasible point in our RALP and such that Φw̄ is within O(ε) of V ∗.

Because the Bellman operator is a contraction in max norm,

‖TΦw∗ − V ∗‖∞ ≤ γ‖Φw∗ − V ∗‖∞.

From this,

TΦw∗ ≤ V ∗ + γε1. (6.3)

Additionally, by the definition of the Bellman operator, for any vector V and any

scalar k,

T (V + k1) = max
π

[R + γPπ(V + k1)]

= max
π

[R + γPπV + γk1]

= max
π

[R + γPπV ] + γk1

=TV + γk1
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Combining this with Equation 6.3,

T (Φw∗ + k1) =TΦw∗ + γk1

≤V ∗ + γε1 + γk1

≤Φw∗ + ε1 + γε1 + γk1

=Φw∗ + (1 + γ)ε1 + γk1

Now, let k = 1+γ
1−γ ε.

T (Φw∗ +
1 + γ

1− γ
ε1) ≤Φw∗ + (1 + γ)ε1 + γ

1 + γ

1− γ
ε1

=Φw∗ +
(1− γ)(1 + γ) + γ(1 + γ)

1− γ
ε1

=Φw∗ +
(1 + γ)(1− γ + γ)

1− γ
ε1

After cancellation,

T (Φw∗ +
1 + γ

1− γ
ε1) ≤ Φw∗ +

1 + γ

1− γ
ε1. (6.4)

Because 1 is within span(Φ), we can construct a vector w̄ such that

Φw̄ = Φw∗ +
1 + γ

1− γ
ε1.

Because we do not count the weight on 1 when calculating ‖w−1‖1, and because

Equation 6.4 guarantees that we have satisfied our Bellman constraints, w̄ is a feasible

solution to our L1-regularized ALP. By the triangle inequality,

‖Φw̄ − V ∗‖∞ ≤‖V ∗ − Φw∗‖∞ + ‖Φw∗ − Φw̄‖∞

≤ ε

(
1 +

1 + γ

1− γ

)

=
2ε

1− γ
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So, if w̃ is an optimal solution to the RALP, then by Lemma 6.3.2,

‖V ∗ − Φw̃‖1,ρ ≤‖V ∗ − Φw̄‖1,ρ

≤‖V ∗ − Φw̄‖∞

≤ 2ε

1− γ
,

where the second inequality is due to ρ being a probability distribution.

This lemma demonstrates that if every state-action pair has a constraint in the

LP, and if V ∗ can be closely approximated with an approximation in span(Φ) with

‖w−1‖1 ≤ ψ, then the L1-regularized ALP will produce a good solution. In other

words, the solution offered by the LP will not be too far off from the actual minimizing

solution w∗.

We next seek to show that if we have missing constraints, our resulting error at

unconstrained states can be controlled with L1 regularization.

Assumption 6.3.4. Assume sufficient sampling, that is, for all s ∈ S and a ∈ A,

there exists a σ ∈ Σ such that σa = a and:

‖φ(σs)− φ(s)‖∞ ≤δφ

|R(σs)−R(s)| ≤δR

|p(s|σs, σa)− p(s|s, a)| ≤δP ∀s ∈ S

Note that this assumption is easy to fulfill. For example, this assumption is

met if the reward function, basis functions, and transition functions are Lipschitz

continuous. More specifically, for all s1, s2, s3 ∈ S and all φ ∈ Φ, define KR, KP , and

Kφ such that

‖R(s1)−R(s2)‖ ≤KR‖s1 − s2‖

‖p(s3|s1, a)− p(s3|s2, a)‖ ≤KP‖s1 − s2‖ ∀a ∈ A

‖φ(s1)− φ(s2)‖ ≤Kφ‖s1 − s2‖.
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Define the subset Σa ⊂ Σ, where a sample σ ∈ Σa if σ ∈ Σ and σa = a. Let c be the

worst case minimum distance between an unsampled state-action pair (s, a), and a

sample σ ∈ Σa:

c = max
s∈S,a∈A

min
σ∈Σa

‖σs − s‖.

Then, Assumption 6.3.4 is met with δφ = cKφ, δR = cKR, and δP = cKP . Other

common scenarios also apply; for example, the reward portion is satisfied with a

reward function which is 1 for a goal state and 0 elsewhere.

Lemma 6.3.5. Let M1 be an MDP. Define an incomplete set of samples Σ taken

from M1, such that not all state-action pairs are sampled, and such that Assumption

6.3.4 is true. Assume for all samples σ ∈ Σ, the RALP for M1 has the constraint

TσaΦ(σs)w ≤ Φ(σs)w, but is missing all other possible RALP constraints.

There exists an MDP M2 with no missing constraints such that the RALP solution

to M1 is equal to the RALP solution to M2 and ‖R1 −R2‖∞ ≤ 2(δφψ + δR + δPψ).

Proof. Our sampling assumption allows us to create implied constraints for an ar-

bitrary unsampled state-action pair s ∈ S, a ∈ A for MDP M1. The constraint we

wish we had is

R1(s) + γ
∑
x∈S

[p(x|s, a)Φ(x)] w ≤ Φ(s)w. (6.5)

Let us refer to the sample in Σ which fulfills the sampling assumption with s and a

as σ. We can now construct a bound for how incorrect each component of Equation

6.5 can be if we use the constraint at σ and our sampling assumption to replace our

desired constraint. For instance, our reward function R(s) is easily bounded.

