Value Function Approximation in Noisy Environments Using Locally
Smoothed Regularized Approximate Linear Programs

Gavin Taylor
Department of Computer Science
United States Naval Academy
Annapolis, MD 21402

Abstract

Recently, Petrik et al. demonstrated that L;-
Regularized Approximate Linear Program-
ming (RALP) could produce value functions
and policies which compared favorably to
established linear value function approxi-
mation techniques like LSPI. RALP’s suc-
cess primarily stems from the ability to solve
the feature selection and value function ap-
proximation steps simultaneously. RALP’s
performance guarantees become looser if
sampled next states are used. For very
noisy domains, RALP requires an accurate
model rather than samples, which can be
unrealistic in some practical scenarios. In
this paper, we demonstrate this weakness,
and then introduce Locally Smoothed L;-
Regularized Approximate Linear Program-
ming (LS-RALP). We demonstrate that LS-
RALP mitigates inaccuracies stemming from
noise even without an accurate model. We
show that, given some smoothness assump-
tions, as the number of samples increases,
error from noise approaches zero, and pro-
vide experimental examples of its success on
common reinforcement learning benchmark
problems.

1 Introduction

Markov Decision Processes (MDPs) are applicable to
a large number of real-world Artificial Intelligence
problems. Unfortunately, solving large MDPs is com-
putationally challenging, and it is generally accepted
that such MDPs can only be solved approximately.
This approximation is often done by relying on lin-
ear value function approximation, in which the value
function is chosen from a small dimensional vector
space of features. Generally speaking, agent inter-

Ronald Parr
Department of Computer Science
Duke University
Durham, NC 27708

actions with the environment are sampled, the lin-
ear space is defined through feature selection, a value
function is selected from this space by weighting fea-
tures, and finally a policy is extracted from the value
function; each of these steps contains difficult prob-
lems and is an area of active research. The long-term
hope for the community is to handle each of these
topics on increasingly difficult domains with decreas-
ing requirements for expert guidance (providing a
model, features, etc.) in application. This will open
the door to wider application of reinforcement learn-
ing techniques.

Previously, Petrik et al. [12] introduced L;-
Regularized Approximate Linear Programming
(RALP) to combine and automate the feature se-
lection and feature weighting steps of this process.
Because RALP addresses these steps in tandem, it
is able to take advantage of extremely rich feature
spaces without overfitting. However, RALP’s hard
constraints leave it especially vulnerable to errors
when noisy, sampled next states are used. This is
because each sampled next state generates a lower
bound on the value of the originating state. Without
a model, the LP will not use the expectation of these
next state values but will instead use the max of the
the union of the values of sampled next states. Thus,
a single low probability transition can determine
the value assigned to a state when samples are used
in lieu of a model. This inability to handle noisy
samples is a key limitation of LP based approaches.

In this paper, we present Locally Smoothed L;-
Regularized Approximate Linear Programming (LS-
RALP), in which a smoothing function is applied to
the constraints of RALP. We show this smoothing
function reduces the effects of noise, without the re-
quirement of a model. The result is a technique which
accepts samples and a large candidate feature set,
and then automatically chooses features and approx-
imates the value function, requiring neither a model,
nor human-guided feature engineering.

After introducing notation, this paper first exam-
ines RALP in Section 3 to demonstrate the effect of
noise on solution quality. Section 4 then introduces
LS-RALP, and explains the approach. In Section 5,
we prove that as samples are added, the error from
noise in LS-RALP’s value function approximation ap-
proaches zero. Finally, in Section 6, we empirically
demonstrate LS-RALP’s success in high-noise envi-
ronments, even with a small number of samples. Fi-
nally, in Section 7, we make our concluding remarks.

2 Framework and Notation

In this section, we formally define Markov deci-
sion processes and linear value function approxima-
tion. A Markov decision process (MDP) is a tuple
(S, A,P,R,v), where S is the measureable, possibly
infinite set of states, and A is the finite set of actions.
P:S8xS8xA — [01]is the transition function,
where P(s'|s,a) represents the probability of transi-
tion to state s’ from state s, given action 4. The func-
tion R : § — R is the reward function, and 7 is the
discount factor.

