
Using CAD Effectively

• Limitations of CAD

• Implementations of CAD

• Optimizing CAD for specific problems or problem classes
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Limitations

• Complexity: Doubly exponential in the number of variables. Constructing a
CAD via Collins’ original algorithm takes time (2n)2

2r+8
m2r+6

d3 where r =
# of variables, n = max degree of input in any variable, m = # of input
polynomials, d = max bitlength of coefficients.

• Practical Observations:

– random input is very bad!
– non-random input is often not so bad, since the polynomials encountered

in projection tend to factor a lot
– specializing projection and lifting to specific input types often ameliorates

the high completxity
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Implementations

• QEPCAD — written mostly by Hoon Hong, but with contributions by many
others, including George Collins.

• QEPCAD B — based on QEPCAD but with many extensions and improve-
ments.

• RLCAD — due to Andreas Seidl & Thomas Sturm, part of the Redlog
system.

• Mathematica’s CAD — written by Adam Strzeboñski.
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Using CAD to Solve Problems Efficiently

1. Variable Ordering

2. Prepare input - break into pieces, do trivial eliminations by hand, etc.

3. Partial CAD

4. Special case of Partial CAD: full-dimensional cells only

5. Go beyond ∃ and ∀: Use the structure of CADs

C. W. Brown, U.S. Naval Academy 4



Variable Ordering

The variable ordering you use can make a big difference!

Project {y2 − x + 1, y3 − y + x} with order x ≺ y and get ...
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Variable Ordering

The variable ordering you use can make a big difference!

Project {y2 − x + 1, y3 − y + x} with order x ≺ y and get ...

{x− 1, 27x2 − 4, x3 − 6x2 + 8x− 4}

Project {y2 − x + 1, y3 − y + x} with order y ≺ x and get ...

{y3 + y2 − y + 1}
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More on Variable Orderings

• The problem may constrain orderings.

• Example of a simple heuristic:

1. Descending order by degree of variable, breaking ties with
2. Descending order by highest total-degree term in which the variable ap-

pears, breaking ties with
3. Descending order by number of terms containing the variable

• The technical report “Efficient Projection Orders for CAD”, Dolzmann, Seidl
& Sturm, examines problem and proposes a greedy algorithm for construct-
ing good projection orders.
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Prepare Input: Make Trivial Substitutions

Let C1 and C2 be circles whose centers are 10 units apart and whose radii are 1
and 3. Find, with proof, the locus of all points M for which there exist points
X on C1 and Y on C2 such that M is the midpoint of the line segment XY .
—Recent Putnam Question

∃x1, y1, x2, y2[x
2
1 + y2

1 − 1 = 0 ∧ (x2 − 10)2 + y2
2 − 9 = 0 ∧ x = x1+x2

2 ∧ y = y1+y2
2 ]
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2
1 + y2

1 − 1 = 0 ∧ (x2 − 10)2 + y2
2 − 9 = 0 ∧ x = x1+x2

2 ∧ y = y1+y2
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2 − 9 = 0].
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Prepare Input: Break Problems into Pieces

∃c[ab = b + 1− c2 ∧ 2(a + b)c2 − b2 + c− 1 = 0 ∧ a2 + b2 + c2 ≤ 4]
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Prepare Input: Break Problems into Pieces

∃c[ab = b + 1− c2 ∧ 2(a + b)c2 − b2 + c− 1 = 0 ∧ a2 + b2 + c2 ≤ 4]

Solving for a and subsituting requires distinguishing cases b 6= 0 and b = 0:

∃c

 b 6= 0 ∧ 2(b+1−c2

b + b)c2 − b2 + c− 1 = 0 ∧ (b+1−c2

b )2 + b2 + c2 ≤ 4
∨

b = 0 ∧ 0 = 1− c2 ∧ 2ac2 + c− 1 = 0 ∧ a2 + c2 ≤ 4


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Prepare Input: Break Problems into Pieces

∃c[ab = b + 1− c2 ∧ 2(a + b)c2 − b2 + c− 1 = 0 ∧ a2 + b2 + c2 ≤ 4]

Solving for a and subsituting requires distinguishing cases b 6= 0 and b = 0:

