SI221 Class 26 – Ethics 

Building safe and reliable software in critical systems

All of us are familiar with the problems of computer system failures.  For no obvious reason, computer systems sometimes crash and fail to deliver the services that have been requested.  The dependability of computer systems is a property of the system that equates to its trustworthiness.  Trustworthiness essentially means the degree of user confidence that the system will operate as they expect and that the system will not “fail” in normal use.   This property cannot be expressed numerically but we can use relative terms such as ‘not dependable’ or ‘very dependable’ to reflect different degrees of trust that we might have in the system.

There are four principal dimensions to dependability:

1. Availability: the probability that the system will be up and running and able to deliver useful services at any given time.

2.  Reliability: The probability, over a given period of time, that the system will correctly deliver services as expected by the user.

3.  Safety: A judgment of how likely it is that the system will cause damage to people or its environment.

4.  Security:  A judgment of how likely it is that they system can resist accidental or deliberate intrusion.  

Because of additional design, implementation and validation overheads, increasing the dependability of a system can dramatically increase development costs.  Because of additional design, implementation and validation overheads, increasing the dependability of a system can dramatically increase development costs.  
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Because of the exponential nature of the cost/dependability curve, it is not possible to produce a system that is 100 percent dependable as the costs of dependability would then be infinite.  How dependable is dependable enough?

The failure of many software-controlled systems causes inconvenience but no serious long-term damage.  However, there are some systems where failures can result in significant economic losses, physical damage or threats to human life.  These systems are usually called critical systems.  Dependability is an essential attribute of critical systems and all aspects of dependability (availability, reliability, safety and security) may be important.  Achieving a high level of dependability is usually the most important requirement for critical system.  What responsibility does a programmer have in the production of a dependable critical system?

Making the right ethical decision is essential when handling critical systems.  The effectiveness and dependability of a system is judged by the programmer, and incorrect assessments result in loss of human life.  Decisions about quality and safety shouldn’t be set aside due to time constraints or money issues.  The following passages from professional codes of ethics relate to critical systems:

Item One, IEEE Code of Ethics – Designers should “accept responsibility in making engineering decisions consistent with the safety, health and welfare of the public, and to disclose promptly factors that might endanger the public or the environment.”  This makes the designer responsible for the final product.

Item Three, IEEE Code of Ethics – Designers should “be honest and realistic in stating claims or estimates based on available data.”  Money or time shouldn’t be a substitute for human life.  

Item Six, IEEE Code of Ethics – Designers should “maintain and improve our technical competence and to undertake technological tasks for others only if qualified by training or experience, or after full disclosure of pertinent limitations.”  This passage says don’t toy with a critical system you’re not qualified to modify.

Professional Responsibilities, Item One, ACM Code of Ethics – Designer should “strive to achieve the highest quality in both the process and product of professional work.”

Professional Responsibilities, Item 5.1, ACM Code of Ethics – Designers should “give comprehensive and thorough evaluations of computer systems and their impacts, including analysis of possible risks.”

Critical systems are used in areas where failure can mean risk to human lives, pushing cost into secondary considerations.  The results of even a temporary failure are too serious to be ignored. An overlap and duplication of components enables other parts of the system to take over and ensure that normal working conditions can continue.  Fault-tolerant computers can thus reduce the likelihood, frequency, and impact of system failures by being capable of accepting unexpected input or failure of one of the components.  

Example Critical Systems
· Aircraft or Air Traffic Control Systems 

· Nuclear Reactor Control 

· Missile System Control Software 

· Medical Treatment Systems 

· Bridge Building and Bridge design 

· Selection of Waste Disposal Areas 
Case Study:

A History of the Introduction and Shut Down of Therac-25
Therac-25 was released on the market in 1983. In 1987, it treatments with the eleven machines in operation was suspended. Those machines were refitted with the safety devices required by the FDA and remained in service. No more accidents were reported from these machines. At about that time, the division of CMC that designed and manufactured Therac-25 became an independent company. 

The major innovations of Therac-25 were the double pass accelerator (allowing a more powerful accelerator to be fitted into a small space, at less cost) and the move to more complete computer control. The move to computer control allowed operators to set up the machine more quickly, giving them more time to speak with patients and making it possible to treat more patients in a day. Along with the move to computer control, most of the safety checks for the operation of the machine were moved to software and hardware safety interlocks removed. 

