1. Implement the ADT line, where a line is defined by the fomula y=ax +b. Your implementation must store the values a and b as double values. ‘a’ is the slope of the line and ‘b’ is the y intercept (i.e. where the line crosses the y-axis, (if it does)). Your implementation must contain a constructor which allows the user to declare objects of type line and provide initial values for ‘a’ and ‘b’.

[image: image1]2. Write a friend function Perpendicular which is passed two lines and returns true if the lines are perpendicular and false if they are not. The product of the slopes of two perpendicular lines is equal to -1.
 // this definition of the friend function would be OUTSIDE the class in some other

 // file somewhere…

bool Perpendicular(Line L1, Line L2) { return (L1.a * L2.a == -1);}
3. Suppose that each row of an n x n array Ary consists of A’s and B’s such that, in any row of A, all the A’s come before any B’s in that row. Assuming Ary is already in memory, write a function which is passed the array as well as the value of n and which runs in O(n2) time and finds the row of Ary which contains the most A’s. Write an algorithm which determines the same thing but which runs in O(n) time.

[image: image2]

4. Create a class Quaternion which defines two basic arithmetic operations shown below. Quaternions are an extension of complex numbers. They are represented by quadruples of real numbers (a,b,c,d) = a + bi + cj + dk where 1=(1,0,0,0), i=(0,1,0,0), j=(0,0,1,0) and k=(0,0,0,1). Additionally the following is given: i2 = j2 = k2 = -1

 ij=k, jk=i, ki=j, ji=-k, kj=-i, ik=-j

 Two arithmetic operations are defined as:

Addition: (a+bi+cj+dk) + (p+qi+rj+sk) = (a+p) + (b+q)i + (c+r)j + (d+s)k

Multiplication: (a+bi+cj+dk) * (p+qi+rj+sk) = (ap-bq-cr-ds) + (aq+bp+cs-dr)i

 +(ar+cp+dq-bs)j +(as+dp+br-cq)k

Your class must include a constructor which the user can use to create a Quaternion object and set the coefficients a,b,c, and d.

class Quaternion

{public:
 Quaternion(int A, int B, int C, int D) : a(A), b(B), c(C), d(D) {} // constructor

//OR Quaternion(int A, int B, int C, int D) {a=A; b=B; c=C; d=D;}

 Quaternion operator+(Quaternion &Q)
 {

 return Quaternion(a+Q.a, b+Q.b, c+Q.c, d+Q.d);

 }

 Quaternion operator*(Quaternion &Q)

 {

 return Quaternion(a*Q.a – b*Q.b – c*Q.c – d*Q.d,

 a*Q.b + b*Q.a + c*Q.d – d*Q.c,

 a*Q.c + c*Q.a + d*Q.b – b*Q.d,

 a*Q.d + d*Q.a + b*Q.c – c*Q.b);

 }

 private:

int a, b, c, d;

 };

5. Using the STL queue and the STL vector, implement two functions named BiggestToFront. Assume the queue and vector contain integers. The function, in each case, is to move the largest value in that structure to the front (position 0 for the vector).

 void BiggestToFront(vector<int> &V, queue<int> &Q) {

 // here is the code for moving the largest integer in the vector V into the 0th position

 vector<int>::iterator vitr = V.begin(); // Set the iterator to the beginning of V

 vector<int>::iterator largestIndex = V.begin() ; // Start by assuming largest

 // value is in pos 0

 while (vitr != vitr.end()) { // look through all integers to find the largest one

 if (*vitr > *largestIndex) { // if a new largest value is found

 largestIndex = vitr; // save the position it is in in the vector V

 }

 ++vitr; // move the iterator forward to the next integer in V

 }

 // swap largest value with value currently in position 0

 int Temp = V[0];

 V[0] = *largestIndex;

 *largestIndex = Temp ;
}

// the code for the queue version is the answer to question 1 on the 12-week exam.
6. Compare the space and timing performance of your two BiggestToFront functions.

