
CADs More Formally

• There are three basic operations for CAD: Projection, Stack Construction,
and Solution Formula Construction.

• There are other operations as well, like the truth propagation we used for
quantifier elimination, CAD simplification, and adjacency computations.

• This section focuses on the three basic operations.
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Definition of cylindrical

• Definition: A decomposition of Rn into finitely many connected regions
is cylindrical if for any two partition regions a and b and for any k, where
0 < k < n, the projections onto Rk of a and b are either identical or disjoint.
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Cylindrically arranged sets
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Definition of CAD

• Definition: A decomposition of Rn into finitely many connected regions
is cylindrical if for any two partition regions a and b and for any k, where
0 < k < n, the projections onto Rk of a and b are either identical or disjoint.

• Definition: A Cylindrical Algebraic Decomposition is cylindrical decom-
position of Rn into semi-algebraic sets.

• Definition: A set of irreducible polynomials is a projection factor set if
the natural algebraic decomposition it defines is a CAD.
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How to make a decomposition cylindrical
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Making natural algebraic decompositions cylindrical

In the pictures below, the “pancakes” are zero sets of polynomials.

cylindrical over region not cylindrical over region cylindrical over refined regions
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Delineability

Let S be a connected subset of Rk−1 and let f be a continuous real-valued func-
tion on S, and let p be a k-level polynomial that is not nullified (i.e. identically
zero) anywhere in S.

• If p(x, f (x)) = 0 for all x ∈ S, the graph of f over S is a section of p.

• If the zero set of p over S consists of finitely many disjoint sections, p is said
to be delineable over S.

• A set of k-level polynomials is delineable over S if each polynomial is either
nullified or delineable over S and if sections of any two elements of the set
are either identical or disjoint.
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Delineable or Not Delineable!

delineable over region
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Delineable or Not Delineable!

delineable over region not delineable over region delineable over refined regions

Punchline: If a set of polynomials is delineable over region S, the natural
algebraic decomposition of S × R they define is cylindrical.
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Delineability and CADs

Let P ⊂ R[x1, . . . , xk] be a projection factor set.

• If c is a cell in the induced CAD of (k − 1)-space, the k-level projection
factors are delineable over c.

• If A is a set of irreducible (k + 1)-level polynomials that are delineable over
each cell of the CAD defined by P , A ∪ P is a projection factor set.
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Delineability and the Rolle’s Theorem Problem
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Recall ...

Let P ⊂ R[x1, . . . , xk] be a projection factor set.

• If c is a cell in the induced CAD of (k − 1)-space, the k-level projection
factors are delineable over c.

• If A is a set of irreducible (k + 1)-level polynomials that are
delineable over each cell of the CAD defined by P , A ∪ P is a
projection factor set.
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Projection Operator

Let A be a set of irreducible polynomials in x1, . . . , xn, and let Ak denote the
k-level elements of A.

Goal: Construct a projection factor set that contains A.

Define function P such that P (An) ⊂ R[x1, . . . , xn−1] and any projection factor
set Q containing the irreducible factors of P (An) defines a CAD over whose
cells An is delineable. I.e. Q ∪ An is a projection factor set.

The k-level problem “construct a projection factor set containing A” becomes
the (k − 1)-level problem “construct a projection factor set containing (A −
Ak) ∪ P (Ak)”.

The function P is called a projection operator.
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Projection Operator Overview

• There are many projection operators:

– Collins’ projection operator (the original)
– Hong’s projection operator (improves on Collins’)
– McCallum’s projection operator
– Brown-McCallum projection operator (improves McCallum’s)
– “special purpose” projection operators: Collins-McCallum equational

constraints, Seidl-Sturm generic CAD, Strzeboński solving strict systems,
etc.

• Projection operators that produce small sets are best
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Brown-McCallum Projection

• The following is almost a projection operator:

P (Ak) =
⋃

p∈Ak

{discxk
(p), ldcfxk

(p)} ∪
⋃

p,q∈Ak

resxk
(p, q)

This is the Brown-McCallum projection.