R(σs)− δR ≤ R(s) ≤ R(σs) + δR (6.6)

We now try to bound Φ(s)w. Because the sampling assumption allows each basis

function to change only a finite amount, and because ‖w−1‖1 ≤ ψ, and 1(s) = 1(σs),

Φ(σs)w − δφψ ≤ Φ(s)w ≤ Φ(σs)w + δφψ (6.7)
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Our final component is γ
∑

x∈S p(x|s, a)Φ(x)w, which expresses our expected value

at the next state. It will be convenient to separate 1 from the rest of Φ. We will

denote the remainder of the design matrix as Φ−1, and the weights that correspond

to Φ−1 as w−1. Similarly, we will denote the weight corresponding to 1 as w1.∑
x∈S

p(x|s, a)Φ(x)w =
∑
x∈S

p(x|s, a)w1 +
∑
x∈S

p(x|s, a)Φ−1(x)w−1

=w1 +
∑
x∈S

p(x|s, a)Φ−1(x)w−1

Again, we have bounded the allowable change in our expression of probability.

w1 +
∑
x∈S

p(x|s, a)Φ−1(x)w−1 ≤w1 +
∑
x∈S

[p(x|σs, σa) + δP ] Φ−1(x)w−1

=w1 +
∑
x∈S

p(x|σs, σa)Φ−1(x)w−1 + δP
∑
x∈S

Φ−1(x)w−1

Because each basis function φ is standardized such that ‖φ‖1 = 1, and because

‖w−1‖1 ≤ ψ, the second summation can be at most ψ. So,

∑
x∈S

p(x|σs, σa)Φ(x)w − δPψ ≤
∑
x∈S

[p(x|s, a)Φ(x)] w ≤
∑
x∈S

p(x|σs, σa)Φ(x)w + δPψ.

(6.8)

We showed in Lemma 6.3.1 that a feasible, bounded solution to the RALP on

M1 exists. So, we now combine Equations 6.6, 6.7, and 6.8, and construct our

implied constraint to take the place of the missing constraint expressed by Equation

6.5. We see that the maximum possible change by the approximate value function

is δφψ + δR + δPψ. So, the total cumulative error in the constraint is at most

2(δφψ + δR + δPψ). So, we effectively have the following constraint:

R1(s) + q − γ
∑
x∈S

[p(x|s, a)Φ(x)] w ≥ Φ(s)w, (6.9)

where |q| ≤ 2(δφψ + δR + δPψ).
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Let M2 be an MDP which is identical in every way to M1, except R2(s) =

R1(s) + q. The RALP solution for M1 will be equivalent to the RALP solution for

M2, and ‖R1 −R2‖∞ ≤ 2(δφψ + δR + δPψ).

For ease of notation, we will define εp to be the maximum possible change in value

from a missing sample. More precisely, εp = δφψ + δR + δPψ. Figure 6.4 contains an

illustration of the intuition behind this error and proof.

!
!

!
!

�p

s1 s2s�

Figure 6.4: An illustration of Lemma 6.3.5. The blue bars are constraints at
sampled points s1, s2 ∈ S. The red and purple lines indicate the maximum rate
of change of the value function, given our settings of ψ, δφ, δR, and δP . The center
diamond is therefore the feasible area for the approximate value function, and the red
bar is the implied constraint at some novel point s′ ∈ S. Because εp is the maximum
change, we see that the difference between the best possible setting of Φ(s′)w and
the worst possible setting of Φ(s′)w is at most 2εp.

Lemma 6.3.6. Let M1 and M2 be MDPs that differ only in their reward vectors R1

and R2. Let V ∗1 and V ∗2 be their optimal value functions. Then, for ‖R1−R2‖∞ ≤ δ,

‖V ∗1 − V ∗2 ‖∞ ≤ δ
1−γ .
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Proof. Let s be an arbitrary point in the sets S1 and S2, and define r1i(s) and r2i(s)

to be the i-th reward received in exploring M1 and M2 from state s, respectively.

Note that

V ∗1 (s) =
∞∑
i=0

γiE [r1i(s)]

and

V ∗2 (s) ≤
∞∑
i=0

(
γiE [r1i(s) + δ]

)

=
∞∑
i=0

γiE [r1i(s)] +
∞∑
i=0

γiδ

Therefore,

|V ∗1 (s)− V ∗2 (s)| ≤
∞∑
i=0

γiE [r1i(s)]−

(
∞∑
i=0

γiE [r1i(s)] +
∞∑
i=0

γiδ

)

=
∞∑
i=0

γiδ

=
δ

1− γ

Because this is true for an arbitrary s, ‖V ∗1 − V ∗2 ‖∞ ≤ δ
1−γ .

We can now construct our performance bound for the L1-regularized ALP.

Theorem 6.3.7. Let M1 and M2 be MDPs as described in Lemma 6.3.5 with reward

functions R1 and R2 and optimal value functions V ∗1 and V ∗2 . Let w̃ be the RALP

solution to M1.

‖V ∗1 − Φw̃‖1,ρ ≤
2

1− γ
min
w∈W
‖V ∗2 − Φw‖∞ +

2εp
1− γ
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Proof. This theorem follows easily from the lemmas in this section. First, we consider

M2, which we demonstrated existed in Lemma 6.3.5; Lemma 6.3.3 showed that the

RALP solution to M2 is equal to w̃, and

‖V ∗2 − Φw̃‖1,ρ ≤
2

1− γ
min
w∈W
‖V ∗2 − Φw‖∞. (6.10)

Given M2, Lemma 6.3.5 showed

‖R1 −R2‖∞ ≤ 2εp, (6.11)

which Lemma 6.3.6 demonstrated meant

‖V ∗1 − V ∗2 ‖∞ ≤
2εp

1− γ
.

Because ρ is a probability distribution,

‖V ∗1 − V ∗2 ‖1,ρ ≤‖V ∗1 − V ∗2 ‖∞

≤ 2εp
1− γ

.

