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1 Introduction

This handout is a companion to the ISSAC 2004 tutorial Cylindrical Algebraic Decomposition. It is not
intended to stand on its own, rather it is written for someone who has attended the tutorial and taken in
the background, motivation, and explanations given there. It is also not intended to thoroughly cite all
works pertaining to CAD. It is intended to be a guide to someone who might want to read further on this
subject. It is intended give quick recaps of the ideas and definitions arising in the talk. I hope it is able
to serve that role.

2 Definitions

cylindrical algebraic decomposition A cylindrical decomposition of Rn into semi-algebraic sets is a
cylindrical algebraic decomposition.

cylindrical decomposition A decomposition of Rn into finitely many connected regions is cylindrical
if for any two regions a and b of the decomposition and any k, 1 ≤ k ≤ n, the projections of a and
b onto Rk are either identical or disjoint. A cylindrical decomposition D of Rn induces cylindrical
decompositions of Rk for every k ≤ n. The induced cylindrical decomposition of Rk consists of the
set of all projections onto Rk of D’s partition regions.

delineability A polynomial p is delineable over region S if the variety of p in S × R consists of finitely
many disjoint sections. A set of polynomials is delineable over S if each polynomial is either nullified
everywhere in R or delineable over R.
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level The level of a non-constant polynomial p ∈ R[x1, . . . , xn] is the largest k such that the degree in xk

of p is positive.

nullified An n-level polynomial p is nullified at a point α ∈ Rn−1 if p(α1, . . . , αn−1, x) is the zero poly-
nomial.

projection definable CAD A CAD with truth values representing a set S is projection definable if there
is a defining Tarski formula for S using only the projection factors. This is easily detected from the
CAD data structure.

projection factor set A finite set of polynomials P ⊂ R[x1, . . . , xn] is a projection factor set if the
natural algebraic decomposition of Rn into maximal connected regions in which the elements of
P are sign-invariant is a CAD. This definition holds in the context of the Collins or Collins-Hong
projections, but with the McCallum and Brown-McCallum projections or when a specialized CAD
construction is used we need something a bit less restrictive.

quantifier elimination Let F be a Tarski formula in the variables x1, . . . , xn. Let G = Q1xk+1 · · ·Qn−kxn[F ],
where Qi ∈ {∃,∀}. Tarski proved that there is a Tarski formula H in the variables x1, . . . , xk that
is equivalent to G over the reals [33]. Constructing this equivalent formula is called quantifier elim-
ination.

section of a polynomial Let p be an element of R[x1, . . . , xn, z] and S a connected region in Rn. Suppose
a continuous function f : S −→ R satisfies p(x, f(x)) = 0 for all x ∈ S. The graph of f over S is
called a section of p.

semi-algebraic set The semi-algebraic sets in Rn are defined recursively by:

1. the set of points satisfying p σ 0, where p ∈ R[x1, . . . , xn] and
σ ∈ {=, 6=, <,≤, >,≥}, is semi-algebraic

2. the complement of a semi-algebraic set, and the union or intersection of finitely many semi-
algebraic sets are semi-algebraic.

stack Let D be a CAD of Rn, and let c be a cell in D’s induced CAD of Rk−1. The stack over c is the
set of cells in the induced CAD of Rk whose projection onto Rk−1 is c. The cell c is called the base
of the stack.

Tarski formula A Tarski Formula is boolean combination of polynomial equalities and inequalities, e.g.
x2

1 + x2
2 − 1 = 0 ∧ x > 0 ∧ y > 0.

3 Basic Cylindrical Algebraic Decomposition

The best reference to cite for Collins’ original introduction of CAD is [14]. This paper is complete, precise
and analyzes everything, but it’s not the easiest read. [5] gives a description of CAD that is much easier
to read — it’s a good place to start. Mishra’s textbook on computer algebra [30] has a nice presentation
of CAD as well. Collins gives a summary of the development of CAD from the early 70’s up to the early
90’s, as well as some ideas for future progress, in [15].
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4 Implementations

I know of four CAD implementations that are reasonably complete.