We are concerned with finding a value function V
that maps each state s € S to the expected total
y-discounted reward for the process. Value func-
tions can be useful in creating or analyzing a pol-
icy m : Sx A — [0,1] such that for all s € S,
Yscam(s,a) = 1. The transition and reward func-
tions for a given policy are denoted by P, and R.
We denote the Bellman operator for a given policy as
Ty, and the max Bellman operator simply as T. That
is, for some state s € S:

iy@y:mg+yépmﬂ&ﬂgwwv

TV (s) = maxT,V(s).
nell

We additionally denote the Bellman operator for a
policy which always selects action a as

EW@=M@+AR£M@W&-

If S is finite, the above Bellman operators can be ex-
pressed for all states using matrix notation, in which
V and R are vectors of values and rewards for each
state, respectively, and P is a matrix containing prob-
abilities of transitioning between each pair of states:

TV = Ry + 9Py V
TV = max T,V
mell

T,V = R+ P,V

The optimal value function V* satisfies TV* = V*.

Because PV captures the expected value at the next
state, we also refer to T as the Bellman operator with
expectation. This requires sampling with expectation,
defined as £ C {(s,a,E[R(s)]),P(-|s,a)|s € S,a €
A}. Of course, this type of sampling can be unrealis-
tic. It is therefore usually convenient to use one-step
simple samples . C {(s,a,7,5')|s,s' € S,a € A}. An
individual (s, a,7,s') sample from sets £ and ¥ will
be denoted & and o, respectively. An individual ele-
ment of a sample ¢ will be denoted with superscripts;
that is, the s component of a ¢ = (s,a,r,s') sample
will be denoted ¢°. Simple samples have an associ-
ated sampled Bellman operator T,, where T,V (c°) =

o'+ V(o).

We will also define the optimal Q-function Q*(s,a)
as the value of taking action a at state s, and fol-
lowing the optimal policy thereafter. More precisely,
Q*(s,a) = R(s,a) + v [P(ds'|s,a)V*(s').

We focus on linear value function approximation for
discounted infinite-horizon problems, in which the
value function is represented as a linear combination
of nonlinear basis functions (vectors). For each state s,
we define a vector ®(s) of features. The rows of the
basis matrix ® correspond to ®(s), and the approxi-
mation space is generated by the columns of the ma-
trix. That is, the basis matrix ®, and the value func-
tion V are represented as:

q>—<_ CD(:Sl) _> V = duw.

This form of linear representation allows for the cal-
culation of an approximate value function in a lower-
dimensional space, which provides significant com-
putational benefits over using a complete basis; if the
number of features is small, this framework can also
guard against overfitting any noise in the samples
though small features sets alone cannot protect ALP
methods from making errors due to noise.

3 L;-Regularized Approximate Linear
Programming

This section includes our discussion of Li-
Regularized Approximate Linear Programming.
Subsection 3.1 will review the salient points of
the method, while Subsection 3.2 will discuss the
weaknesses of the method and our motivation for
improvement.

3.1 RALP Background

RALP was introduced by Petrik et al. [12] to im-
prove the robustness and approximation quality of
Approximate Linear Programming (ALP) [14, 1]. For
a given set of samples with expectation ¥, feature set
@, and regularization parameter 1, RALP calculates
a weighting vector w by solving the following linear
program:

rrgn ol dw
st. Toa®(0%)w < d(c®)w Vo € X 1
wll1e < 9,

where p is a distribution over initial states, and
llwllie = Yile(i)w(i)|. It is generally assumed that
p is a constant vector and e = 1_1, which is a vector
of all ones but for the position corresponding to the
constant feature, where e(i) = 0.