 Doing this function for the vector is more efficient on both counts, space and timing. You do not need an extra vector, as you do in the queue version. You need only cycle through the vector once and using iterators, keep track of where you find the largest value and swap it directly with the integer in the 0th position… because you have direct access into each and every integer in the vector. In the queue, however, because you ONLY have access via ‘dequeue’ to the item at the front of the queue, you must first cycle through and find the largest value and then cycle through and reload the elements which you put into a temporary queue and re-enqueue first the largest value and then, behind that value, re-enqueue all BUT that largest value. Lots more time (twice through a queue and lots more space required.)

7. Create a class called ComboLock which has the following properties. The lock’s combination is a sequence of three integers and is hidden. The lock can be opened only by providing the correct combination. The combination can be changed only by someone who knows the current combination. Your class must include a constructor and public member functions Open and ChangeCombo and private data members to store the combination. Disable copying of ComboLock objects. (What operations do you have to disable to do this?)

#include <iostream>

using namespace std;

class ComboLock

{ public:
 ComboLock(int A, int B, int C) : N1(A), N2(B), N3(C) {}

 ComboLock(ComboLock &C) {} // Disable the copy constructor
 void operator=(ComboLock C) { } // Disable the assignment operator
 void changeCombo(int old1, int old2, int old3,

 int new1, int new2, int new3)

 { if (old1==N1 && old2==N2 && old3==N3)

 {N1=new1; N2=new2; N3=new3;}

 else

 cout << "Wrong combo ... no change made" << endl;

 }

 private:

 int N1;

 int N2;

 int N3;

};

int main()

{ ComboLock Mine(3,4,5);

 ComboLock Yours(1,2,3);

 Yours = Mine; // prohibited because the = operator disabled
 Mine.changeCombo(2,4,5,2,4,5);

 Mine.changeCombo(3,4,5,2,4,4);

 return 0;

};

8. Create a class Queue as a class derived from the class List. Assume that the member functions defined for List are:

void Add2Front(int i);

void Add2Back(int i);

int RemoveFromFront();

 int RemoveFromBack();

 bool isEmpty();

class Queue : public List
{ public:

 Queue() {}

 void Enqueue(int i) { Add2Back(i);}

 int Dequeue() { return RemoveFromFront();}

 bool isEmpty() {return List::isEmpty();}

};

9. Assume you have two stacks which contain items of type Card. Complete the function War which returns a 1 if the player who owns stack A is the winner or a 2 if the player who owns stack B is the winner or a 0 if it is a tie. You may assume each stack contains the same number of cards (not necessarily 26). The game is simple. A card from the top of each stack is ‘turned over’. The higher valued card wins. Ties are not counted by either player.
class Card

{public:

char Suit;

int Value;

};

stack<Card> A;

stack<Card> B;

// assume cards are loaded into each stack A and B

//You complete the following function:

 int War(stack<Card> A, stack<Card> B)

{ int MyWins=0; int YourWins = 0;

 while (!A.empty()) {
 Card MyCard = A.top();

 A.pop();

 Card YourCard = B.top();

 B.pop();

 if (MyCard.Value > YourCard.Value)

 MyWins = MyWins + 1;

 else if (MyCard.Value < YourCard.Value)

 YourWins = YourWins + 1;
 }
 if (MyWins > YourWins)

 return 1;

 else if (YourWins>MyWins)

 return 2;

 else

 return 0; }
10. Create the ADT for a Polynomial of one variable (x). Your ADT must include a constructor and member functions to do the following. You may assume the maximum degree (i.e. highest exponent of any term) of a polynomial to be 10.
a. Return the coefficient of a term given the power of the term.

b. Change the coefficient of a term given the power of the term to be changed.

c. Return the degree (highest power) of the polynomial.

d. Add two polynomials and return the resultant polynomial.

e. Return the value of the polynomial for a given value of x.

#include <iostream>

using namespace std;

class Polynomial

{public:

Polynomial(){} // constructor

 void AddTerm(int Coeff, int Exp) // add a term to the polynomial

 { if (Exp>=0 && Exp<=10)

 Poly[Exp] =Coeff;

 }

 int Coefficient(int Exp) // retrieve the coefficient for the term with degree 'Exp'

 { if (Exp>=0 && Exp<=10)

 return Poly[Exp];

 else

 return 0;

 }

void changeCoefficient(int Exp, int newCoeff) // change coeff

{ if (Exp>=0 && Exp <=10)

 Poly[Exp] = newCoeff;

 }

 int Degree()