• Qepcad — This system is due primarily to Hoon Hong, but with contributions from many others,
including George Collins. [16] is the usual citation for it. Hong’s thesis [21] has a fairly thorough
explanation of it. It is a stand-alone, command-line, interactive program written in C and based on
the Saclib library of computer algebra functions.

• Qepcad b — This system forked off of Qepcad, it’s been improved and extended by me. It’s C++
rather than C, and has a simple API through which it can be called. It and Saclib are available
from www.cs.usna.edu~qepcad. The page also includes documentation. The best reference for it is
[12].

• RLCAD — This is an implementation of CAD in Reduce as part of the Redlog system by Andreas
Seidl and Thomas Sturm. It is incorporated into the most recent release of Reduce, version 3.8 (see
www.reduce-algebra.com/). The best reference for it I know is [31].

• Mathematica — There is an implementation of CAD in the Mathematica kernel due to Adam
Strzebonski. [32] is a JSC article that gives some information about it. The functionality it offers is
described in Mathematica’s documentation.

Qepcad is not really being kept up with. If you’re interested you should just use Qepcad b instead. I’d
also like to point out that while implementing CAD in its full generality is difficult, implementing CAD
for full-dimensional cells only is easy!

4.1 Projection

The goal of projection is, roughly speaking, to take a set A of polynomials and produce a set P of
polynomials, where A ⊆ P , such that the natural algebraic decomposition of Euclidean space into maximal
connected regions in which the elements of P are sign-invariant is a CAD. This set P , the projection factor
set, provides an implicit description of the CAD that will ultimately be represented explicitly by the CAD
data-structure.

There are two basic models for projection: Collins-Hong, which is based on producing a CAD in which
projection factors are sign-invariant, and Brown-McCallum, which is based on producing a CAD in which
projection factors are order-invariant.

Collins original paper on CAD [14] describes, of course, his projection operator, along with everything
else. Hong’s improvement of Collins’ projection is presented in [20]. This is probably the best source if
you are interested in the Collins-Hong approach to projection.

McCallum’s projection operator is presented in two articles. [23] presents the case of three dimensions,
[25] presents the general case. The former is easier to understand, and it is probably best to read it
first, in order to get the intuition behind the method. Brown’s improvement of McCallum’s projection
is presented in [9], but it really requires reading McCallum’s papers first. The McCallum and Brown-
McCallum projections produce smaller projection factor sets, but require a somewhat more complicated
lifting algorithm. Moreover, both may fail to produce a CAD, though possible failure is always detected.
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[10] gives a more refined test for possible failure than given in McCallum’s original paper, and provides a
more efficient and general modified lifting algorithm than McCallum. [28] discusses another way of refining
the test for possible failure.

4.2 Lifting (a.k.a. Stack Construction)

There hasn’t been much done with lifting as its own topic, as it a) depends on the projection operator
used, and b) mostly just relies on good underlying algorithms for computing with real algebraic numbers.
A literature survey on that, of course, would be a big paper of its own.

The description of basic CAD construction in [5] is very nice, and describes lifting for the Collins-Hong
projection model quite well. Arnon [4] described what he called clustering, which is basically a strategy
for avoiding lifting over some cells by making use of information about which cells are adjacent to which
others. For a variety of reasons, nobody seems to talk about this much any more and it is not implemented
in any current CAD programs as far as I know. [17] describes the use of floating-point interval arithmetic in
lifting. At ACA 2002, Strzebonski talked about more elaborate use of floating-point in CAD construction,
but I don’t know of any publication about this.

4.3 Solution Formula Construction

A solution formula for a CAD representing a set S is a defining Tarski formula for S. One of the most
important uses of CAD is to produce simple defining formulas for semi-algebraic sets. Especially since
many tools for quantifier elimination and other problems concerning semi-algebraic sets tend to produce
large output formulas.

In Collins’ original paper on CAD, the method he used for solution formula construction was to construct
a defining formula for each true cell in the CAD. However, in almost all cases it is impossible to construct
a defining Tarski formula for a single cell of a CAD using only the projection factors, so Collins’ method
also used all derivatives of projection factors. In order to use these derivatives, he needed to be sure
that additional properties beyond the delineability of projection factors held, and this required a larger
projection, which he called the augmented projection. This approach has two drawbacks: 1) it does not
produce simple formulas, 2) the augmented projection is typically too large to use.