Adding L; regularization to the constraints of the
ALP achieved several desirable effects. Regular-
ization ensured bounded weights in general and
smoothed the value function. This prevented missing
constraints due to unsampled states from leading to
unbounded or unreasonably low value functions. By
using L regularization in particular, the well-known
sparsity effect could be used to achieve automated
feature selection from an extremely rich ®. Finally,
the sparsity in the solution could lead to fast solution
times for the LP even when the number of features is
large because the number of active constraints in the
LP would still be small.

As a demonstration of the sparsity effect, RALP was
run on the upright pendulum domain (explained in
detail in Section 6) using a set of features for each
action consisting of three Gaussian kernels centered
around each sampled state, one polynomial kernel
based around each sampled state, and a series of
monomials calculated on the sampled states. On one
randomly-selected run of 50 sample trajectories (a tra-
jectory consists of states reached as a result of ran-
domly selected actions until the pendulum falls over),
to represent the Q-values of the first action RALP se-
lected zero of the narrowest Gaussian kernels, nine of
the intermediate-width Gaussian kernels, five of the
widest Gaussian kernels, five of the polynomial ker-
nels, and zero of the monomials. For the second ac-
tion, the Q value was represented with zero narrow,
seven intermediate, and four wide Gaussian kernels,
six polynomial kernels, and one monomial. For the fi-
nal action, these numbers were one, four, four, seven,
and zero. Selecting this same mixture of features by
hand would be extremely unlikely.

Petrik et al. [12] demonstrated a guarantee that the er-
ror on the RALP approximation will be small, as will

be further discussed in the next subsection. Addition-
ally, in experiments, policies based on RALP approx-
imations outperformed policies generated by Least-
Squares Policy Iteration [9], even with very small
amounts of data.

RALP is not the only approach to leverage L, regu-
larization in value function approximation; others in-
clude LARS-TD [8], and LC-MPI [7], which both at-
tempt to calculate the fixed point of the Li-penalized
LSTD problem. Like RALP, this solution is guar-
anteed to exist [5], and approximation error can be
bounded [13]. These methods have the advantage
of handling noise more gracefully than LP based ap-
proaches, but require on-policy sampling for reliable
performance. On-policy sampling is often a challeng-
ing requirement for real-life applications.

3.2 RALP Weaknesses

The RALP constraints in LP 1 are clearly difficult to
acquire — samples with expectation require a model
that provides a distribution over next states, or ac-
cess to a simulator that can be easily reset to the same
states many times to compute an empirical next state
distribution for each constraint.

Petrik et al. [12] previously presented approximation
bounds for three constructions of RALP, depending
upon the sampling regime. In the Full ALP, it is
assumed every possible state-action pair is sampled
with expectation. The Sampled ALP contains con-
straints for only a subset of state-action pairs sampled
with expectation. The third form, the Estimated ALP,
also has constraints defined on sampled state-action
pairs, but of the form

O)w > Ty P(c*)w Vo € L.

Note that the Estimated ALP uses one-step simple
samples and the sampled Bellman operator.

These three forms are presented in order of decreas-
ing accuracy, but increasing applicability. The Full
ALP requires a manageably small and discrete state
space, as well as a completely accurate model of the
reward and transition dynamics of the system. The
Sampled ALP still requires the model, but allows for
constraint sampling; this introduces constraint viola-
tion error (denoted €,), as the approximation may vi-
olate unsampled constraints. Finally, the Estimated
ALP requires neither the model nor experience at ev-
ery state; because replacing an accurate model with
a sample is likely to be imprecise in a noisy domain,
this introduces model error (denoted €;). However,
this is the most realistic sampling scenario for learn-
ing problems that involve physical systems.

For reference, and to understand the effect of model
error, we reproduce the RALP error bounds for the
Sampled and Estimated ALP here. We denote the so-
lution of the Sampled ALP V, and the solution of the
Estimated ALP V. ¢, is error from states that do not
appear in the objective function because they were
not samples. Since p is often chosen fairly arbitrarily,
we can assume the unsampled states have 0 weight
and thate, = 0.