 { int i = 10;

 while (Poly[i] == 0 && i>=0)

 i--;

 return i;

 }

 Polynomial operator+(Polynomial &P)

 { Polynomial Sum;

 for (int i=0; i<=10; i++)

 Sum.AddTerm(Poly[i]+P.Poly[i],i);

 return Sum;

 }

 int FofX(int X) // return value of polynomial evaluated for ‘X’ value

{ int Sum = Poly[0]; // add in the constant term

 int Xvalue = X;

 for (int i=1; i<=10; i++) {

 Sum = Sum + Poly[i]*Xvalue; // add in coefficient * current X value

 Xvalue = Xvalue * Xvalue; // multiply by next factor of X

 }

 return Sum;

 }

private:

 int Poly[11];

};

int main()

{ Polynomial P1;

 Polynomial P2;

 for (int i=0; i<=10; i++) {

 P1.AddTerm(i,i);

 P2.AddTerm(2*i,i);

 }

 P2.changeCoefficient(10,0);

 cout << P1.Degree() << endl;

 cout << P2.Degree() << endl;

 cout << P1.Coefficient(1) << endl;

 cout << P2.Coefficient(2) << endl;

 Polynomial P3 = P1 + P2;

 for (i=0; i<=10; i++)

 cout << P3.Coefficient(i) << 'x' << i << ' ';

 cout << P2.FofX(1) << endl;

 cout << P1.FofX(2) <<endl;

return 0;

}

11. Discuss the pros and cons of using a statically declared array as the data structure for your ADT. the pros and cons of using the STL vector class (with poly terms as the items in the vector) as the data structure for your ADT. the pros and cons of using a singly linked list built dynamically in the heap as the data structure for your ADT. Include the Big-O of the Power, Coefficient, changeCoefficient, Add, and Value(FofX) member functions in your discussion of each data structure choice.
 Statically declared array: You are limited to no more than the 11 terms the array

 is sized for. If you use the index of the array as the power of X for a term then

 you can access the coefficient of a particular power of X directly simply using

 that power or exponent value as the index into the array. If you have lots of terms

 with zero coefficients in your polynomial (ie a sparse polynomial) you have an

 array with essentially lots of ‘wasted’ space. Using the index of the array as the

 power of X for a term, however, makes the member functions such as AddTerm,

 and ‘+’ and changeCoefficient, very easy to write.

STL vector class: You are NOT limited to a specific number of terms in the

 Polynomial. If you put in the zero coefficients as well as the non-zero

 coefficients, you can essentially use the vector just like the statically declared

 array when it comes to writing the various member functions.

With both, the statically declared array and the STL vector implementation, if you

 choose not to store the zero coefficient terms but instead store elements in your

 structure which contain the coefficient AND the exponent/power for the specific

 term, then you may more efficiently use space (although in the static array it is

 still all allocated anyway) but you increase the complexity of the member

 functions.

Using a singly linked dynamically built list, you would most likely store the

coefficient and the power/exponent of each term in a node in the list. The

 code for the member functions would require traversing the list to find

 terms in order to change coefficients or find the highest power, etc. Adding

 two polynomials would be challenging because they might have different terms

 missing (i.e. with coefficients of zero). Alternately, you could use nodes which

 only stored the coefficient and not the power/exponent of a term AND you would

then have to store zero coefficients as well. You could then use ‘for’ (counting)

loops to simply some of the list traversal required for the member functions and

the nodes would ‘line up/correspond’ from a power/exponent perspective when

you traversed both in order to Add two polynomials together.

12. Assume you are creating an ADT SparseMatrix which allows you to store and retrieve integer values in a two dimensional matrix. The data is sparse, however, and there are lots of zero values in it. Discuss two different ways of storing the data in the matrix and the space and timing performance implications of each for the operation of adding two sparse matrices together.
The issue is the same as with the sparse polynomials. Storing the zero terms

wastes space but simplifies the logic/code for member functions. If you used

a two dimensional array AND stored all the zero values you would waste

space but most of your member function processing would simply involve

two for loops (one nested inside the other) to traverse all rows and columns

of the array.