• The Brown-McCallum projection is smallest, but may fail to produce a CAD
such Ak is delineable over each cell. Details about when and why will be left
’til later.
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Projection Example 2D

A2 = {p = 2y2 − x2(2x + 3), q = 2(x + 1)y − 1}
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Projection Example 3D

∃z
[
x2 + y2 + z2 − 1 < 0 ∧ 2(x + y)z − 1 > 0

]
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Lifting (a.k.a. Stack Construction)

A: initial
polynomials

Projection−−−−−−−→

P : projection
factor set,
A ⊆ P

Lifting−−−−−→

D: data structure
for the CAD de-
fined by P

The lifting or stack construction phase produces an explicit data structure
representing the CAD defined implicitly by the projection factor set.

• The data structure represents every cell from the induced CADs of
R1, R2, . . .

• A cell in the induced CAD of k-space is represented by a sample point from
that cell and a list of the cells from the induced CAD of (k + 1)-space that
are stacked over it.
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Lifting Example
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The lifting (stack construction) process

• Let c be a k-level cell with sample point α.

• Let Pk+1 be the projection factors of level k + 1.

• To lift over c (i.e. construct the children of c) we

1. construct P k+1 = {f (α, xk+1) | f ∈ Pk+1}
2. Compute β1 < · · · < βs, the roots of elements of P k+1

3. Choose rationals r1, . . . , rs+1 s.t. r1 < β1 < r2 < · · · < rs < βs < rs+1

4. Set c’s children to cells with sample points (α, r1), (α, β1), . . . , (α, rs+1)

C. W. Brown, U.S. Naval Academy 20



Lifting Example Detail

• Let c be the 1-level section cell with sample point
√

1/2
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2
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√
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• Children of c are (
√

1/2,−1), (
√

1/2,−
√

1/2), (
√

1/2,−1/4), (
√

1/2, 0),

(
√

1/2, 1/4), (
√

1/2, β), (
√

1/2, 21/32), (
√

1/2,
√

1/2), (
√

1/2, 1)
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Lifting Issues

• Typically, more time is spent lifting than doing anything else.

• One must isolate roots of univariate polynomials, often with algebraic num-
ber coefficients.

• Algebraic number representation and algorithms are crucial.

• Root isolation algorithm is crucial.

• Use of validated floating-point computation can make a huge difference ...
but are a real pain in the kneck to implement!
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Solution Formula Construction

Given set S represented by a CAD, construct a Tarski formula defining S.

• Construct formula from projection factors (CAD contains complete infor-
mation about their signs).

• “Simple” formulas are desirable!

• Hong showed how to reduce simple formula construction to a combinatorial
optimization problem.

• CAD’s ability to provide simple solution formulas is unique.

• Some sets don’t have simple defining formulas!

• Note: Allowing the user to state “assumptions” is nice.
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Solution Formula Construction Example
cell P1,1 P1,2 P2,1 T/F

1, 1 − − + F

2, 1 0 − + F

2, 2 0 − 0 T

2, 3 0 − + F

3, 1 + − + F

3, 2 + − 0 F

3, 3 + − − T

3, 4 + − 0 F

3, 5 + − + F

4, 1 + 0 + F

4, 2 + 0 0 F

4, 3 + 0 + F

5, 1 + + + F
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Solution Formula Construction Problem

∃y[x2 + y2 − 1 < 0 ∧ x− y < 0]

cell x + 1 x− 1 x2 − 2 T/F
1 − − + F
2 0 − + F
3 + − + T
4 + − 0 T
5 + − − T
6 + − 0 F
7 + − + F
8 + 0 + F
9 + + + F

C. W. Brown, U.S. Naval Academy 25



Projection Definability

• Let C be a CAD (with truth values) representing a set S.

• When there is a Tarski formula defining S in which only elements of C’s
projection factor set appear, C is said to be projection definable.

• When a CAD is not projection definable, we can

1. add extra projection factors
2. extend the language of Tarski formulas

• The projection definability problem tells us that in some sense CADs are
more efficient representations of semi-algebraic sets than Tarski formulas.

C. W. Brown, U.S. Naval Academy 26
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