1V = V¥, <e+2ec(y) +2iwl;) @)
[V = V¥, <e+2e(¢) + W 3)

To understand the source of model error €, consider a
case where a state-action pair is sampled twice. Fur-
ther suppose that in one of these samples, the agent
transitions to a high-value state; in the other, it tran-
sitions to a lower-valued state. The resulting value
function is constrained by the high-valued sample,
while the constraint related to the low-value experi-
ence remains loose; that sample might as well have
not occurred. The approximate value at that state will
be inaccurately high. This scenario is depicted in Fig-
ure 1.

v

1

() (b)

Figure 1: Subfigure 1(a) illustrates two samples begin-
ning at state s; one transitions to the low-valued circle
state, while the other transitions to the high-valued
star state. Subfigure 1(b) illustrates the resulting con-
straints and value function approximation. V* is the
actual value of this state, but the red line representing
the approximate function is constrained by the max
of the two constraints. Under realistic sampling con-
straints, it is more likely this scenario would occur
with two samples drawn from very nearly the same
state, rather than both originating from the same sam-
ples.

The inability of LP approaches to value function ap-
proximation to handle noisy samples is well known.
One proposed solution is Smoothed Approximate
Linear Programming (SALP), in which the LP is given

a budget with which to violate constraints [2]. Note,
however, that there is nothing connecting the con-
straint violation budget to the problem dynamics un-
less additional information is provided. In Figure 1,
for example, SALP could fortuitously choose the right
amount of constraint violation to mix between the
next state values for state s in the proportions dictated
by the model. However it is also possible for SALP to
yield exactly the same value for this state as ordinary
ALP, having spent its constraint violation budget on
some other state which might not even be noisy.

4 Locally Smoothed L{-Regularized
Approximate Linear Programming

To address the weaknesses introduced in Subsection
3.2, we introduce Locally Smoothed L;-Regularized
Approximate Linear Programming (LS-RALP). The
concept behind LS-RALP is simple; by averaging be-
tween nearby, similar samples, we can smooth out the
effects of noise and produce a more accurate approxi-
mation. We define “nearby” to mean two things: one,
the states should be close to each other in the state
space, and two, the actions taken should be identical.
The goal is to achieve the performance of the Sampled
ALP with the more realistic sampling assumptions of
the Estimated ALP.

We now introduce the smoothing function k; (0, 07). A
smoothing function spreads the contribution of each
sampled data point o; over the local neighborhood
of data point o; the size of the neighborhood is de-
fined by the bandwidth parameter b. If 0/ # o7,
the function returns zero. We also stipulate that
Yoex ky(o,0;) = 1 for all o, and that k,(o,0;) > 0
for all 7, 0;. Smoothing functions of this sort are com-
monly used to perform nonparametric regression; as
sampled data are added, the bandwidth parameter is
tuned to shrink the neighborhood, to allow for a bal-
ance between the variance from having too few sam-
ples in the neighborhood and the bias from includ-
ing increasingly irrelevant samples which are farther
away.

Observation 4.1 Consider the regression problem of esti-
mating the function f of the response variable y = f(x) +
N(x), given n observations (x;,y;)(i = 1,--- ,n), where
N(x) is a noise function. Assume the samples x; are drawn
from a uniform distribution over a compact set G, that
f(x) is continuously differentiable, and that N(x) satis-
fies certain reqularity conditions. There exists a smoothing
function ky(x, x;) and associated bandwidth function b(n)
such that Vx € G, as n — 00, k() (x, x;)y; — f(x) ,
almost surely.

Smoothing functions that suffice to provide the con-

sistency guarantees in the above observation include
kernel estimators [3] and k-nearest-neighbor aver-
agers [4]. Similar results exist for cases without uni-
form sampling [6, 3].

The regularity conditions on the noise function de-
pend upon the type of estimator and allow for a vari-
ety of noise models [3, 4]. In some of these cases, other
assumptions in Observation 4.1 can be weakened or
discounted altogether.