Hong [22] showed how to construct simple solution formulas for projection definable CADs, i.e. when a
solution formula can be constructed solely from the projection factors. He reduced the problem to the
combinatorial optimization problem of boolean formula minimization. [8] discusses many improvements
to this method, including a method (also described in [7]) for adding projection factors to a CAD in order
to make it projection definable, which Qepcad b implements.

When a CAD isn’t projection definable, you can add projection factors to make it projection definable, or
you can give a formula in an extended language in which all CADs are projection definable. Both Qepcad
b and Mathematica’s CAD implementations offer this second alternative. Both extend the language of
Tarski formulas by allowing reference to a particular root of a polynomial by its index (its position in a
sorted list of the polynomial’s roots), which is of course unambiguous over a region in which a polynomial
is delineable. Mathematica’s version counts multiplicities, Qepcad b’s does not. In fact, as described in
[8], CAD allows quantifier elimination for this extended language just as easily as for Tarski formulas, and
since the extended language never requires adding polynomials to the projection factor set, it is a more
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efficient way of storing intermediate results in CAD-based calculations.

4.4 Other CAD operations

When the CAD data structure is augmented with information about which cells are adjacent to one an-
other, you have complete topological information about the varieties of projection factors and, in particular,
about any set you can represent with that CAD. [6] presents an algorithm for calculating adjacencies in a
CAD of R2. [3] described how this could be used to produce topological correct plots of algebraic curves,
and in fact most of the CAD plots from the tutorial were produced by Qepcad b using adjacency infor-
mation. [29] gives algorithms for computing adjacencies in CADs of R3 and R4. As far as I know, neither
has been implemented, which is a shame, since this would be quite useful.

Adjacency information allows you to perform some interesting operations on semi-algebraic sets quite
easily — constructing the closure of a set, for instance. To determine boundedness, in general, you need
adjacency information as well. Things like computing the number of connected components also become
easy.

5 Optimizing CAD and using it effectively

There are a variety of things one can do to solve problems more effectively with CAD. Here are a few.

5.1 Constructing less than the full CAD

In [16], Hong and Collins introduced the notion of a partial CAD, which simply means that over some cells
in induced CADs of lower dimension, we may not bother to construct stacks (lift). If, for example, you’re
trying to construct a CAD representation of the set x1 > 0 ∧ x2 > 0 ∧ x2

3 + x2
2 + x2

1 = 1, there is no need
to lift over cells in R1 with negative sample points, or cells in R2 with sample points whose x2-coordinate
is negative. Though the full CAD of R3 is not constructed, we are still able to represent the original set.
In doing this, we save time and space by not constructing all the cells in the CAD of R3 defined by the
projection factor set.

As partial CAD is presented in [16], there are two ways of avoiding stack constructions. First, for a cell
in an induced CAD of lower dimension, you can partially evaluate the input formula, whether quantified
or not, at the sample point for that cell. This partial assignment of values to variables may already yield
true or false, in which case you don’t need to lift over that cell. Second, suppose that xk is existentially
quantified. As soon as any cell in the stack above a cell c in (k− 1)-space is assigned the value true, c can
be assigned the value true and no further lifting over cells in the stack is required. A similar observation
holds for universal quantification.

A very important special case of partial CAD is that of only lifting over full dimensional cells — i.e. never
lifting over section cells. Not only do you construct fewer cells, but you never need to do any computations
with algebraic numbers ([24] notes this) and the Brown-McCallum projection is always valid ([32] notes
this). The previous two references look at problems for which exact answers can be obtained from the full
dimensional cells alone. In other situations the full dimensional cells might not be enough to get an exact
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answer, but it may be close enough. After all, any error can only occur in the cells of lower dimension and
these constitute a measure zero subset of the space of variables. If variables are physical quantities, for
example, lower dimensional subsets are unrealizable, so we lose nothing by ignoring them. Seidl and Sturm
[31] take a slightly different approach with their generic CAD. Instead of never lifting over any section
cells, they identify certain projection factors whose non-vanishing would allow them to reduce the size of
the projection factor set. Cells that are sections of these chosen projection factors are never lifted over.
Essentially they get the advantage of the simplified projection but not of eliminating algebraic number
computations. However, they are then able to give an answer that is exact under the assumption that the
chosen projection factors are non-zero.