By the triangle inequality,

‖V ∗1 − Φw̃‖1,ρ ≤‖V ∗2 − Φw∗‖1,ρ + ‖V ∗1 − V ∗2 ‖1,ρ

≤ 2

1− γ
min
w∈W
‖V ∗2 − Φw‖∞ +

2εp
1− γ

It is clear this is an extremely loose and unwieldy bound for practical purposes.

However, it does provide some insight into the effects of L1 regularization in the

RALP setting. A smaller value of ψ causes the bound in Lemma 6.3.5 to tighten, but

causes the setW to shrink and become more restrictive; this suggests a tradeoff to be

considered when setting the regularization parameter. Additionally, the importance
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of covering the space with samples is reinforced; as our sampling coverage improves,

we can often tighten the values of δφ, δR, and δP . This is particularly intuitive in

the case of Lipschitz continuous functions; as c approaches zero, the bound tightens.

Taken another step, as ψ approaches infinity, and c approaches zero, the bound

approaches that reached by de Farias and Van Roy (2003).

6.3.2 Noisy RALP

We now turn our attention to the noisy case, in which we cannot collect sets of

samples with expectation Σ, but must instead collect sets of simple samples Σ̇; as it

is unlikely that samples with expectation can be calculated, this is the more likely

scenario. Intuitively, this will be another source of error for RALP; not only are

constraints missing, resulting in error εp, but the constraints that do exist may be

significantly different from the “correct” noiseless constraints. We quantify this noise

as εs, where for a set of samples Σ̇,

εs = max
σ̇∈Σ̇

∣∣∣TΦ(σ̇s)w − ṪΦ(σ̇s)w
∣∣∣ . (6.12)

To understand why noise is especially damaging in the LP setting, consider an

MDP with no noise, with the exception of a tiny chance of winning the lottery at

every state. Figure 6.5(a) illustrates the constraints and resulting value function if

the lottery is never won, while Figure 6.5(b) illustrates the results if the lottery is

won once. Regardless of the number of times the second state is sampled without

winning the lottery, the value at that state will be determined by the one time it

was won. In this illustration εs is the difference between the orange constraint and

the underlying gray constraint.

The goal of this section is to bound the error in a noisy RALP with missing

constraints. We start with the following Lemma:

72



(a) RALP with no noise (b) RALP with one noisy constraint

Figure 6.5: Illustration of the effect of noise in RALP. The gray bars correspond
to sampled constraints, while the orange bar corresponds to the one time the lottery
was won.

Lemma 6.3.8. Let M1 be an MDP which meets the sampling assumption 6.3.4 for

some δR, δφ, and δP . Define a set of RALP constraints on simple samples Σ̇ taken

from M1. There exists an MDP M2 identical in every way to M1 but for the reward

function, with related samples with expectation Σ that generate the same constraints

and same RALP solution, and ‖R1 −R2‖∞ ≤ εs.

Proof. By definition of M1, M2, Σ̇, and Σ, for every simple sample σ̇ ∈ Σ̇, there

exists a sample with expectation σ ∈ Σ, where σ̇s = σs, σ̇a = σa. By our definition

of εs in Equation 6.12, σ̇r + q + γΦ(σ̇s
′
)w = σr + γΦ(σs

′
)w, where |q| ≤ εs.

Lemma 6.3.9. Let M1, M2, Σ̇, and Σ be defined as in Lemma 6.3.8. Let V ∗1 and

V ∗2 be their respective optimal value functions, and let w̃ be the RALP solution for

both.

‖V ∗1 − Φw̃‖1,ρ ≤ ‖V ∗2 − Φw̃‖1,ρ +
εs

1− γ
.

Proof. By Lemmas 6.3.8 and 6.3.6, we have ‖V ∗1 − V ∗2 ‖∞ ≤ εs
1−γ . Because ρ is a

probability distribution,

‖V ∗1 − V ∗2 ‖1,ρ ≤‖V ∗1 − V ∗2 ‖∞

≤ εs
1− γ

.
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So, using the triangle inequality,

‖V ∗1 − Φw̃‖1,ρ ≤‖V ∗2 − Φw̃‖1,ρ + ‖V ∗1 − V ∗2 ‖1,ρ

≤‖V ∗2 − Φw̃‖1,ρ +
εs

1− γ
.

Theorem 6.3.10. Let M1, M2, Σ̇, Σ, δR, δφ, and δP be defined as in Lemma 6.3.8.

Furthermore, let M3 be an MDP with the same RALP solution as the RALP defined

on Σ but with expected constraints for every (s, a), s ∈ S, a ∈ A. Let V ∗1 , V
∗

2 , V
∗

3 be

their respective optimal value functions.

‖V ∗1 − Φw̃‖1,ρ ≤
2

1− γ
min
w∈W
‖V ∗3 − Φw‖∞ +

2εp + 3εs
1− γ

Proof. From Lemma 6.3.9, we know

‖V ∗1 − Φw̃‖1,ρ ≤ ‖V ∗2 − Φw̃‖1,ρ +
εs

1− γ
.

We now apply Theorem 6.3.7 to relate MDPs M2 and M3. Note that due to the

changes in the reward function, M2 is no longer guaranteed to satisfy our sampling

assumption. So, we must replace δR with δR + εs. If we then apply Theorem 6.3.7

with our new sampling assumption, we know

‖V ∗2 − Φw̃‖1,ρ ≤
2

1− γ
min
w∈W
‖V ∗3 − Φw‖∞ +

2εp + 2εs
1− γ

.