To save space, you could use a linked structure built dynamically in the heap

and only store the non-zero values. You would need, however, to also store

the row and column location of each non-zero value. You would loose the

convenience and performance of directly accessing the value of an element

in your sparse matrix at a specific row and column (which you would have with

a two dimensional array) but you would save space.

13. Using the STL stack class, create a class LongInteger which will allow a user to declare a LongInteger object and give it an initial value and which will allow a user to add two long integers and produce a third long integer. The class should also have a member function, besides those mentioned, to allow the user to print out a LongInteger.

#include <iostream>

#include <stack>

using namespace std;

class LongInteger

{public:

 LongInteger(){}

 void MakeLongInteger()

 { int digit = 0;

 while (digit != -1) {

 cout << "Enter digit (-1 to quit) " ;

 cin >> digit;

 if (digit != -1)

 Digits.push(digit);

 }

 }

 void PrintLongInteger()

 { while (!Digits.empty()) {

 cout << Digits.top();

 Digits.pop();

 }

 }

 LongInteger operator+(LongInteger &LI)

 { LongInteger Sum;

 int Carry = 0;

int S = 0;

 while (!Digits.empty() && !(LI.Digits).empty()) {

S = Digits.top() + LI.Digits.top() + Carry;

Carry = 0;

if (S>=10) {

S = S -10;

 Carry = 1;

}

Sum.Digits.push(S);

Digits.pop();

LI.Digits.pop();

}

while (!Digits.empty()){

S= Digits.top() + Carry;

Carry = 0;

if (S>=10){

S = S- 10;

Carry = 1;

}

Sum.Digits.push(S);

Digits.pop();

}

while (!LI.Digits.empty()) {

S= LI.Digits.top() + Carry;

Carry = 0;

if (S>=10) {

S = S- 10;

Carry = 1;

}

Sum.Digits.push(S);

LI.Digits.pop();

}

if (Carry == 1)

Sum.Digits.push(1);

return Sum;

 }

private:

stack<int> Digits;

};

int main()

{ LongInteger L1;

 LongInteger L2;

 LongInteger Sum;

 L1.MakeLongInteger();

 L2.MakeLongInteger();

 Sum = L1 + L2;

 Sum.PrintLongInteger();

 return 0;

}
// this is the O(n2) algorithm

int aCount(char** Ary, int n)

{ int MaxRowCtr = 0;

 for (int i=0; i<n; i++) {

 int EachRowCtr = 0;

 for (int j=0; j<n; j++) {

 if (Ary[i][j] == ‘A’)

 EachRowCtr =

 EachRowCtr + 1;

 }

 if (EachRowCtr > MaxRowCtr)

 MaxRowCtr = EachRowCtr;

 }

 return MaxRowCtr;

}

// this is the O(n) algorithm

int aCount(char** Ary, int n)

{ int MaxCol=-1;

 int ColIndex = 0;

	

 for (int i=0; i<n; i++) {

 for (int j=ColIndex; j<n; j++) {

	 if (Ary[i][j] != 'A'){

		 ColIndex = j;

		 j=n;

	 }

	 else {

		 MaxCol=j;

		 ColIndex = j;

	 }

 }

 }

 return MaxCol+1;

}

class Line

{ public:

 Line(double A, double B);

 double Slope();

 double yIntercept();

 friend bool Perpendicular(Line L1,

 Line L2);

 private:

 double a;

 double b;

};

Line::Line(double A, double B)

 : a(A), b(B) {} // constructor

// OR constructor written differently

// Line::Line(double A, double B)

// { a = A; b=B;}

double Line::Slope() {return a;}

double Line::yIntercept() {return b;}

Line.h file

Line.cpp file

#include <iostream>

using namespace std;

int aCount(char** Ary, int n);

int main()

{ char sA[5][5] = {'A','B','B','B','B', // declare and initialize

		 'A','A','B','B','B', // a static 5x5 array

		 'A','A','A','B','B',

		 'A','A','A','A','B',

	 'A','B','B','B','B'};

	char** A = new char*[5]; // create a dynamic array

 for (int i=0; i<5; i++)

	 A[i] = new char[5];

	for (int r=0; r<5; r++)

	 for (int c=0; c<5; c++)

		A[r][c] = sA[r][c]; // copy static array element values

 // into dynamic array elements

	cout << aCount(sA,5); // call the function aCount

	return 0;

}

