Constructing Cylindrical Algebraic
Decompositions of the Plane Quickly

Christopher W. Brown

January 14, 2002

Abstract

This paper presents a method for speeding up the construction of
Cylindrical Algebraic Decompositions (CADs) of 2-dimensional space, in
which exact computations over the highest degree algebraic extensions are
replaced with numerical calculations. The method uses information gath-
ered during the CAD construction process to produce guaranteed correct
results from these approximate computations. As a result, a CAD for a
set of bivariate polynomials with irreducible discriminants and resultants
can be constructed without any computations over algebraic extensions.

The method has been implemented, and the paper reports the results
of many experimental trials. These results show not only that the new
method speeds up CAD construction for problems that are within the
reach of the old method, but also that many 2D CAD construction prob-
lems that cannot be performed in a reasonable amount of time with the
old method can be completed quite quickly with these improvements.

1 Introduction

A set A of polynomials in 2 and y partitions R? into points, curve segments, and
open regions in a natural way — namely into the maximal connected regions in
which elements of A have invariant sign. Cylindrical Algebraic Decomposition
(CAD) [Col75, CH91], especially with the addition of “adjacency computation”
[ACMB84b], is a powerful tool for analyzing such partitions. It can be used
to determine the satisfiability of constraints involving elements of A and to
simplify large boolean combinations of such constraints, it can provide complete
topological descriptions of any of the regions in the partition — including the
real algebraic curves defined by the elements of A, and it can be used to produce
reliable plots of any region within the partition.

The most computationally expensive part of 2-dimensional CAD construction
is lifting (also called stack construction). Lifting over a point a € R involves
analyzing the arrangement of the real roots of the set of univariate polynomials
in y that results from substituting a for z in each of the elements of A. The a’s
over which we lift are potential z-coordinates of singular points, vertical tangen-
cies, intersection points and vertical asymptotes, which are typically algebraic
numbers — the roots of discriminants, resultants, and leading coefficients of the
elements of A. The CAD algorithm lifts over « by:

1. substituting « into the elements of A, which yields a set A" C Q(a)[y],

2. computing B, a squarefree basis for A’, which involves computing gecd’s of
polynomials with coefficients in Q(«), and

3. computing an ordered list of isolating intervals for the real roots of the
elements of B.

The exact substitution and squarefree basis computation for the algebraic num-
ber « is quite expensive, both theoretically and in practice. This could also
have been said of the root isolation phase, but the use of the interval Descartes
method as described in [CJK] has dramatically sped-up this portion of the com-
putation, so that it is, in practice, negligible in comparison to substitution and
squarefree basis computation. In any event, these steps are most expensive
when the minimal polynomial of « is of high degree and has large coefficients,
which arises when one of the discriminants or resultants is irreducible, or has a
multiplicity-one factor that is exceptionally large.

This paper shows that in the cases that are especially bad for exact substitution
and squarefree basis computation, we can usually get the necessary information
about the roots of elements of A at * = «a without using exact substitution
or squarefree basis computation. This gives rise to an improved lifting method
for 2D CAD’s. The idea underlying this new method is that the elements of
A are actually very well-behaved over simple roots of resultants and discrimi-
nants, so that symbolic methods aren’t really needed to get exact information.
Moreover, the simple roots typically generate higher-degree extension fields,
so that the symbolic methods are slowest where they’re not needed! On the
other hand, higher-multiplicity roots of a discriminant may indicate singulari-
ties, and higher-multiplicity roots of a resultant may indicate a point of mutual
tangency between two curves, and these seem to require symbolic methods to
determine exact information. However, the higher-multiplicity roots typically
generate lower-degree extensions, so that symbolic methods are fastest where
they’re really needed!