When we combine these two bounds to relate M1 and M3, our theorem follows

easily:

‖V ∗1 − Φw̃‖1,ρ ≤
2

1− γ
min
w∈W
‖V ∗3 − Φw‖∞ +

2εp + 3εs
1− γ

.
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This section has proven that the L1 regularization allows us to bound error result-

ing from missing constraints and noise in sampling. However, while it is nice to be

reassured of approximation quality, these bounds are obviously quite loose. The next

section demonstrates that the method performs much better than these guarantees.

Following that, Chapter 7 introduces a modification to RALP which minimizes

the effects of εs on the approximation.

6.4 Experimental Results

In this section, we present results indicating that RALP effectively selects from rich

feature spaces to outperform ALP and other common algorithms, such as LSPI.

First, we use small, toy problems to illustrate the effects of regularization; then, we

demonstrate performance on a more difficult suite of problems.

6.4.1 Benefits of Regularization

First, we demonstrate and analyze the properties of RALP on a simple chain problem

with 200 states, in which the transitions move to the right by one step with a centered

Gaussian noise with standard deviation 3. The reward for reaching the right-most

state was +1 and the reward in the 20th state was -3. This problem is small to enable

calculation of the optimal value function and to control sampling. We uniformly

selected every fourth state on the chain. The approximation basis in this problem

is represented by piecewise linear features, of the form φ(si) = [i − c]+, for c from

1 to 200; these features were chosen due to their strong guarantees for the sampling

bounds.

Figure 6.6 demonstrates the solution quality of RALP on the chain problem as

a function of the regularization coefficient ψ. The figure shows that although the

objective of RALP keeps decreasing as ψ increases, the error from εp overtakes that

reduction. It is clear that a proper selection of ψ improves the quality of the re-
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sulting approximation. To demonstrate the benefits of regularization as it relates to

overfitting, we compare the performance of ALP and RALP as a function of the num-

ber of available features in Figure 6.8. While ALP performance improves initially,

it degrades severely with more features. The value ψ in RALP is selected auto-

matically using the homotopy method presented by Petrik et al. (2010). Figure 6.7

demonstrates that RALP may also overfit or perform poorly when the regularization

coefficient ψ is not selected properly.

The next two experiments do not use the homotopy method. In practice, RALP

often works much better than what is suggested by our bounds, which can be loose

for sparsely sampled large state spaces. In the following experiments, we determined

ψ empirically by solving the RALP for several different values of ψ and selecting the

one that produced the best policy.

6.4.2 Benchmark Problems

Inverted Pendulum We now offer experimental results demonstrating RALP’s abil-

ity to create effective value functions in balancing an inverted pendulum, a stan-

dard benchmark problem in reinforcement learning (Wang et al., 1996; Lagoudakis

and Parr, 2003). Samples of the form Σ̇ were drawn from random trajectories
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with the pendulum starting in an upright state, referred to as episodes. Features

were Gaussian kernels of three different widths, a polynomial kernel of degree 3,

s[1], s[2], s[1] ∗ s[2], s[1]2, s[2]2, and a constant feature, where s[1] is the angle, and

s[2] is the angular velocity. For a number of samples n, this was therefore a total of

4n+ 6 features. ψ was 1.4, and an average of 4 features had nonzero weights.

The policy was evaluated based on the number of steps it could balance the

pendulum, with an upper limit of 3000. This served to evaluate the policy resulting

from the approximate value function. We plot the average number of steps the

pendulum was balanced as a function of the number of training episodes in Figure 7.1,

as an average of 100 runs. It is clear the controller produced by RALP was effective

for small amounts of data, balancing the pendulum for the maximum number of

steps nearly all of the time, even with only 50 training episodes. Similarly, it was

able to leverage the larger number of available features to construct an effective

controller with fewer trajectories than LSPI, which needed 450 training episodes

before achieving an average of 2500 balanced steps (Lagoudakis and Parr, 2003).

Bicycle Balancing and Riding We also present experimental results for the bicycle

problem, in which the goal is to learn to balance and ride a bicycle to a target posi-

tion (Randløv and Alstrøm, 1998; Lagoudakis and Parr, 2003). This is a challenging

benchmark domain in reinforcement learning. Training data consisted of samples for
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every action on states drawn from trajectories resulting from random actions up to

35 states long, similar to the inverted pendulum domain. The feature set consisted

of monomials up to degree 4 on the individual dimensions and products of mono-

mials up to degree 3, for a total of 159 features. ψ was 0.03, and an average of 34

features had nonzero weights. We plot the number of runs out of 100 in which the

bicycle reached the goal region as a function of number of training episodes in Figure

6.10. Again, a high percentage of runs were successful, even with only 500 training

episodes. In comparison, LSPI required 1500 training episodes to pass 80% success.

These results are extremely gratifying and demonstrate that automated feature

selection through L1 regularization is a great improvement over existing methods.

While practical performance is outstanding, the bounds offer a source of worry. There

are three sources of error: the representation error, which can be reduced through

addition of features to the dictionary, error from missing constraints (εp), which can

be managed through tuning of ψ, and sampling error (εs), for which there is no

obvious technique for management. The next chapter focuses on a solution for noisy

environments which introduce a large amount of sampling error.
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7

L1-Regularized Approximate Linear Programming
in Noisy Domains

As discussed in the preceding chapter, the existence of a large amount of noise in the

MDP can be a source of approximation error. This error is bounded, as demonstrated

in Subsection 6.3.2, but can nonetheless be problematic.

The intuition behind our solution to this source of error is that while one sample

may be inaccurate, there are likely additional samples nearby. This group of samples,

on average, behaves as if we were taking samples with expectation. Therefore, our

contribution is a simple addition of a smoothing function to our Bellman constraints

from Equation 6.2.