5.2 Variable Ordering

The variable ordering you use can have a huge impact on CAD construction. In general, variables that
appear in few terms and to low degree in the input polynomials ought to be eliminated first. However,
the problem may constrain the ordering you use. For example, quantified variables in Q.E. problems
must be eliminated before free variables, and while variables within a block of identical quantifiers can be
rearranged, the order of quantifier blocks cannot.

With n variables, there are n! possible variable orders, so trying to evaluate each of them is difficult ...
especially if “evaluating” means going through some or all of CAD construction! [19, 18] presents a greedy
algorithm for choosing a good projection order. It basically tries using each variable for the first projection
and whichever gives the “smallest” projection is chosen as the first variable to be eliminated. The process
then repeats with the remaining variables. The article derives a good metric for projection factor sets.
While obviously much less sophisticated, the following simple heuristic works reasonably well and can be
done by hand quite easily:

1. Descending order by degree of variable, breaking ties with

2. Descending order by highest total-degree term in which the variable appears, breaking ties with

3. Descending order by number of terms containing the variable

Note that my convention is that the last variable in the order is the first to be eliminated.

5.3 Preparing Input

CAD makes a poor “black box” for many problems, since it doesn’t take advantage of special things that
may appear in the input formula. For example, if x = 2y+1 is conjoined with the input formula one should
substitute 2y +1 for x rather than forcing CAD construction to commence with one more polynomial and
one more variable than needed. These kind of simple substitutions should be done by hand or by some
other program before CAD is used.

Breaking up input into smaller pieces, when possible, is also important. For example, instead of solving
∃x[F (x)∨G(x)] with one CAD computation, you are better off solving it with two as ∃x[F (x)]∨∃x[G(x)]
unless F and G contain the same polynomials. Even then splitting may be good, because you may be
able to optimize each of the two smaller problems. This kind of splitting is even a good idea if the
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results of the quantifier elimination are to be combined and subjected to more quantifier elimination.
For example, instead of solving ∀y∃x[F (x, y) ∨ G(x, y)] as a single application of CAD, it is typically
better to perform Q.E. on ∃x[F (x, y)] and ∃x[G(x, y)] separately and take their results, call them F ′(y)
and G′(y), and perform Q.E. on the combined formula ∀y[F ′(y) ∨ G′(y)]. Note, however, that doing
this generally requires that F ′ and G′ are in one of the extended languages in order to be efficient! The
“extra” polynomials one may need to add in order to produce Tarski formulas would slow down the second
quantifier elimination step.

[11] describes how the divide and conquer technique of splitting input into small pieces, solving and
combining results can be used to simplify very large formulas using CAD. This is implemented in the
program Slfq (www.cs.usna.edu/~qepcad/SLFQ). The same article proves that converting non-prenex
formulas to prenex form in order to apply CAD is less efficient than solving the non-prenex parts separately
and substituting the results back into the original formula.

5.4 Make use of the special properties of CAD

A CAD representing a semi-algebraic set tells you a lot about the set and about the polynomials in the
projection factor set. Quantifier elimination doesn’t exploit all of this extra information, so it is often
better not to phrase a problem as a Q.E. problem and then try to apply CAD to solve the Q.E. problem,
but rather to apply CAD directly to the problem in a way that exploits all that extra information. Here’s a
quick example: Suppose you want to characterize all the monic quartic polynomials that have four distinct
positive real roots. Phrasing this as a Q.E. problem requires different variables for each of the four roots
you’re looking for. This is wasteful! Instead, you can construct a CAD for p = x4 +ax3 + bx2 + cx+d and
q = x with x as the first variable to be eliminated, and from this CAD you can deduce all that you need.
Over each cell in the CAD of R4 you can count the distinct positive zeros of p and assign truth values
accordingly. This CAD defines the set of values for a, b, c, d for which p has four distinct, real, positive
roots. Maybe the CAD alone is enough to answer your questions, otherwise you might construct a defining
Tarski from it. In any event, by making use of CAD directly, we’ve saved ourselves three variables.