CMC’s FDA Testing and Safety Analysis
Before release of Therac-25 on the US market, CMC obtained approval to market it from the FDA. This approval was obtained by declaring what FDA called pre-market equivalence. Since the software was based on software already in used, and the linear accelerator was a minor modification of existing technology, designation of Therac-25 as equivalent to this earlier technology meant that Therac-25 bypassed the rigorous FDA testing procedures. In 1984, 94% of medical devices entered the market in this manner. This declaration of pre-market equivalence seems optimistic in that most of the safety mechanisms were moved into the software, a major change from previous version of the machine.

In 1983, just after CMC made the Therac-25 commercially available, CMC performed a safety analysis of the machine using Fault Tree Analysis. This involves calculating the probabilities of the occurrence of varying hazards (e.g. an overdose) by specifying which causes of the hazard must jointly occur in order to produce the hazard. 

In order for this analysis to work as a Safety Analysis, one must first specify the hazards (not always easy), and then be able to specify the all possible causal sequences in the system that could produce them. It is certainly a useful exercise, since it allows easy identification of single-point-of-failure items and the identification of items whose failure can produce the hazard in multiple ways. Concentrating on items like these is a good way to begin reducing the probabilities of a hazard occurring. 

In addition, if one knows the specific probabilities of all the contributing events, one can produce a reasonable estimate of the probability of the hazard occurring. This quantitative use of Fault Tree Analysis is fraught with difficulties and temptations, as CMC’s approach shows.

In order to be useful, a Fault Tree Analysis needs to specify all the likely events that could contribute to producing a hazard. Unfortunately, CMC’s analysis left out consideration of the software in the system almost entirely. Since much of the software had been taken from the Therac-6 and Therac-20 systems, and since these software systems had been running many years without detectable errors, the analysts assumed there were no design problems in the software. The analysts considered software failures like "computer selects wrong mode" but assigned them probabilities like 4 x 10-9. 

These sorts of probabilities are likely assigned based on the remote possibility of random errors produced by things like electromagnetic noise. They do not at all take into account the possibility of design flaws in the software. This shows a major difficulty with Fault Tree Analysis as it is often practiced. If the only items considered are "failure" items (e.g. wear, fatigue, etc.) a Fault Tree Analysis really only gives one a reliability for the system. 

CMC's Response to the Accidents
In July of 1985, CMC was notified that a patient in Hamilton had been overdosed. CMC sent a service engineer to the site to investigate. CMC also informed the United States Food and Drug Administration (FDA), and the Canadian Radiation Protection Board (CRPB) of the problem. In addition they notified all users of the problem and issued instructions that operators should visually confirm hardware settings before each treatment. CMC could not reproduce the malfunction, but its engineers suspected that a hardware failure in a microswitch was at fault. They redesigned the hardware and claimed that this redesign improved the safety of the machine by five orders of magnitude. After modifications were made in the installed machines, CMC notified sites that they did not need to manually check the hardware settings anymore.

In November of 1985, CMC heard of another incident in Georgia. The patient in that incident (Linda Knight) filed suit that month based on an overdose that occurred in June. There is no evidence that CMC followed up this case with the Georgia hospital. Though this information was clearly received by CMC, there is no evidence that this information, was communicated internally to engineers or others who responded to later accidents. 

In January of 1986, CMC heard from a hospital in Yakima, Washington that a patient had been overdosed. The CMC technical support supervisor spoke with the Yakima hospital staff on the phone, and contacted them by letter indicating that he did not think the damage they reported was caused by the Therac-25 machine. He also notified them that there have "apparently been no other instances of similar damage to this or other patients." 

In March of 1986, CMC was notified that the Therac-25 unit in Tyler, Texas had overdosed a patient. They sent both a local Texas engineer and an engineer from their Canada home office to investigate the incident the day after it occurred. They spent a day running tests on the machine but could not reproduce the specific error. The CMC engineer suggested that perhaps an electrical problem had caused the accident. He also said that CMC knew of no accidents involving radiation overexposure with the Therac-25. An independent engineering firm checked out the electric shock theory and found that the machine did not seem capable of delivering an electric shock to a patient. 

On April 11th of 1986, CMC was alerted to another overdose that had occurred in Tyler. After communication with the medical physicist at Tyler, CMC engineers were able to reproduce the overdose and the sequences leading up to it. 

CMC filed a medical device report with the FDA on April 15, 1986 to notify them of the circumstances that produced the two Tyler accidents.