This chapter begins with a discussion of previous use of smoothers and averagers

in Value Function Approximation in Section 7.1, followed by the introduction of our

approach, Locally Smoothed L1-Regularized Approximate Linear Programming (LS-

RALP) in Section 7.2. Section 7.3 presents a proof that error from noise approaches

zero as the number of sampled data approaches infinity, while Section 7.4 demon-

strates the approach improves results dramatically with even a very small number
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of samples.

7.1 Smoothers and Averagers for Value Function Approximation

We begin by introducing smoothing functions. A smoothing function spreads the

contribution of each sampled data point over its local neighborhood. The sim-

plest smoothers are called averagers, and are denoted kb(σ̇, σ̇i); the size of the

neighborhood is defined by the bandwidth parameter b. Averagers stipulate that∑
σ̇i∈Σ̇ kb(σ̇, σ̇i) = 1 for all σ̇, and that kb(σ̇, σ̇i) ≥ 0 for all σ̇, σ̇i; they can therefore

be thought of as weighted averages, where weights are a function of the samples’

proximity and the bandwidth parameter. Smoothing functions are commonly used

to perform nonparametric regression; as sampled data are added, the bandwidth

parameter is tuned to shrink the neighborhood, to allow for a balance between the

bias from including increasingly irrelevant samples which are farther away and the

variance from having too few samples in the neighborhood.

Smoothers were first applied to reinforcement learning by Gordon (1995), who

demonstrated that value function approximations with averagers would converge. He

did this by demonstrating that regression using averagers was compatible with value

iteration, and so alternating this regression with a value backup step would result

in a contraction, and therefore, convergence. He was also able to bound the error in

the resulting approximation.

Ormoneit and Sen (2002) took the ideas behind nonparametric regression and

applied them directly to value iteration. They approximated TV with

TaV (s) ≈
∑
σ̇∈Σ̇

kb(σ̇
s, s, a)

[
σ̇r + γV (σ̇s

′
)
]
,

where kb(σ̇
s, s, a) = 0 if σ̇a 6= a. They were again able to prove convergence, as well

as define an optimal shrinkage rate for the bandwidth parameter.
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These works were important in that they provided helpful solution guarantees.

However, they contain some inherent drawbacks. First, in nonparametric approxi-

mations with smoothers, extending the approximation to a novel state can be slow,

as it is necessary to calculate kernel values for all sampled data; in parametric ap-

proximations, it is only necessary to calculate the likely smaller number of feature

values. Second, while all of machine learning struggles without sufficient data, this

is perhaps even more true of nonparametric approximations. Because approximation

weights are defined by proximity to samples, areas with low proximity to all samples

are likely to be extremely inaccurate. In comparison, features in parametric ap-

proximation can be designed to provide support throughout the space. Fortunately,

we can leverage the convergence and averaging properties of smoothing functions to

handle noise in RALP.

7.2 Locally Smoothed L1-Regularized Approximate Linear Program-
ming

To address RALP’s vulnerability to noise, demonstrated in Section 6.3, we introduce

Locally Smoothed L1-Regularized Approximate Linear Programming (LS-RALP).

The concept behind LS-RALP is simple; by averaging between nearby, similar sam-

ples, we can smooth out the effects of noise and produce a more accurate approxi-

mation. We define “nearby” to mean two things: one, the states should be close to

each other in the state space, and two, the actions taken should be identical. The

goal is to achieve the performance of RALP with expected samples with the more

realistic simple samples.

For our application, we define kb(σ̇, σ̇i) such that if σ̇ai 6= σ̇a, the function returns

zero.

Observation 7.2.1. Consider the regression problem of estimating the function f

of the response variable y = f(x) + ε, given n observations (xi, yi)(i = 1, · · · , n),
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where ε represents mean 0 noise. Assume f(x) is continuously differentiable, and

that samples xi are sampled uniformly. For a given smoothing function kb(x, xi),

there exists a bandwidth function b(n) such that as n→∞,
∑

i kb(n)(x, xi)yi → f(x).

In particular, we point out that this trait of consistency is true for kernel esti-

mators (Silverman, 1978; Hwang et al., 1994), k-nearest-neighbor averagers (Mack,

1981), and smoothing splines (Rice and Rosenblatt, 1981). This literature on non-

parametric regression also contains extensive theory on optimal shrinkage rates for

the bandwidth parameter; in practice, however, for a given number of samples, this

is commonly done by cross-validation.

Similar results exist for cases without uniform sampling (e.g. the results of Sil-

verman (1984) and Jennen-Steinmetz and Gasser (1988)), but this needlessly com-

plicates the analysis.

We now modify our LP to include our smoothing function:

min
w

ρTΦw

s.t.
∑

σ̇i∈Σ̇ kb(σ̇, σ̇i)Ṫσ̇iΦ(σ̇si )w ≤ Φ(σ̇si )w ∀σ̇ ∈ Σ̇
‖w‖1,e ≤ ψ.

(7.1)

In this formulation, we are using our smoothing function to estimate the constraint

with expectation TΦ(σs)w by smoothing across our easily obtained Ṫσ̇Φ(σ̇s)w.

Note that RALP is a special case of LS-RALP, where the bandwidth of the

smoothing function is shrunk until the function is a delta function. Therefore, LS-

RALP, with correct bandwidth choice, can always do at least as well as RALP.

7.3 Theoretical Results

The goal of this section is to demonstrate that the application of a smoothing func-

tion to the constraints of the Estimated ALP will mitigate the effects of noise. In

particular, we show that as the number of samples approaches infinity, the LS-RALP
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solution using simple samples approaches the RALP solution using samples with ex-

pectation.

We now introduce and prove our theorem. We denote the number of samples
∣∣∣Σ̇∣∣∣

as n.