One may also try to optimize CAD construction to specific classes of problems. As previously discussed,
if the problem allows you to avoid lifting over cells with algebraic coordinates you can save a lot of time.
[9] describes how projection may be simplified for Q.E. problems for which it is known a priori that the
set to be projected is bounded between continuous functions. [1] describes a version of Q.E. by CAD
that is optimized to solve semidefinite programming problems. The modified CAD takes advantage of
special properties of this problem in many different ways, in projection, lifting, and even in assigning
truth values to cells. They do not construct a CAD from the set of polynomials in the formula defining
the set of interest, rather than construct a simpler CAD that they know will suffice to represent the set
(i.e. each cell is either entirely in or entirely out of the set) and simply evaluate the defining formula at
sample points to assign truth values. This technique, which applies in other circumstances as well, takes
advantage of the fact that the projection factor set for a CAD defining a set may often be smaller than
a projection factor set containing the polynomials in a defining formula, which is essentially the reverse
of the previously mentioned problem of adding polynomials to a projection factor set in order to make a
CAD projection definable.
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5.5 Equational constraints

In his “20 Years of Progress” paper [15], Collins proposed the use of equational constraints in projection
and lifting. Recall that a previous section discussed taking advantage of inputs in which an equation of the
form xk = f(x1, . . . , xk−1, xk+1, . . . xn), where f is a polynomial or a rational function with non-vanishing
denominator, is conjoined with the rest of the input formula by doing a simple substitution to eliminate
xk. The equational constraints optimization is to take advantage of equations p = 0 that are conjoined
with the input formula (i.e. equational constraints), even when we can’t solve for any of the variables.
The basic idea is that only the constraint polynomial needs to be delineable, the other projection factors
merely need to be sign-invariant within the sections of the constraint polynomial. This insight led Collins
to propose a reduced projection and a lifting scheme that avoided raising stacks over many cells.

Unfortunately, a rigorous realization of this scheme has proven to be difficult. McCallum has made some
progress in this [26, 27] area, but it is tricky to apply equational constraints in a way that is guaranteed
to be correct. In fact, the second of McCallum’s papers on the subject contains a subtle error. Making
effective use of equational constraints would be a big improvement in CAD-based methods for a common
class of problems, i.e. those with equational constraints.

6 Case Studies

This section will look at many problems that can be solved by CAD. Some apply CAD in a straightforward
way to do Q.E. or formula simplification, but the others demonstrate this idea of specializing CAD or
optimizing it for certain kinds of problems.

6.1 A problem from epidemiology

Andreas Weber and his colleagues have been working on applying symbolic tools to investigations of
epidemiological models. The following example will appear in a paper to be given at CASC 2004. We
consider the SEIT model, used to model tuberculosis in [34]. It uses a system of ODEs to model the
movement of disease through a population. The model contains many parameters, and the question is
this: For what parameters is there an endemic equilibrium, i.e. an equilibrium that doesn’t have the
disease dying out? Here’s the model:

S′ = d− dS − β1IS

E′ = β1IS + β2IT − (d + ν + r1)E + (1− q)r2I

I ′ = νE − (d + r2)I
T ′ = −dT + r1E + qr2I − β2TI

S susceptibles
E exposed (not yet infectious)
I infectious
T under treatment

β1, β2 transmission parameters for S and T
d birth and death rate (assumed equal)
ν rate of change from exposed to infectious
r1, r2 treatment rates for E and I
q fraction of infectious successfully treated

An endemic equilibrium satisfies 0 = S′, E′, I ′, T ′ and 0 < S, E, I, T . So, we want to know for which
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parameter values there is a solution to

0 = d− dS − β1IS

0 = β1IS + β2IT − (d + ν + r1)E + (1− q)r2I

0 = νE − (d + r2)I
0 = −dT + r1E + qr2I − β2TI

satisfying 0 < S,E, I, T , assuming all parameters positive. This can be phrased as the quantifier elimina-
tion problem:

∃S, E, I, T [system is satisfied ∧ 0 < S,E, I, T ∧ 0 < d, s, β1, β2, ν, q, r1, r2]