At this point, the FDA, having been notified of the first Tyler accident by the hospital, declared Therac-25 defective and ordered the firm to contact all sites that used the machine, investigate the problem, and submit a report called a corrective action plan. CMC contacted all sites and recommended a temporary fix involving removing some keys from the keyboard at the computer console. 

The FDA was not satisfied with the notification that CMC gave sites, and in May 1986 required CMC to re-notify all sites with more specific information about the defect in the product and the hazards associated with it. CMC was also at this time involved in meetings with a "user's group" of Therac-25 sites to help formulate its corrective action plan. After several exchanges of information among CMC and the FDA (in July, September, October, November, and December of 1986), CMC submitted a revised corrective action plan to FDA.

In January 1987, CMC was notified of another overdose occurring again at the Yakima, Washington hospital. After sending an engineer to investigate this incident, CMC concluded that there was a different software problem that allowed the electron beam to be turned on without the device that spread it to a safe concentration being placed in the beam. 

Therac-25 is Shut Down
In February, 1987, the FDA and its Canadian counterpart cooperated to require all units of Therac-25 to be shut down until effective and permanent modifications were made. After another 6 months of negotiation with the FDA, CMC received approval for its final corrective action plan. This plan included numerous software fixes, the installation of independent, mechanical safety interlocks, and a variety of other safety related changes.

Several of the surviving victims or the deceased victim’s families filed suit in US courts against CMC and the medical facilities using Therac-25. All of these suits were settled out of court.

CMC Medical Goes Independent
The division of CMC that designed and manufactured Therac-25 has become an independent private Canadian company. They still make radiation therapy machines.

Government and FDA response to the Accidents
The Therac-25 case pointed to significant weak links in communication between FDA, medical device manufacturers, and their customers or users. Users were not required to report injuries to any government office, or to the manufacturers of the devices that had caused injury. 

A 1986 GAO study found 99% of injuries caused by medical devices were not reported to the FDA. At that time, hospitals reported only about 51% of problems to the manufacturer. The hospitals mostly reported dealing with problems themselves. Problems were mainly the result of wear and tear on machines and design flaws. 

The breakdown in communication with hospitals and clinics using medical devices prevented FDA from knowing about the isolated and recurring problems with the Therac-25 until after two deaths occurred in Tyler, TX. 

Even when the FDA became aware of the problem, they did not have the power to recall Therac-25, only to recommend a recall. After the Therac-25 deaths occurred, the FDA issued an article in the Radiological Health Bulletin (Dec. 1986) explaining the mechanical failures of Therac-25 and explaining that "FDA had now declared the Therac-25 defective, and must approve the company's corrective action program." 

After another Therac-25 overdose occurred in Washington state, the FDA took stronger action by "recommending that routine use of the system on patients be discontinued until a corrective plan had been approved and implemented" (Radiological Health Bulletin, March 1987). CMC was expected to notify Therac-25 users of the problem, and of FDA's recommendations. 

After the Therac-25 deaths, the FDA made a number of adjustments to its policies in an attempt to address the breakdowns in communication and product approval. In 1990, health- care facilities were required by law to report incidents to both the manufacturer and FDA. 

Therac-25 Software Design

The software for the Therac-25 was developed by a single person, using PDP-11 assembly language, over a period of several years. The software "evolved" from the Therac-6 software, which was started in 1972. According to a letter from CMC to the FDA, the "program structure and certain subroutines were carried over to the Therac-25 around 1976." Apparently, very little software documentation was produced during development. In a 1986 internal FDA memo, a reviewer lamented, "Unfortunately, the CMC response also seems to point out an apparent lack of documentation on software specifications and a software test plan."

The manufacturer said that the hardware and software were "tested and exercised separately or together over many years." In his deposition for one of the lawsuits, the quality assurance manager explained that testing was done in two parts. A "small amount" of software testing was done on a simulator, but most testing was done as a system. It appears that unit and software testing was minimal, with most effort directed at the integrated system test. At a Therac-25 user group meeting, the same quality assurance manager said that the Therac-25 software was tested for 2,700 hours. Under questioning by the users, he clarified this as meaning "2,700 hours of use."

The programmer left CMC in 1986. In a lawsuit connected with one of the accidents, the lawyers were unable to obtain information about the programmer from CMC. In the depositions connected with that case, none of the CMC employees questioned could provide any information about his educational background or experience. Although an attempt was made to obtain a deposition from the programmer, the lawsuit was settled before this was accomplished. We have been unable to learn anything about his background.