Theorem 7.3.1. If the reward function, transition function, and features are con-

tinuously differentiable, and samples are drawn uniformly from the state space, there

exists a bandwidth function b(n) such that as n → ∞, the LS-RALP solution using

one-step samples approaches the Sampled RALP solution.

Proof. We begin by restating the definition of εs:

εs = max
σ̇∈Σ̇

∣∣∣TΦ(σ̇s)w − Ṫσ̇Φ(σ̇s)w
∣∣∣ .

We then expand upon the portion within the max operator for some arbitrary σ̇:

TΦ(σ̇s)w − Ṫσ̇Φ(σ̇s)w

=

[
R(σ̇s) + γ

∑
s′∈S

P (s′|σ̇s, σ̇a)Φ(s′)w

]
−
[
σ̇r + γΦ(σ̇s

′
)w
]

=R(σ̇s)− σ̇r + γ

(
E

[∑
s′∈S

P (s′|σ̇s, σ̇a)Φ(s′)w

]
− Φ(σ̇s

′
)w

)
.

We now introduce the smoothing function.

TΦ(σs)w − Ṫσ̇Φ(σ̇s)w

=R(σ̇s)−
∑
σ̇i∈Σ̇

kb(σ̇, σ̇i)σ̇
r
i

+ γE

[∑
s′∈S

P (s′|σ̇s, σ̇a)Φ(s′)w

]
− γ

∑
σ̇i∈Σ̇

kb(σ̇, σ̇i)Φ(σ̇s
′

i )w
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It is clear our smoothing function is filling the role of a predictive function on the

reward and next feature value functions; the first two terms are the difference between

the expected reward and the predicted reward, while the second two are the difference

between the expected next value and the predicted next value. The more accurate

our regression, the smaller εs will be.

It follows from Observation 7.2.1 that as n increases, if R(s), P (s′|s, a), and Φ(s)

are all continuously differentiable with respect to the state space, there exists a

bandwidth shrinkage function b(n) such that εs will approach 0.

When εs = 0, the smoothed constraints from one-step samples of LS-RALP are

equivalent to the constraints with expectation of the Sampled RALP.

This theorem shows that sample noise, the weak point of all ALP algorithms,

can be addressed by smoothing in a principled manner. Even though these results

address primarily the limiting case of n→∞, our experiments demonstrate that in

practice we can obtain vastly improved value functions even with very few samples.

We note the smoothness assumptions on R(s), P (s′|s, a), and Φ(s) may not always

be realistic, and are stronger than the bounded change assumptions made by RALP

in Assumption 6.3.4. However, we will demonstrate in the experimental section that

meeting these assumptions is not necessary for the method to be effective.

7.4 Experimental Results

In this section, we apply LS-RALP to noisy versions of common Reinforcement Learn-

ing benchmark problems to demonstrate the advantage of smoothing. We will use

two domains, the inverted pendulum (Wang et al., 1996) and the mountain-car (Sut-

ton and Barto, 1998). While we have proved that LS-RALP will improve upon the

value function approximation of RALP as the number of samples approaches infin-

ity, our experiments demonstrate that there is significant improvement even with a
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relatively small number of samples. In both problems, we approximate the value

function, and then apply the resulting greedy policy. We generate the policy using

a model; at each state, we evaluate each candidate action, and calculate the approx-

imate value at the resulting state. The action which resulted in the highest value is

then chosen in the trajectory.

We note that the smoothing function could be used as a form of approximate

model by using it to estimate the right hand side of the Bellman equation for arbi-

trary state action pairs, then choosing the action with the highest estimated value.

In principle this would eliminate the need for a model for action selection. In prac-

tice, the parametric nature of the value function approximation led to good approx-

imate value functions over large regions of the state space even when the samples

were too sparse to provide a reliable approximate model for all states that might

be encountered during policy evaluation. Since our emphasis is on value function

approximation, we used a model for action selection and defer the use of smoothing

for action selection to future work.

Inverted Pendulum This is the same inverted pendulum problem used in the exper-

iments using RALP in Subsection 6.4.2, with one change. Usually, the noise in the

pendulum problem is applied as Gaussian noise of standard deviation 10 on the force

applied to the table; however, as estimated RALP already handled this amount of

noise gracefully, we made the problem more interesting by increasing the standard

deviation to 20. This makes the problem significantly more difficult, as even with an

optimal policy, an unlucky agent can fail to balance the pendulum.

We compare RALP and LS-RALP, using the same set of features; Gaussian

kernels of three different widths, a polynomial kernel of degree 3, s[1], s[2], s[1] ∗

s[2], s[1]2, s[2]2, and a constant feature, where s[1] is the angle, and s[2] is the angu-

lar velocity. For a number of samples n, this was therefore a total of 4n+ 6 features.
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As a reference point for the difficulty of the problem, we also compare against LSPI,

using the radial basis functions used in Lagoudakis and Parr (2003).

Sampling was done by running 50 trajectories under a random policy, until the

pendulum fell over (around six steps). For the LP methods, the regularization pa-

rameter was set to 1.2, and for LS-RALP, the smoothing function was a multivariate

Gaussian kernel with a standard deviation covering approximately 1/30 of the state

space in each direction. Both of these parameters were chosen by cross validation.