However, constructing a CAD for this takes way too long (a nice theory of equational constraints to apply
might ameliorate this!). But it’s easy to solve for E,I and T in terms of S using three of the equations.
Substituting the results into the fourth gives P = 0, where

P =− νS2β2
1 + β1νS2β2 + dβ1Sr2 − d2β2S + d2β1S + β1Sr1r2 − dνSβ2

+ νβ1Sqr2 − dβ2r2S + dνSβ1 − β1Sνβ2 + β1Sr1d + β2d
2 + νβ2d + β2dr2

The condition 0 < S, E, I, T is easily seen to be equivalent to 0 < S < 1. So there is an endemic
equilibrium for any assignment of positive parameter values for which there is a a real value S such that
P (S) = 0 ∧ 0 < S < 1, i.e.

∃S [P (S) = 0 ∧ 0 < S < 1]

assuming that all parameters are positive. Qepcad b is able to construct a CAD for this quickly, but the
solution formula is rather large — it filled up an entire slide in the tutorial, and that at a small font size.
Certainly the solution is not very illuminating. However, there are some more conditions that the model
really assumes the parameters satisfy, such as β1 > β2. When this condition is added to the assumptions,
the solution formula is much nicer: νβ1 − r1r2 − dr2 − νqr2 − dr1 − d2 − νd > 0. This example shows
several important things:

• the importance of preparing input (recall the substitutions made to eliminate E, I, and T ),

• the importance of variable order (variables orderturns out to be crucial for this problem, in the
computations the earlier simple heuristic was used),

• that you can only get a simple defining formula if the set your Q.E. problem describes has a simple
defining formula.

• that sometimes constructing CADs of high dimension (8 variables for this problem) is feasible.

6.2 The external trisector problem

Consider the triangle ABC from Figure 1. We define the external trisector of B with respect to A as the
segment connecting vertex B with the intersection of the ray from A through C and the external trisector
of φ shown in the figure. Of course the external trisector of B with respect to A does not always exist, and
the problem we consider is to characterize in terms of the side lengths a, b and c the triangles for which
it does exist.1 We can do this quite nicely with formula simplification.

1This question arose from work with George Nakos.
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A

B C
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a

b

φ θ

(π−φ)/3

Figure 1: The external trisector of B with respect to A.

It is clear from the picture that the external trisector of B with respect to A exists if and only if (π−φ)/3 <
θ. However, we’d like a characterization in terms of side lengths not angles. We derive an equivalent
statement to (π − φ)/3 < θ in terms of a, b and c using little more than the law of cosines:

Case 1: Assuming θ ≤ π/3 we derive the following:

π − φ < 3θ, note that both sides are in [0, π]
− cos (π − φ) < − cos (3θ)

cos φ < − cos (3θ)
cos φ < −4 cos3 θ + 3 cos θ

a2+c2−b2

2ac < −4
(

a2+b2−c2

2ab

)3

+ 3
(

a2+b2−c2

2ab

)
a2b3

(
a2 + c2 − b2

)
< −c

(
a2 + b2 − c2

)3 + 3a2b2c
(
a2 + b2 − c2

)
Case 2: Assuming θ > π/3 we see immediately that π − φ < 3θ holds.

We are in Case 1 exactly when

θ ≤ π/3, note that both sides are in [0, π]
cos θ ≥ cos π

3
a2+b2−c2

2ab ≥ 1
2

a2 + b2 − c2 ≥ ab,

and so are in Case 2 when a2 + b2 − c2 < ab. Putting it all together, the external trisector of B with
respect to A exists if and only if the side lengths a, b, c satisfy

a2 + b2 − c2 ≥ ab| {z }
Case 1

∧ a2b3
`
a2 + c2 − b2

´
< −c

`
a2 + b2 − c2

´3
+ 3a2b2c

`
a2 + b2 − c2

´| {z }
Derived condition for Case 1

∨ a2 + b2 − c2 < ab| {z }
Case 2

This formula is a characterization of the existence of the external trisector in terms of the side lengths,
but not a very nice characterization. We can use CAD (through Qepcad b, in this case) to simplify this
formula under the assumption that a, b and c are actually side lengths of a non-degenerate triangle, i.e.
that all three are positive and satisfy the triangle inequalities. These assumptions are implicit in the law
of cosines. The resulting characterization, c2 + bc− a2 > 0, is quite a bit simpler, gives more insight, and
provides better input for further computation.
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condition condition with assumptions simplified CAD

Figure 2: Simplifying the condition for the existence of the external trisector of A w.r.t. B.