The effect of the improved lifting method is that many stack constructions can
proceed without any exact substitutions or squarefree basis computations. For
some stack constructions this may not be possible, but in these cases we simply

fall back on the old lifting method. Experimental data reported in this paper
considers several different kinds of input polynomial sets, and speedup factors
resulting from the new lifting method range up into the thousands. There are
several ways in which the results of this paper are potentially important:

e Simplification of large boolean combinations of bivariate polynomial sign
conditions, as described in [Bro01], will be dramatically improved by the
addition of these methods. This problem is important if one is to make

effective use of, for example, the Redlog system for quantifier elimination
[DS96].

e It will be possible to analyze the topology of much larger degree real
algebraic curves using CAD and adjacency computation [ACM84b].

e These improvements make CAD-based methods for manipulating alge-
braic points and curves competitive with and perhaps superior to, for
example, the special purpose methods devised in [KCMKO00]. This may
make CAD an attractive alternative for exact computations in Computer-
Aided Design.

e The same ideas that are proposed in this paper for 2D CAD construction
may, perhaps, be applied to 3D CAD construction as well. There the
CAD algorithm starts to deal with towers of extensions, so in addition
to avoiding exact substitution and squarefree basis computations, we may
be able to avoid primitive element computations, and we may be able to
avoid very large algebraic extensions.

The remainder of this paper is organized as follows: Section 2 describes the
usual method of CAD construction in R?. Section 3 describes the improved lift-
ing method. Section 4 describes our test implementation of the improved lifting
method as part of the QEPCAD program for CAD construction and quantifier
elimination. Experimental data gathered from our test implementation is re-
ported in Section 5. And finally, Section 6 provides some conclusions and areas
for future work.

2 CADs of the plane

This section describes what a cylindrical algebraic decomposition of R? is, and
how one may be constructed. A detailed description may be found in [ACM84a).

2.1 Cylindrical Algebraic Decomposition

Any set P of polynomials in R[z,y] defines a natural algebraic decomposition of
R? into the maximal connected regions in which the elements of P have invariant
sign. If the sets comprising such a decomposition are also cylindrically arranged,
meaning that the projections of any pair of sets onto R! are either identical or
disjoint, then the natural algebraic decomposition defined by P is a cylindrical
algebraic decomposition. Such a set P is called a projection factor set.

It is useful to separate the elements of a projection factor set P into two sets, P,
which consists of all projection factors of degree 0 in y, and P», which consists
of all projection factors of positive degree in y. P; defines a natural algebraic
decomposition of R into open intervals and single points. This decomposition
is actually a CAD of R!, which we call the induced CAD of R'. The cells,
as the sets comprising a CAD are called, of the induced CAD are actually the
projections of cells from the CAD defined by P.

The projection factor set P provides an implicit representation of a CAD. The
lifting or stack construction process constructs an explicit representation — a
CAD data structure — from the set P. This proceeds in two steps: first we con-
struct an explicit representation of the cells from the induced CAD of 1-space,
then for each cell ¢ in the induced CAD we construct an explicit representation
of those cells from the CAD defined by P that project down onto ¢ (these cells
are stacked above ¢). Each cell is represented by a sample point, which is simply
a point from the cell, the signs of each of the projection factors in the cell and,
in the case of a cell from the induced CAD, a list of the cells that are stacked
above it.

To construct the induced CAD we compute an ordered list a; < az < ... < an,
of all real roots of elements of P;. We then chose rational points ry,...,r,41
such that 1 < oy < 1y < -+ < @, < rpy1- Finally, we construct the list
(c1,---,Cony1) of cells comprising the induced CAD, where r; is the sample
point of ¢1, ay is the sample point of cs, etc.

If ¢ is a cell from the induced CAD with sample point 3, we construct a list of
the cells stacked above ¢ by simply substituting = 8 in the elements of P
yielding a set P, C Q(3)[y], which we then treat as a projection factor set for
CAD of 1-space. Thus, we compute an ordered list a1 < as < ... < a,, of all
real roots of elements of P.. We then chose rational points r1, ..., 7,41 such that
rr <oy <ry<---<ap<rppr- Finally, we construct the list (c1,-..,cant1)
of cells, where (8, 71) is the sample point of ¢1, (8, 1) is the sample point of ¢z,
etc. Figure 1 illustrates the correspondence between the decomposition of the
plane and the data structure.