100 trials were run for each method, and the number of successful steps averaged;

if a trial reached 3000 steps, it was terminated at that point. Results are presented

in Figure 7.1. We note that performance on this difficult domain did not noticeably

improve if more than 50 trajectories were used to collect data.
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Figure 7.1: Average steps to failure over 100 trials with samples from 50 trajectories

Mountain Car In the mountain car problem, an underpowered car must climb a hill

by gaining momentum. The state space is two-dimensional (position and velocity),

the action space is three-dimensional (again, push, pull, or coast), and the discount

factor is 0.99. Traditionally, a reward of −1 is given for any state that is not in the
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goal region, and a reward of 0 is given for any state that is. For this problem we

applied Gaussian noise with standard deviation .5 to the reward to demonstrate the

ability of LS-RALP to handle noisy rewards.

Features are the distributed radial basis functions suggested by Kolter and Ng

(2009); however, because LSPI with LARS-TD requires a distinct set of basis func-

tions for each action, while RALP methods do not, our dictionary is one-third of the

size. For sake of a baseline comparison, we note that in the deterministic version

of this problem, we repeated experiments by Kolter and Ng (2009) and Johns et al.

(2010) on LARS-TD and LC-MPI, respectively and RALP outperformed both.

Sample trajectories are begun at a random state, and allowed to run with a ran-

dom policy for 20 steps, or until the goal state is reached. After the value function

is calculated, it was tested by placing the car in a random state; the policy then

had 500 steps for the car to reach the goal state. Figure 7.4 contains the percentage

completion for both RALP and LS-RALP over 50 trials. The regularization parame-

ter for the RALP methods was 1.4, and the smoothing function for LS-RALP was a

multivariate Gaussian kernel with a standard deviation spanning roughly 1/85 of the

state space in both dimensions. These parameters were chosen using cross validation.

LS-RALP 40%
RALP 22%

Table 7.1: Percentage of 50 trials successful over 500 steps with 100 training trajec-
tories

This chapter demonstrates that the introduction of a smoothing function can

mitigate the effects of noise on RALP. Furthermore, we proved that as the amount

of data is increased, error from inaccurate samples approaches zero. However, our

experiments show drastic improvement with only a small number of samples.

In fairness, we also point out some limitations of our approach: LS-RALP makes

stronger smoothness assumptions about the model and features than does RALP
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(continuous differentiability vs. bounded change given samples). LS-RALP also

requires an additional parameter that must be tuned - the kernel bandwidth. We

note, however, that there is a rich body of work in non-parametric regression that

may give practical guidance on the selection of the bandwidth parameter.

The nonparametric regression literature notes that the bandwidth of a smoother

can be adjusted not just for the total number of data points, but also for the density

of data available in the particular neighborhood of interest (Jennen-Steinmetz and

Gasser, 1988). The addition of this type of adaptiveness might not only increase

accuracy in areas of unusual density, but could also increase the accuracy of model

approximation for policy generation. While LS-RALP currently approximates value

function without unrealistic sampling assumptions, this addition would extend that

ability all the way through policy generation.
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8

Future Work

This document has demonstrated that choosing a set of features a priori is much

more difficult than performing automated feature selection from a large dictionary.

As a result, we believe the most fruitful future work stems from this automated

approach. However, there are several unanswered questions and scenarios which are

poorly addressed by L1 regularization.

The first question pertains to some preliminary experiments which have not be-

haved as expected. A value function is only useful if it is an intermediate step towards

the generation of a policy. It seemed an obvious extension to apply the principles

of RALP to Q-functions, by concatenating a continuous action space with the state

space, and approximating the function over the whole, augmented space. That is,

we define features not on the state s, but on the state [s a]. So, constraints were of

the form

σ̇r + γΦ([σ̇s
′
a′])w ≤ Φ([σ̇s σ̇a])w,

for several choices of a′. For reasons that are unclear, results were poor. This raises

the question of what qualities of an action space are poorly suited to RALP.

Second, the analysis in the document expects nearby states to have similar feature
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values. We have performed no analysis or experimentation using features which are

discreet. It may at times be convenient to consider binary features on some aspect

of the state space; it is not clear that forcing a smooth, continuous approximator on

a discreet feature space will always make sense or perform well.

Third, we note that Chapters 6 and 7 have not made the chapters that precede

them obsolete. While the “just add more” method of feature generation has been

effective in our experiments on benchmark problems, this will inevitably have its

limits in more complicated spaces. A possible solution is to consider the analysis

of the earliest chapters of this document. For example, if we consider the two-

room problem illustrated in Figure 5.3, it may make sense to use PVFs to capture

the transition space around the walls, while using Gaussian kernels to express the

reward function. While the analysis of Section 5.1 doesn’t apply to non-fixed-point

approximations, it seems likely the intuitions would transfer.

While this interaction would be an interesting study on its own, it would likely

also provide illumination on the RALP solution. As an illustration, Sutton (1988)

demonstrated the effectiveness of TD(λ) well before Tsitsiklis and Van Roy (1997)

described the solution as the linear fixed point. Additionally, there is discussion on

the relative merits of the linear fixed-point solution compared to other methods (see,

for example, the discussion by Scherrer (2010)); the RALP solution should now be

included in these discussions. For RALP, we have demonstrated effectiveness, and

have shown it cannot be too wrong, but we cannot describe much about why the

solution is so effective when other solutions may be less so. This understanding would

explain the gap between our extremely satisfying experimental results and our loose

theoretical promises.

Fourth, we have performed some interesting experiments in a more complicated

problem, the helicopter domain, in which the controller tried to keep a simulated

helicopter in a stable hover on a windy day. The challenge of the helicopter problem
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is that if sampling is done with a random policy, the vast majority of sampled states

are already “failure” states, in that the helicopter has quickly lost equilibrium and

is falling. The value functions in this domain were unimpressive and resulted in the

helicopter staying aloft for only a short period of time. One solution to this problem

is to use apprenticeship learning, in which samples are drawn by a human operator

who keeps the helicopter in the interesting portion of the state space (Abbeel and

Ng, 2005). Another solution may be to recognize states in the interesting portion of

the space, and tune the ρ weighting vector to encourage accurate value functions at

those states, at the expense of other, less interesting states. It has been shown in

the full ALP that tuning ρ can have a large effect (de Farias and Van Roy, 2003); it

would be interesting to explore the practical effects of this.