Literature on nonparametric regression also contains
extensive theory on optimal shrinkage rates for the
bandwidth parameter; in practice, however, for a
given number of samples, this is commonly done by
cross-validation.

We now modify our LP to include our smoothing
function:

min o’ ®w
w
st Yoexky(0,09)Toe®@(07)w < @(07)w Vo € X
[wll1e < 9.
4)
In this formulation, we are using our smoothing
function to estimate the constraint with expectation

T®(0®)w by smoothing across our easily obtained
To® (0)w.

Note that unsmoothed RALP is a special case of LS-
RALP, where the bandwidth of the smoothing func-
tion is shrunk until the function is a delta function.
Therefore, LS-RALP, with correct bandwidth choice,
can always do at least as well as RALP.

We note that smoothing functions have been applied
to reinforcement learning before, in particular by Or-
moneit and Sen [11], whose work was later extended
to policy iteration by Ma and Powell [10]. In this for-
mulation, a kernel estimator was used to approximate
the value function; this differs significantly from our
approach of using a smoother to calculate weights
more accurately for a parametric approximation. Ad-
ditionally, because their approximation simply aver-
ages across states and does not use features, it will
tend to have a poor approximation for novel states
unless the space is very densely sampled.

5 Convergence Proof

The goal of this section is to demonstrate that the ap-
plication of a smoothing function to the constraints of
the Estimated ALP will mitigate the effects of noise.
In particular, we show that as the number of sam-
ples approaches infinity, the LS-RALP solution using
one-step samples approaches the RALP solution us-
ing samples with expectation.

We begin by providing an explicit definition of €; that
is consistent with the usage in Petrik et al. [12]. For a
set of samples %,

€s = max|T®(c®)w — T,P(0°)w|. (5)
oex

We now introduce and prove our theorem. We denote
the number of samples || as 7.

Theorem 5.1 If the reward function, transition function,
and features are continuously differentiable, and samples
are drawn uniformly from a compact state space, and the
noise models of the reward and transition functions sat-
isfy the conditions of Observation 4.1 that would make ker-
nel regression converge, there exists a bandwidth function
b(n) such that as n — oo, the LS-RALP solution using
one-step samples approaches the Sampled RALP solution
for all states in the state space.

We begin by restating the definition of e;:

€s = max|T®(c®)w — T,P(c°)w|.
geL

We then expand upon the portion within the max op-
erator for some arbitrary o

TO (e)w — To®(0®)w

= |:R((TS) —s—'y/s P(ds’|as,¢7“)<1>(s’)w} - [O’r + 9D (c*)w

We now introduce the smoothing function so as to
match the constraints of LS-RALP; that is, we replace
To®(0®)w with Y. ey ky (0, 07) To D (07) w.

€; remains the maximum difference between the ideal
constraint T®(c®)w and our existing constraints,
which are now Y, c5 ky (0, 0;) To @ (07)w.

TO(0%)w — Z ky (o, 07) To® (07)w
AN

— R+ [P |o%)26]

_ Z ky(o,07) {Ui’—&—'yd)(af,)w}
giEL

=R(c*) =)_ k(o 0)o]

giEL

+7/' P(ds'|0%,0") (s)w — 7 Y ky(o,07)®(0F)
S A

The smoothing function is performing regression on
all observed data, rather than just the single, possibly-
noisy sample. The first two terms of the above equa-
tion are the difference between the expected reward
and the predicted reward, while the second two are
the difference between the expected next value and

the predicted next value. The more accurate our re-
gression on these two terms, the smaller e; will be.

It follows from Observation 4.1 that as # increases, if
R(s),P(s'|s,a), and ®(s) are all continuously differ-
entiable with respect to the state space, and if sam-
ples are drawn uniformly from a compact set, and
the noise model of the reward and transition func-
tions is one of several allowed noise models, there
exists a bandwidth shrinkage function b(n) such that
Yoex kp(0,07) TP (07)w will approach T®(o*)w al-
most surely, and €; will approach 0 almost surely.