∃c

 b 6= 0 ∧ 2(b+1−c2

b + b)c2 − b2 + c− 1 = 0 ∧ (b+1−c2

b )2 + b2 + c2 ≤ 4
∨

b = 0 ∧ 0 = 1− c2 ∧ 2ac2 + c− 1 = 0 ∧ a2 + c2 ≤ 4


Instead of solving this problem with CAD directly, split it into:

∃c
[
b 6= 0 ∧ 2(b+1−c2

b + b)c2 − b2 + c− 1 = 0 ∧ (b+1−c2

b )2 + b2 + c2 ≤ 4
]

∨
b = 0 ∧ ∃c

[
0 = 1− c2 ∧ 2ac2 + c− 1 = 0 ∧ a2 + c2 ≤ 4

]
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Partial CAD

• Collins & Hong introduced Partial CAD.

• Partial CAD is basically a lazy approach to lifting.
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Partial CAD & Quantifier Elimination

• A CAD data-structure is like a tree. Propagating ∃ and ∀ is like AI search
in that tree. We can consider different search strategies too.

Example: ∃y∀z . . .
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Partial CAD: Full dimensional cells

• Special case of partial CAD: only lift over full dimensional cells. Particularly
desirable because:

1. No algebraic number computations.
2. Projection is simpler.

Huge reduction in computing time in most cases! Very easy to implement!

• McCallum and Strzebonski both applied this idea to solving systems of strict
polynomial inequalities, where the solution set is open.

• Could consider new quantifiers “for all but finitely many” and “exists in-
finitely many” that can be decided based only on truth values of full dimen-
sional cells.
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Full dimensional cells example

• ”An effective decision method for semidefinite polynomials”, Guangxing &
Xiaoning, JSC 2004.
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Full dimensional cells example

• ”An effective decision method for semidefinite polynomials”, Guangxing &
Xiaoning, JSC 2004. Their Ex. 4 asks whether the following polynomial is
semi-definite:

w6 +2z2w3 +x4 +y4 +z4 +2x2w+2x2z +3x2 +w2 +2zw+z2 +2z +2w+1
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Full dimensional cells example

• ”An effective decision method for semidefinite polynomials”, Guangxing &
Xiaoning, JSC 2004. Their Ex. 4 asks whether the following polynomial is
semi-definite:

w6 +2z2w3 +x4 +y4 +z4 +2x2w+2x2z +3x2 +w2 +2zw+z2 +2z +2w+1

• p(x1, . . . , xk) is not positive semi-definite if and only if p < 0 at some point
α, in which case p < 0 for some neighborhood around α.

• Consider a CAD for p. p is not positive semi-definite if and only if p < 0 in
some full dimensional cell.

• Qepcad b decides Ex. 4 is semi-definite in 0.3 seconds (on this laptop)
when only full-dimensional cells are considered. (order w ≺ z ≺ x ≺ y)

C. W. Brown, U.S. Naval Academy 12



Full dimensional cells: Part II

• Approximate : Perform Q.E. or formula simplification only for full dimen-
sional cells in free variable space. Answer correct up to some measure zero
subset of parameter space — i.e. the lower dimensional cells. For parameters
with physical meaning this is good enough.

• Generic Q.E. (Seidl & Sturm): Lift over all cells except sections of certain
projection factors.

– Choose projection factors whose possible vanishing requires us to increase
projection size.

– Don’t lift over sections of chosen factors so projection size kept smaller.
– Output solution formula with formula stating that the chosen projection

factors are assumed not to be zero (the theory).
– Answer is exact given the theory.
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Use CAD Properties in Novel Ways

• CADs tell you lots about the projection factors. Exploit this! Adapt CAD
to new problems rather than try to phrase things as QE problems.

• Example: Characterize the monic quartic polynomials with all four roots
real and distinct.

– As Q.E. problem needs 4 free and 4 bound variables.
– Use CAD of x4 + ax3 + bx2 + cx + d, with order a ≺ b ≺ c ≺ d ≺ x
– Over each cell in R4 count roots & assign truth values.
– This solution needs only 4 free and 1 bound variable.

• Anai & Parrilo, “Convex Quantifier Elimination for Semi-Definite Pro-
gramming” is a nice example of specializing CAD to a particular problem.
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