/_\ _
o
° ° g 3 8
3 < 3
—
J | Jt
° ° (1)). 2,). (&3). ka4)Vt

CAD of the plane CAD Data Structure

Figure 1: A CAD of the plane and the associated CAD data structure (minus
the sample points).

2.2 Projection

Let A be a given set of polynomials in Z[z,y]. Constructing a CAD for A means
first producing a projection factor set P that contains all irreducible factors of
A (the projection step), and then constructing a CAD data structure from P
(the lifting step). With the CAD data structure, many questions concerning the
elements of A are easily answered. For example, we can easily determine the
satisfiability of any boolean combination of sign conditions involving elements of
A — the cells of the CAD give all of the possible combinations of sign conditions
involving projection factors. Additionally, it is often important to know which
cells are adjacent to one another. This can be computed quite quickly for CAD’s
of R? using, for example, the method described in [ACM84b]. With adjacency
information, one may analyze the topology of sets defined by the elements of A,
which may be used to produce reliable plots [Arn83].

Let Ac be the set of all leading coefficients of elements of A, Ap be the set
of all discriminants eliminating y of elements of A, and Agr be the set of all
resultants eliminating y of pairs of elements of A. We define P, the projection
factor set constructed from A, as the set of all irreducible factors of the elements
of AUAcUAp U Ap.

Ut

2.3 Real root isolation and lifting

The most time consuming part of constructing CAD’s of R? is lifting over al-
gebraic sample points. Let a be an algebraic number with minimal polynomial
M. The current method of lifting over « is the following:

1. Substitute « into P», resulting in the set Pj.

2. Compute B, a squarefree basis for the elements of Py. This involves re-
peated ged calculations in the domain Q(a)[y], which are quite costly.

3. Compute an ordered list of non-overlapping isolating intervals for the real
roots of the elements of B.

The third step can be performed with a version of the coefficient sign variation
method (often called the Descartes method) [CAT76], for polynomials with alge-
braic number coefficients. However, it can usually be done much more quickly
with the interval Descartes method [JK97], which uses floating point numbers
and interval arithmetic. The interval Descartes method of polynomial real root
isolation embeds the given polynomial in an interval polynomial, i.e. each co-
efficient of the interval polynomial is a floating point interval containing the
associated coefficient of the given polynomial. Let p* be an interval polynomial
containing some polynomial p. Given p*, the interval Descartes method will
return either FFAIL, or a list of intervals that are isolating intervals for all the
real roots of any polynomial that may be embedded in p*. In particular, if
FAIL is not returned, the interval Descartes method returns a list of isolating
intervals for all real roots of p.

The interval Descartes method may fail for two basic reasons: overflow /underflow
in the floating point arithmetic, or an inability to determine the sign of a number
represented as an interval because that interval straddles zero. Higher floating
point precision will always address the first cause of failure, but not necessarily
the second. For example, if some non-squarefree polynomial is embeddable in
p*, then the algorithm can’t possibly return anything but FAIL. Otherwise, no
matter what intervals it returned, there would always have to be one interval
that contained one root for some polynomials embeddable in p*, and zero or
two roots for some others. In the execution of the interval Descartes method,
this manifests as an interval straddling zero.

The intriguing thing about the interval Descartes method is how often it doesn’t
return FAIL. Using it in place of the exact symbolic version of the Descartes
method often considerably reduces the time for root isolation in CAD construc-
tion.

3 Improved lifting over algebraic points

Let ¢ = {a} be a 1-point cell in the induced CAD of 1-space that is a zero
of some 1-level projection factor p(z). In projecting the initial set A, p(x)
may have come about in a variety of ways: it may be a factor of a leading
coefficient of an element of A, or a factor of a discriminant of an element of A,
or a factor of the resultant of two elements of A. In fact, it may have several
such derivations. Lifting is most expensive when p(x) is of high degree and has
large coefficients, which generally means p(z) is a multiplicity one factor of a
discriminant or resultant. After all, if p(z) is a multiplicity two factor, it is
already half the generic expected degree of the resultant or discriminant. In
fact, resultants and discriminants are generically irreducible, so that we expect
(in one possibly very flawed sense of the word “expect”) to only deal with
multiplicity one factors. This section will show that lifting over simple roots of
discriminants and resultants can typically be done quite quickly and without
having to resort to exact substitution and squarefree basis computation.