Finally, the RALP itself may suggest good features to be added to the dictionary.

Extremely loose constraints indicate areas in which the chosen active feature set is

unable to adequately represent the value function at those states. The addition of

these gaps as features suggest an iterative approach to feature generation for an

improved RALP approximation. This may be extremely useful in complex state

spaces for gaining appropriate expressiveness without using human intelligence in

feature dictionary construction.
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9

Summary and Conclusions

This document reflects my own changing attitudes towards linear value function

approximation. It is clear the feature selection problem is at the crux of linear value

function approximation; while there is disagreement as to how to best weight features

(see, for example, the discussion by Scherrer (2010), or the newly relevant question

of the LP solution as opposed to the fixed-point solution), the much harder question

is in constructing the linear space from which to pluck a value function.

9.1 Linear Analysis

Chronologically, the work of Chapter 3 and Section 5.1 occurred first; we showed that

regardless of the feature set, model-free fixed-point approximations were equivalent

to a model-based approximation. We also showed that the Bellman error could be

broken down into a sum of reward and transition error. The experiments related

to the last contribution were interesting for me. The proto-value function work by

Mahadevan and Maggioni (2006) was the first reinforcement learning paper that

really got me excited; the construction of features on a graph made from sample

trajectories struck me as a brilliant way to make features tailor-made for the problem.
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The fact that PVFs often don’t adequately cover the reward function showed me

that despite the great benefits of the compact nature of linear approximation, the

existing approach of a priori feature selection was a tremendously difficult one, and

potentially not tenable.

9.2 Kernel Analysis

The next work, which appears in Chapter 4 and Section 5.2, was an attempt to

sidestep this problem with kernelized methods. We showed a similar set of results

for kernelized approximations to those that we showed for linear approximations.

The first was that previous work in kernelized value function approximation was

equivalent but for their approaches to regularization. It was interesting that this was

where the differences lay, as none of the previous work discussed regularization in

any great detail; it was often included solely to allow the inversion of an otherwise

ill-conditioned kernel matrix. We also demonstrated a Bellman error breakdown

similar to the one we showed in linear approximation; again, a kernel matrix must

allow for coverage of both the reward and transition functions of the system. This

is much easier to achieve with kernelized methods due to the great expressiveness of

kernelized approaches; however, the negative of this expressiveness is in a tendency

to overfit. As a result, our experiments focuses on using the Bellman error breakdown

to tune regularization parameters and control the overfitting.

Besides overfitting, the other problem with kernelized methods is in computa-

tional cost. The construction of a value function from n samples takes O(n3) time,

due to the inversion of the kernel matrix. While this may not be a huge problem for

batch reinforcement learning, it rules out real-time applications. In addition, extend-

ing this value function to each novel state costs O(n) time; for linear approximations,

this is a likely much cheaper O(k) time, where k is the number of features.

However, I believe there is some unexplored promise in the area of using the
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variance in the Gaussians returned by GPTD as an expression of confidence; this

can be used to guide sampling or even potentially as information for kernel tuning.

Additionally, the use of kernel functions as linear features offers a great deal of

promise; when kernels are viewed as similarity functions, they can be powerful and

intuitive features (“I have seen good states and bad states; if a state is similar to a

good state, I conclude it is good, if it is similar to a bad state, I conclude it is bad”).

9.3 Automatic Feature Selection

This last impression fed well into the RALP work of Chapter 6, in that we have an

unnecessarily large set of potentially useful features: which ones are most useful?

The idea by Kolter and Ng (2009) to apply the ideas of Tibshirani (1996) to value

function approximation opened the door to automated feature selection, giving the

ability to choose such a set of features from a kernel matrix or other large dictionary

of features.

When we applied L1 regularization to the ALP, we were able to show several

important theoretical results. First, we showed that we could extend ALP to contin-

uous or large state spaces, because error from missing constraints was bounded. In

fact, we showed that despite not only missing constraints, but also noisy data, and

tremendously large feature sets, we could bound the error in the approximation.

More importantly, though, we also showed that empirically, the value functions

from RALP were superior to those generated by other methods; they performed

extremely well, despite using virtually no human intuition in the construction of the

feature dictionary. Previously, a great deal of effort was put into designing feature

sets like PVFs and Krylov basis functions designed to model some aspect of the

problem; we demonstrated this approach was a difficult one, particularly if P and R

are not known. By offering a huge number of options to the solver, we can overcome

the need for these types of feature sets, overwhelming the need for quality with
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quantity.

Finally, we addressed the issue of noise in data as RALP was particularly poorly

suited to handle this noise. By applying a smoothing function to the constraints

of the RALP, we were able to overcome this problem. We first showed that, given

an infinite amount of data, we could guarantee no error from noise. Much more

importantly, though, we also showed empirically that this benefit existed even for

very small amounts of data, and presented good performance even in extremely noisy

environments.

Linear value function approximation can be a powerful, useful tool, as long as the

field continues to attack the problem on two fronts. First, it is clear features must

be chosen automatically; developing better ways to do this and understanding the

solutions that result allow us to remove human intelligence from the loop. Second,

we must continue to look at the feature set options we provide and understand their

characteristics; as we try larger and more complex problems, it is unclear that simple

features will provide sufficient coverage and expressiveness. Fortunately, these areas

continue to be areas of substantial research, and strides will continue to be made.
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