When €; = 0, the smoothed constraints from one-step
samples of LS-RALP are equivalent to the constraints
with expectation of the Sampled RALP. |

The assumptions on R(s), P(s'|s,a), and ®(s) re-
quired for our proof may not always be realistic, and
are stronger than the bounded change assumptions
made by RALP. However, we will demonstrate in the
next section that meeting these assumptions is not
necessary for the method to be effective.

This theorem shows that sample noise, the weak
point of all ALP algorithms, can be addressed by
smoothing in a principled manner. Even though these
results address primarily the limiting case of n — oo,
our experiments demonstrate that in practice we can
obtain vastly improved value functions even with
very few samples.

6 Experiments

In this section, we apply LS-RALP to noisy versions of
common Reinforcement Learning benchmark prob-
lems to demonstrate the advantage of smoothing. We
will use two domains, the inverted pendulum [16]
and the mountain-car [15]. While we have proved
that LS-RALP will improve upon the value func-
tion approximation of RALP as the number of sam-
ples grows large, our experiments demonstrate that
there is significant improvement even with a rela-
tively small number of samples.

In the mountain-car domain, we approximate the
value function, and then apply the resulting greedy
policy. We generate the policy via the use of a model;
at each state, we evaluate each candidate action, and
calculate the approximate value at the resulting state.
The action which resulted in the highest value is then
chosen in the trajectory.

In the pendulum problem, we extend the method to
the approximation of Q-functions, and again apply
the resulting greedy policy. When using Q-functions,
the model is unnecessary; the action with the highest
Q-value is chosen.

6.1 Mountain Car

In the mountain car problem, an underpowered car
must climb a hill by gaining momentum. The state
space is two-dimensional (position and velocity), the
action space is three-dimensional (again, push, pull,
or coast), and the discount factor is 0.99. Traditionally,
areward of —1 is given for any state that is not in the
goal region, and a reward of 0 is given for any state
that is. For this problem we applied Gaussian noise
with standard deviation .5 to the reward to demon-
strate the ability of LS-RALP to handle noisy rewards.
This is a very large amount of noise that greatly in-
creases the difficulty of the problem.

Features are the distributed radial basis functions
suggested by Kolter and Ng [8]; however, because
LSPI with LARS-TD requires a distinct set of basis
functions for each action, while RALP methods do
not, our dictionary is one-third of the size. For sake
of a baseline comparison, we note that in the deter-
ministic version of this problem, we repeated exper-
iments by Kolter and Ng [8] and Johns et al. [7] on
LARS-TD and LC-MP], respectively and RALP out-
performed both.

Sample trajectories are begun at a random state, and
allowed to run with a random policy for 20 steps, or
until the goal state is reached. After the value func-
tion is calculated, it was tested by placing the car in a
random state; the policy then had 500 steps for the car
to reach the goal state. Unlike the paper which intro-
duced RALP [12], only one action at each state was
sampled.

Figure 2 contains the percentage completion for both
RALP and LS-RALP over 50 trials. The regularization
parameter for the RALP methods was 1.4, and the
smoothing function for LS-RALP was a multivariate
Gaussian kernel with a standard deviation spanning
roughly 1/85 of the state space in both dimensions.
These parameters were chosen using cross validation.

6.2 Inverted Pendulum

The focus of this paper is value function approxima-
tion, but our theory extends trivially to Q-function
approximation. We demonstrate this by using RALP
and LS-RALP to approximate Q-functions; this com-
pletely removes the need for a model in policy gener-
ation.