3.1 Lifting over simple roots of resultants

In this section we consider the case in which the only derivation of p is as a
multiplicity one factor of the resultant of two elements of A, call them P and
@. We will assume that we have already lifted over the sample points of ¢’s
neighbors, which we’ll call b and d, which is easily accomplished because both
cells have rational sample points. Because none of the discriminants or leading
coefficients of elements of A vanish anywhere in b U ¢ U d, the roots of each
individual element of A are non-intersecting, continuous functions over bUcUd.
Because none of the resultants of pairs of elements of A other than P and @
vanish anywhere in b U ¢ U d, the only possible intersections between sections
of different elements of A would be between sections of P and @, and those
intersections would have to occur over ¢. Finally, Theorem 1 shows that because
p(z) is a multiplicity one factor of res, (P, @), there is exactly one intersection
between sections of P and (), and it must be simple - i.e. a true intersection
and not a point of tangency.

By examining the roots of the elements of A over b’s sample point and d’s sample
point we can determine which sections of P and @ intersect, because the kth
section of P will be below the jth section of () in one stack and vice versa in
the other stack, as Figure 2 illustrates. Thus, we can isolate the roots of each
element of A over x = « using, for example, the interval Descartes method, and
use the order of cells in the neighboring stacks to assign these isolating intervals
to cells and determine which two roots of P and () are actually the same.

Figure 2: The order of sections of P and () immediately left and right of point
a tell us exactly how the roots are arranged over .

3.2 Lifting over simple roots of discriminants

In this section we consider the case in which the only derivation of p is as a
multiplicity-one factor of the discriminant of an element of A, call it Q. We
will assume that we have already lifted over the sample points of ¢’s neighbors,
which we’ll call b and d, which is easily accomplished because both cells have
rational sample points. Since none of the discriminants or leading coefficients
of elements of A other than () vanish anywhere in b U ¢ U d, the roots of each
individual element of A — {()} are non-intersecting, continuous functions over
bUcUd. Because none of the resultants of pairs of elements of A vanish anywhere
in bUcUd, there are no intersections between sections of different elements of A
over bU cUd. Finally, Theorem 2 shows that because p(z) is a multiplicity-one
factor of discy(Q), there are no singularities of @) over «, and there is exactly
one vertical tangent to @) over a, and it is simple.

From the arrangement of the sections of the elements of A over b and d, we can
determine the arrangements of the roots of the elements of A over «, except that
we may not be able to determine which two sections of () come together to form
a double root at x = «, as Figure 3 illustrates. Using the interval Descartes
method we can straightforwardly isolate the roots of all elements of A — {Q}
over o, and we already know how these roots are arranged with respect to one
another. All that remains is to isolate the roots of @ over a and determine
which root is the double root. One could imagine a variety of methods for doing
this without resorting to exact substitution and squarefree basis computation. I
believe that the fastest and most straightforward way to do this is to simply use
the interval Descartes method. It will attempt to isolate the roots of () and it
will fail, because @ is not squarefree over a.. The method starts with an interval
in which it can determine a priori all roots of Q(«,y) must lie, and it repeatedly
divides the interval into smaller subintervals: those that it determines do not
contain roots are thrown away, those that it determines contain exactly one

/l\ Q

Q Q
Q.Q

Q P

7 Q0 P

P Q p |——Over X < 2992

/\'3\ 5 P 00

P Q

P

~— P | P — b

Figure 3: The order of sections of P and () immediately left and right of point «
tell us how the roots are arranged over «, except for the location of the double
root of Q.

root are appended to the list of isolating intervals, and those that remain are
further subdivided. This determination of the number of roots in an interval
is based on counting the number of sign variations in the coefficients of certain
polynomials. If the number of variations is two or more, the interval must be
subdivided further. However, since the interval Descartes method represents
each coefficient of Q(w,y) as an interval containing the actual coefficient, it
may happen that a coefficient’s sign cannot be determined because the interval
representing it contains zero. Thus, the number of coefficient sign variations
cannot be determined, and the method must report that it failed to determine
the number of roots in that interval. When the interval Descartes method
fails to isolate the roots of Q(a,y) and there is only one interval in which it
failed, that interval must contain the double root of Q(«,y). Thus, even though
the interval Descartes method “fails”, our a priori knowledge about the roots of
Q(a,y) allows us to recover isolating intervals for all the roots and and determine
which interval contains the double root.

