
SI433, Practice Problems
Far and away the most important thing for you to study is the first two exams. Second would be the

lecture notes, homeworks, and project from after the 12-week exam.

1. Simplify the following expressions:

(a) O(3n3 + n2 lg n)

(b) O(n+ n lg n) + Θ(n2)

(c) Θ(n+ n lg n) +O(n2)

2. (? Points) Suppose Algorithm A and Algorithm B are two algorithms for solving the shortest path
problem, A runs in Θ(n2) time (worst case), and B runs in Θ(n lg n) time (worst case). Is it true
that for any graph and any two vertices A will take more time than B?

3. (? Points) MIDN Jones analyzes an algorithm and determines that its best case complexity is O(n2).
MIDN Smith analyzes the same algorithm and determines that its best case complexity is Θ(n lg n).
Could they both be right, or must at least one of them be wrong? Justify your answer!

4. (? Points) Give the worst case time complexity of the following algorithm:

void alg(A,n)
{

for(int i = 0; i < n; i++)
{

for(int j = 1; j < n - i; j++)
{

if (A[j-1] > A[j])
{

t = A[j];
A[j] = A[j-1];
A[j-1] = t;

}
}

}
}

1



5. (? Points) Suppose A is an array of n ints, all in the range 1, 2, . . . , k, and suppose that mystery(M),
where M is an int, is a function with best case time complexity Θ(M lgM) and worst case time
complexity Θ(M2). What can you tell me about the time required by the following algorithm in
terms of n and k?

int sum = 0;
for(int i = 0; i < n; i++)
{

int x = mystery(A[i]);
sum += x;

}
cout << sum << endl;

I’ll start you off: The time is O(2(n + k)) and Ω(1). Improve on this by giving me a more precise
answer! Justify your answers!

6. (? Points) Consider the following algorithm, which determines whether 1 + 2 + · · · + n is a perfect
square:

bool test(int n)
{
for(int i = 1; i <= n; i++)
{
// Compute sum = 1 + 2 + ... + n
int sum = 0;
for(int k = 1; k <= n; k++)

sum = sum + k;

// Compare sum and i^2
if (sum == i*i)

return true;
}
return false;

}

(a) (10 Points) In terms of n, what is the worst case time complexity of this algorithm? (Justify
your answer!)

(b) (5 Points) Modify the algorithm to improve its complexity (it still has to compute the same
thing!) and analyze the complexity of your improved algorithm.

2



7. (? Points) Consider the following algorithm, which returns true if a zero appears in array A in the
range i to j:

bool zeros(int *A, int i, int j)
{
// BASE CASE
if (i == j)
return A[i] == 0;

// DIVIDE
int k = (i + j)/2;

// CONQUER AND COMBINE
if(zeros(A,i,k))
return true;

if(zeros(A,k+1,j))
return true;

return false;
}

(a) (10 Points) Give a recurrence relation for the worst case time complexity for this algorithm.
Justify your answer!

(b) (5 Points) Give a recurrence relation for the best case time complexity for this algorithm. Justify
your answer!

8. (? Points) What is the growth rate of the function T (n) defined by T (n) = 3T (n/2) + Θ(n)?

9. (? Points) Which sorting algorithm is best and which is worst? Defend your answers!

10. (? Points) Draw the graph defined by the following adjacency matrix:

v0 v1 v2 v3 v4

v0 0 0 1 0 1
v1 0 0 1 0 0
v2 1 0 0 0 0
v3 1 1 0 0 0
v4 1 0 1 0 0

3



11. (? Points) In terms of n, the number of vertices in graph G, and e, the number of edges, what is the
complexity of the following algorithm if G is represented using an adjacency matrix?

BFS(G,i): G is the graph, i is the source vertex
{ initialize color to white for all vertices
color(i) = gray
let Q be a queue of vertices (initially empty!)
Q.enqueue(i)
while(!Q.empty())
{ v = Q.dequeue()

for each neighbor w of v do
if color(w) = white
color(w) = gray
Q.enqueue(w)

color(v) = black
}

}

12. (? Points) The change making problem is as follows: Given coin denominations D1, D2, . . . , Dk (and
an infinite supply of each type of coin) give a customer change for X cents using as few coins as
possible.

I’ve developed a greedy algorithm for solving this problem, which is:

(a) if X = 0 stop

(b) choose Di the largest denomination not exceeding X

(c) hand the customer a coin of denomination Di, and set X = X −Di

(d) goto Step (a)

Prove that this greedy algorithm is not optimum, meaning it doesn’t always make change with the
fewest coins. (Hint: It actually does work for denominations 25,10,5,1, which is pretty handy, since
those are the denominations we use!)

13. (? Points) What do finite automata and expression trees have to do with Huffmann encoding?

4



14. (? Points) The gcd of 252 and 147 is 21. Use the extended gcd algorithm to compute two numbers
s and t such that s · 252 + t · 147 = 21. Show your work!

(g, s, t)← egcd(u, v)
{

if v = 0 return (u, 1, 0)
q = quotient of u divided by v
r = remainder of u divided by v
(g′, s′, t′) = egcd(v, r)
return (g′, t′, s′ − t′q)

}

15. (? Points) What would you have to do in order to forge a message with out Project 3 electronic
signature format?

16. (? Points) Why is power(m,e) % n a lousey way to compute memodn, even when power is a very
efficient integer exponentiation algorithm?

17. (? Points) What does NP stand for?

18. (? Points) Prove that the Hamiltonian Cycle problem is in NP.

19. (? Points) Why would solving an NP-Complete problem prove that P = NP?

20. (? Points) Give a polynomial time reduction of the set-partition problem to the 0/1 Knapsack
problem. Note that this is the reverse of what we did in class!

21. (? Points) Why didn’t I insist on you guys getting the longest path possible for Project 2?

22. (? Points) What’s the difference between saying “operation X runs in O(lg n) time” and “operation
X runs in O(lg n) amortized time”?

5