In the inverted pendulum problem the agent tries to
balance a stick vertically on a platform by applying
force to the platform. The state space is the angle and
angular velocity of the stick, and the action space con-
tains three actions: a push on the table of 50N, a pull
on the table of 50N, and no action. The discount fac-

0.5

0.25-

-

- q
-
mmm=
-mm=

Percentage of successful trials

0 25 50 75 100
Number of sample trajectories

Figure 2: Percentage of successful trials vs. number of
sample trajectories for the mountain-car domain with
value functions approximated by RALP (blue, dotted)
and LS-RALP (green, solid).

tor is 0.9. The goal is to keep the pendulum upright
for 3000 steps. The noise in the pendulum problem
is applied as Gaussian noise of standard deviation
10 on the force applied to the table. This is signifi-
cantly greater than the noise traditionally applied in
this problem, resulting in much worse performance
even by an optimal controller.

We compare RALP and LS-RALP, using the same
set of features; Gaussian kernels of three dif-
ferent widths, a polynomial kernel of degree 3,
s[1],s[2],s[1] * s[2],s[1]?,5[2]?, and a constant feature,
where s[1] is the angle, and s[2] is the angular velocity.
For a number of samples 7, this was therefore a total
of 4n + 6 features for each action. We also compare
against LSPI, using the radial basis functions used
by Lagoudakis and Parr [9], and LARS-TD wrapped
with policy iteration, using the same features used by
RALP and LS-RALP.

Sampling was done by running 50 trajectories un-
der a random policy, until the pendulum fell over
(around six steps). For the LP methods, the regular-
ization parameter was set to 4000, and for LS-RALP,
the smoothing function was a multivariate Gaussian
kernel. These parameters were chosen by cross val-
idation. 50 trials were run for each method, and
the number of steps until failure averaged; if a trial
reached 3000 steps, it was terminated at that point.
As with the mountain car experiments, only one ac-
tion for each sampled state was included. Results are
presented in Figure 3.

Notice that while LSPI was competative with the Q-
functions approximated with RALP, the addition of
the smoother resulted in superior performance even
with very little data.

2500

0]
—
I A
T 2000+ R :
L 2 At * *
= . o
pr U .
K .

S 1500] K PRt
1] " ____
o . -
Q " i’
9 I !
&3 1000 o
() * @
(@] : i'

.
g s00f fo.° i

* —
> . . .=

o T — ——
< ;" . / .
0 . . .
0 50 100 150 200

Number of sample trajectories

Figure 3: Average number of steps until failure vs.
number of sample trajectories for the pendulum do-
main with Q-functions approximated with LARS-
TD with policy iteration (violet, hashed), LSPI (red,
hashed), RALP (blue, dotted), and LS-RALP (green,
solid).

7 Conclusion

In this paper, we have demonstrated the difficul-
ties RALP can have in using noisy, sampled next
states, and we have shown that the introduction of a
smoothing function can mitigate these effects. Fur-
thermore, we proved that as the amount of data is
increased, error from inaccurate samples approaches
zero. However, our experiments show drastic im-
provement with only a small number of samples.

In fairness, we also point out some limitations of our
approach: LS-RALP makes stronger smoothness as-
sumptions about the model and features than does
RALP (continuous differentiability vs. the Lipschitz
continuity necessary for the RALP bounds). LS-RALP
also requires an additional parameter that must be
tuned - the kernel bandwidth. We note, however, that
the RALP work provides some guidance on choosing
the regularization parameter and that there is a rich
body of work in non-parametric regression that may
give practical guidance on the selection of the band-
width parameter.

The nonparametric regression literature notes that the
bandwidth of a smoother can be adjusted not just for
the total number of data points, but also for the den-
sity of data available in the particular neighborhood
of interest [6]. The addition of this type of adaptive-
ness would greatly increase accuracy in areas of un-
usual density.

There are further opportunities to make better use of
smoothing. First, we note that while smoothing the
entire constraint has proven to be extremely useful,

it is inevitable that applying two separate smooth-
ing parameters to the reward and transition compo-
nents would be even more helpful. For example, in
the mountain-car experiments of Subsection 6.1, only
the reward was noisy; applying smoothing to the re-
ward, and not to the transition dynamics, would im-
prove the approximation. The introduction of an au-
tomated technique of setting bandwidth parameters
on two separate smoothing functions would likely re-
sult in more accurate approximations with less data.