CMC claims proprietary rights to its software design. However, from voluminous documentation regarding the accidents, the repairs, and the eventual design changes, we can build a rough picture of it. 

The software is responsible for monitoring the machine status, accepting input about the treatment desired, and setting the machine up for this treatment. It turns the beam on in response to an operator command (assuming that certain operational checks on the status of the physical machine are satisfied) and also turns the beam off when treatment is completed, when an operator commands it, or when a malfunction is detected. The operator can print out hard-copy versions of the CRT display or machine setup parameters.

The treatment unit has an interlock system designed to remove power to the unit when there is a hardware malfunction. The computer monitors this interlock system and provides diagnostic messages. Depending on the fault, the computer either prevents a treatment from being started or, if the treatment is in progress, creates a pause or a suspension of the treatment.

The manufacturer describes the Therac-25 software as having a stand-alone, real-time treatment operating system. The system is not built using a standard operating system or executive. Rather, the real-time executive was written especially for the Therac-25 and runs on a 32K PDP 11/23. A preemptive scheduler allocates cycles to the critical and noncritical tasks.

The software, written in PDP 11 assembly language, has four major components; stored data, a scheduler, a set of critical and noncritical tasks, and interrupt services. The stored data includes calibration parameters for the accelerator setup as well as patient-treatment data. The interrupt routines include: 

· a clock interrupt service routing, 

· a scanning interrupt service routing, 

· traps (for software overflow and computer-hardware-generated interrupts), 

· power up (initiated at power up to initialize the system and pass control to the scheduler), 

· treatment console screen interrupt handler, 

· treatment console keyboard interrupt handler, 

· service printer interrupt handler, 

· service keyboard interrupt handler. 

The scheduler controls the sequences of all noninterrupt events and coordinates all concurrent processes. Tasks are initiated every 0.1 second, with the critical tasks executed first and the noncritical tasks executed in any remaining cycle time. Critical tasks include the following: 

· The treatment monitor (Treat) directs and monitors patient setup and treatment via eight operating phases. These are called subroutines, depending on the value of the Tphase control variable. Following the execution of a particular subroutine, Treat reschedules itself. Treat interacts with the keyboard processing task, which handles operator console communication. The prescription data is cross-checked and verified by other tasks (for example, the keyboard processor and the parameter setup sensor) that inform the treatment task of the verification status via shared variables. 

· The servo task controls gun emission, dose rate (pulse-repetition frequency), symmetry (beam steering), and machine motions. The servo task also sets up the machine parameters and monitors the beam-tilt-error and the flatness-error interlocks. 

· The housekeeper task takes care of system-status interlocks and limit checks, and puts appropriate messages on the CRT display. It decodes some information and checks the setup verification. 

Noncritical tasks include 

· Check sum processor (scheduled to run periodically). 

· Treatment console keyboard processor (scheduled to run only if it is called by other tasks or by keyboard interrupts). This task acts as the interface between the software and the operator. 

· Treatment console screen processor (run periodically). This task lays out appropriate record formats for either displays or hard copies. 

· Service keyboard processor (run on demand). This task arbitrates non-treatment-related communication between the therapy system and the operator. 

· Snapshot (run periodically by the scheduler). Snapshot captures preselected parameter values and is called by the treatment task at the end of a treatment. 

· Hard-control processor (run periodically). 

· Calibration processor. This task is responsible for a package of tasks that let the operator examine and change system setup parameters and interlock limits. 

It is clear from the CMC documentation on the modifications that the software allows concurrent access to shared memory, that there is no real synchronization aside from data stored in shared variables, and that the "test" and "set" for such variables are not indivisible operations. Race conditions resulting from this implementation of multitasking played an important part in the accidents.

Software Safety Myths
In her book Safeware: System Safety and Computers (p. 26) Nancy Leveson lists seven myths regarding the safety of software. 

1. The cost of computers is lower than that of analog or electromechanical devices. 

2. Software is easy to change. 

3. Computers provide greater reliability than the devices they replace. 

4. Increasing software reliability will increase safety. 

5. Testing software and formal verification of software can remove all the errors. 

6. Reusing software increases safety. 

7. Computer reduce risk over mechanical systems. 

After reviewing the Therac 25 case, evaluate the truth of each of these statements as they pertain to the case. 
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