Chris Brown, January 2008
Proofs of bounds on the “hop” algorithm for searching worms.
Note: Two pages prove # hops for a worm of lenght I is Q(1/(1)) and O(1%/3).

1. Consider a worm of length [.

2. Note than in an infinite grid, the number of squares at distance d > 0
from a given square is 4d.

3. Consider a traversal of a worm made by the “hop” algorithm in searching
for a square not actully in the worm. If n is the longest hop in a traversal
and H the number of hops, we have that
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because you can’t have more hops of length d than there are squares at
distance d from the target (z,y), and there are exactly 4d squares at
distance d from (z,y). Similarly, the worm body length satisfies

1> 4d-d=4) d*=0(n’)," ie. 1 =Q(n’).
d=1 d=1

4. Theorem: In an H-hop traversal, the longest hop, n, satisfies
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Proof: From the above, we know that H < 2n?+ 2, which we can rewrite
as n? +n — H/2 > 0. Of course we're only interested in positive values of
n, and by the quadratic formula the only positive root of n? +n — H/2 is
—ltvit2l VQH'QH and therefore n > —1HV1+2H V21+2H
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. Finaly, since n is an integer, we

5. Combining the two previous results, | = Q(n®) and [(—1+ 1+ 2H)/2]
we get
3
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6. Thus, by the def. of Q, for some constant a > 0, when H is large we have

I > aH®? which means (1/a)*?1%/* > H which means H = O (12/3) .

1See page 1060 of the textbook.



Consider a worm that is wrapped around cell (z,y), so that it spirals away. We
should describe this a bit precisely. Let a d-square be the square of cells (i, j)
formed by the rows j = z + d and j = x — d, and the columns ¢ = = + d and
i = x —d. The worm starts at cell (z,y—1) and moves counter-clockwise around
the 1-square until it uses up all the cells in the 1-square. Then it crosses into
the 2-square and moves counter-clockwise around the 2-square until it uses up
all those squares. We'll call this a “spiral worm”.

Theorem: The “hop” algorithm makes ©(y/n) hops in traversing the spiral
worm around the point (z,y) it is searching for.

Proof: First note that a d-square consists of 8d cells. This may take a bit of
thinking to convince yourself of. Next note the distance of any cell in a d-square
from (z,y) is between d and 2d.

Consider your last hop from a cell in a d square. The hop length is at most 2d.
Since that is less than the 8d cells that make up the (d + 1)-square you move
into, you end your hop in the (d + 1)-square (as opposed to moving all the way
around and out of it during that singel hop). So, if you land in a d-square, you
will eventually land in a (d + 1)-square. Since our first hop lands in a 1-square,
induction tells us that we land in every d-square the worm fills up.

So we have at least one landing in every d-square filled up by the worm, and
clearly no more than 8, since each jump has length at least d and there are only
8d cells in the d-square. If the worm fills up the d-squares fromm d = 1..k. Then
the number of hops, H, satisfies

E<H<S8k+7, 2

i.e. H = 0O(k).. Meanwhile, the worm body has length [, where
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which means k& = ©(v/1). We have H = O(k) and k = O(V1), so H = O(\/1).

Since we proved the number of hops is ©(v/1) for a particular worm configura-
tion, i.e. the spiral, the worst case can’t be better and we get that the “hop”
algorithm is Q(ﬂn)

2The 47 is because the worm might fill some, though not all, of the (k + 1)-square.