Additionally, while the experiments done for this pa-
per were extremely quick, this was due to the small
number of samples needed. For larger, more com-
plex domains, the LP can get large and may take a
long time to solve; while LP solvers are generally
thought of as efficient, identification of constraints
doomed to be loose or features which will not be se-
lected could cause a drastic improvement in the speed
of this method.

References

[1] Daniela Pucci de Farias and Benjamin Van Roy.
The Linear Programming Approach to Approx-
imate Dynamic Programming. Operations Re-
search, 2003.

[2] Vijay V. Desai, Vivek E. Farias, and Ciamac C.
Moallemi. A smoothed approximate linear pro-
gram. In Advances in Neural Information Process-
ing Systems, volume 22, 2009.

[3] Luc P. Devroye. The Uniform Convergence of
the Nadaraya-Watson Regression Function Esti-
mate. The Canadian Journal of Statistics, 6(2):179—
191, 1978.

[4] Luc P. Devroye. The uniform convergence of
nearest neighbor regression function estimators
and their application in optimization. IEEE
Transactions on Information Theory, 24(2):142 -
151, Mar 1978.

[5] Mohammad Ghavamzadeh, Alessandro Lazaric,
Remi Munos, and Matthew Hoffman. Finite-
Sample Analysis of Lasso-TD. In Proceedings of
the 28th International Conference on Machine Learn-
ing, 2011.

[6] Christine Jennen-Steinmetz and Theo Gasser. A
unifying approach to nonparametric regression
estimation. Journal of the American Statistical As-
sociation, 83(404):1084-1089, 1988.

[7] Jeffrey Johns, Christopher Painter-Wakefield,
and Ronald Parr. Linear complementarity for
regularized policy evaluation and improvement.

In J. Lafferty, C. K. I. Williams,]. Shawe-Taylor,
R.S. Zemel, and A. Culotta, editors, Advances in
Neural Information Processing Systems 23, pages
1009-1017, 2010.

[8] J. Zico Kolter and Andrew Ng. Regularization
and Feature Selection in Least-Squares Temporal
Difference Learning. In Léon Bottou and Michael
Littman, editors, Proceedings of the 26th Interna-
tional Conference on Machine Learning, pages 521—
528, Montreal, Canada, June 2009. Omnipress.

[9] Michail G. Lagoudakis and Ronald Parr. Least-
Squares Policy Iteration. The Journal of Machine
Learning Research, 2003.

[10] Jun Ma and Warren B. Powell. Convergence
Analysis of Kernel-based On-Policy Approxi-
mate Policy Iteration Algorithms for Markov De-
cision Processes with Continuous, Multidimen-
sional States and Actions. Submitted to IEEE
Transactions on Automatic Control, 2010.

[11] D. Ormoneit and S. Sen. Kernel-based reinforce-
ment learning. Machine Learning, 49(2):161-178,
2002.

[12] Marek Petrik, Gavin Taylor, Ronald Parr, and
Shlomo Zilberstein. Feature selection using reg-
ularization in approximate linear programs for
markov decision processes. In Proceedings of the
27th International Conference on Machine Learning,
2010.

[13] Bernardo Avila Pires. Statistical Analysis of L1-
Penalized Linear Estimation With Applications.
Master’s thesis, University of Alberta, 2011.

[14] Paul J. Schweitzer and Abraham Seidmann.
Generalized Polynomial Approximations in
Markovian Decision Processes. Journal of math-
ematical analysis and applications, 110(6):568-582,
1985.

[15] Richard S. Sutton and Andrew G. Barto. Rein-
forcement Learning: an Introduction. MIT Press,
1998.

[16] Hua O. Wang, Kazuo Tanaka, and Michael F.
Griffin. An Approach to Fuzzy Control of Non-
linear Systems: Stability and Design Issues. IEEE
Transactions on Fuzzy Systems, 4(1):14-23, 1996.