3.3 Lifting over roots of a leading coefficient

In this section we consider the case in which the only derivation of p is as a
factor of a leading coefficient of an element of A, call it (). Because the sizes
of factors of leading coefficients are usually dwarfed by the sizes of factors of
discriminants and resultants, this is not typically very interesting. However,
we consider this case for completeness. We will assume that we have already
lifted over the sample points of ¢’s neighbors, which we’ll call b and d, which is
easily accomplished because both cells are sectors, and thus have rational sample
points. Because none of the discriminants or leading coefficients of elements of
A other than @) vanish anywhere in bUcUd, the roots of each individual element

of A— {Q} are non-intersecting, continuous functions over b U ¢ U d. Because
none of the resultants of pairs of elements of A vanish anywhere in bU cU d,
there are no intersections between sections of different elements of A. Thus, we
know how all of the roots of the elements of A at x = a are arranged, except
that we don’t know which sections of @ go off to vertical asymptotes over x = a.
However, we can isolate the roots of the reductum of @), i.e. () minus its leading
term, and thereby get the roots of Q(a,y). We do not, in fact, need to worry
about whether or not the leading coefficient of the reductum of) vanishes at
Z = a, since this would imply that p(z) also has a derivation as a factor of the
discriminant of ().

4 The Implementation

The alternate methods for lifting over simple roots of resultants and discrimi-
nants described in the previous section have been implemented. In this section
we describe our implementation, while Section 5 reports on some experimental
results it provided.

This implementation is based on QEPCAD, an implementation of quantifier
elimination by partial CAD due to Hoon Hong, with subsequent improvements
by many others. QEPCAD itself is built on top of the SACLIB library of C
functions for computer algebra, which has been developed over the years by
George Collins and many of his students and colleagues. One set of functions,
due to Collins, Werner Krandick and Jeremy Johnson, is of particular interest
for this paper, as it implements the interval Descartes method for root isolation
[JK97]. There are SACLIB functions implementing the method with hardware
doubles and also with arbitrary precision software floating-point numbers. Our
implementation uses both — first attempting calculations with hardware floats
and, the attempt failing, moving on to higher precision software floats. The
current version does not do anything sophisticated with precision control when
software floats are used. In fact, it simply performs all computations with
232-bit mantissa floating-point arithmetic, which will be more precision than
necessary in many cases, and will be too little precision for some very large
cases. Intelligent precision control will be part of a future investigation into
improved use of floating-point computations in this context.

Essentially, we implemented the simplest possible versions of the improvements
described in Section 3.1 and Section 3.2. When lifting over section cell ¢ = {a},
the improved method is used in the following two cases:

e o is a simple root of the resultant of a pair of elements of A, and is a root
of no other resultant, discriminant or leading coefficient of an element of
A. In this case, we implement the idea from Section 3.1, using the interval

10

Descartes method from SACLIB instead of QEPCAD’s usual lifting.

e « is a simple root of the discriminant of) € A, and is a root of no
other discriminant or leading coefficient or resultant of pairs of elements
of A. In this case we implement the idea from Section 3.2 using a slightly
modified version of the interval Descartes method from SACLIB instead
of QEPCAD’s usual lifting. The modified version simply keeps track of
any intervals in which the method “fails”, which is information that we
need, as described in Section 3.2.