The condition we derived actually defines a complicated set. The assumptions, however, carve out a simple
piece of that set, which is why we ultimately arrive at a simple equivalent formula. A key component of
deriving this simple characterization is CAD simplification, which allows us to discard projection factors
that are not relevant to defining the set. Figure 2 shows this process. By normalizing side a to be one, we
can view triangle abc as a point in the bc-plane. The figure shows the CAD of of the ab-plane representing
the condition, a CAD representing the condition with the assumptions, and a simplified CAD representing
the condition and the assumptions.

6.3 Sign-stack sequences

The sign stack sequence problem comes from the thesis ”Signed Sequences and Rolle’s Restrictions: Why
Not All Real Differentiable Functions and Polynomials Satisfying Rolle’s Theorem Are Constructible”, by
Bruce Anderson [2].

If f is a monic nth degree polynomial in x, the “sign stack sequence” for f is a sequence of (n + 1)-tuples.
Each tuple represents the signs of (f, f ′, f ′′, .., f (n)) at a point. The sequence gives all the the distinct
sign-tuples taken by f as x goes from −∞ to +∞, excluding points at which f or any of its derivatives
are zero. We’re only interested in the case that f is generic, meaning that there are no pairwise common
zeros amongst f and its derivatives. There are some clear restrictions on the sign-stack sequence for f :

1. monic implies: The rightmost entry is always +, the first sign-stack is alternating +’s and −’s, and
the last sign-stack is all +’s.

2. generic implies: Consecutive sign-stacks differ in only one entry.

3. Rolle’s theorem implies: From one sign-sequence to the next, an entry may only be changed to equal
the entry to its right.

A sequence satisfying these requirements is called legal. The most fundamental question in Anderson’s
thesis is this: “Are there legal sign-stack sequences that are not realized by any polynomial?”
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Anderson’s thesis considers this problem for polynomials up to degree 5. He enumerates all sign-stack
sequences and concludes that some legal sequences are in fact not realizable by 4th and 5th degree poly-
nomials. This enumeration was done in a time consuming ad hoc way, and in fact seems to have some
errors for the 5th degree case. However, as discussed in the tutorial, a CAD for polynomial p(a1, . . . , an, x)
and all of its derivatives, where x is the first variable eliminated, actually gives you all realizable sign-
stack sequences. Moreover, all generic sequences occur in full dimensional cells, so we can in fact answer
Anderson’s question by constructing the full dimensional cells alone.

I’ve posted a tweaked version of Qepcad b called “Rolle” at www.cs.usna.edu/~qepcad/ROLLE/. It does
a depth-first traversal of the CAD data structure for p and its derivatives, printing out sign-stack sequences
as they are encountered. It completely solves this problem up to and including degree 5.

Anderson’s thesis mentions in an appendix that this problem could be solved through quantifier elimi-
nation, and even mentions CAD-based Q.E. explicitly. However, it states (correctly) that this approach
would be utterly infeasible. That’s because Q.E. is not a natural language for specifying the problem.
Many variables and polynomials are introduced that are artifacts of the language of quantified Tarski
formulas, not of the problem. What we did here was to apply CAD directly to the problem, to take ad-
vantage of all the information contained in a CAD data structure, and to optimize CAD for this particular
application.

7 Conclusion

I strongly urge people who are faced with a problem to solve and who contemplate using CAD to solve
it to consider CAD in this light — as a tool to be adapted, not a black box. Adapt and specialize CAD
to the problem at hand. I think that a lot of interesting research and a lot of successful applications of
computer algebra could result. I have endeavored in this tutorial to give the background and intuituion
necessary to see these opportunities, and in this handout to give the references needed to follow through
with proofs and algorithms. If you have questions about implementation, which was really beyond the
scope of the tutorial, please feel free to contact me and I’ll do my best.
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