Our implementation is really just a proof of concept and is lacking in many re-
spects — though as shown in Section 5 it is none the less a substantial improve-
ment over QEPCAD’s current lifting for 2D CAD’s. Our precision management,
as already stated, is naive and limited — we simply use hardware doubles for
our first attempt, if that fails we use 232-bit software floating-point arithmetic
and, that failing, we fall back on exact techniques. Another limitation of the
implementation is our response to failure of the interval arithmetic techniques,
which is to fall back on the existing method for the entirety of that stack con-
struction. Since the failure of interval root isolation for one projection factor
does not require us to fall back on the existing method of root isolation for the
other projection factors, we need not perform all of the failed stack construction
with the old method. Finally, our implementation falls back on the old lifting
method for any single-point cell a that is a simple root of more than one re-
sultant or discriminant. The improved lifting may still be used in these cases,
it’s simply more complicated to implement. A more robust implementation ad-
dressing these problems should probably wait until other more substantial issues
are explored, such as extending the new method to deal with higher multiplicity
zeros of resultants and discriminants, and better adapting interval root isolation
to this particular application.

5 Experiments

Of course we would like to test our method for 2-dimensional CAD construction
against the usual method for a large representative set of 2-dimensional CAD
construction problems. Unfortunately, there is no clear idea what a representa-
tive set looks like. We report on four types of CAD construction problems that
hopefully provide a wide enough range of input types. All tests were run on
a 360 MHz SUN Ultra-60. Note that the lifting method against which we test
our implementation is that reported in [CJK], where real root isolation for the
squarefree basis is done with the interval Descartes method.

11

5.1 Random Bivariate Polynomials

In this section we report on the performance of our implementation of the
improved lifting method for 2D CAD’s on sets of randomly generated bivari-
ate polynomials. Random polynomials are a terrible case for the usual lifting
method, because discriminants and resultants of random polynomials are irre-
ducible, with the result that exact substitution and squarefree basis computa-
tions take place over very large algebraic extension fields. For the improved
method, however, this is a very good case, because the points we lift over are al-
ways simple roots of resultants or discriminants. Random bivariate polynomials
probably do not represent “typical” input, but they do provide an obvious place
to start testing our new lifting method. Moreover, polynomials with coefficients
that are only known approximately actually behave like random polynomials,
in the sense that their discriminants and resultants are likely to be irreducible,
so these experiments may tell us something about certain classes of “typical”
polynomials.

Our test compares the time required for the new and old lifting methods to
construct CAD’s for pairs of randomly generated bivariate polynomials. Input
pairs with different target total degrees, term densities, and coefficient sizes are
tested. For each given input “size”, a single case is randomly generated. It
would, of course, be better to average over many test cases of a given size, but
the time required for these computations makes this infeasible. The old lifting
method fails for many of these examples, usually after thousands of seconds,
due to the “prime list” being exhausted. Various modular algorithms (in this
case the algebraic polynomial ged algorithm due to Encarnacién [Enc95]) in
the SACLIB system choose primes for modular algorithms from a list of prime
numbers kept by the system. If a given calculation uses all of those primes and
requires yet more, SACLIB exits with a FAIL message.

As the data from Figure 4 shows, the usual lifting method does not do well with
random input while the new method is quite fast. To provide some kind of idea
of the extent to which this makes new problems feasible, consider the following
example. We generated two random, dense polynomials of total degree 20 with
10 bit coefficients, and were able to construct a CAD from the two polynomials
in 196 seconds, 144 of which were spent in the projection phase! This problem
is far beyond the scope of what is solvable using the old lifting method.

5.2 Polynomials defining “interesting” curves

In opposition to random polynomials, we consider a collection of decidedly “un-
random” polynomials — polynomials we have gathered that were deemed inter-
esting because of the curves they define. As Figure 5 shows, these polynomials
define curves that are singular and exhibit symmetry — both properties that

12

20% Term Density
10 Bit Coefficients 50 Bit Coefficients
total total lifting total lifting
degree time (sec) time (sec) time (sec) time (sec)
6 0.3 vs. 15.0 0.1 vs. 14.8 | 0.2 vs. 82.4 | 0.1 vs. 82.3
8 0.6 vs. 67.1 0.2 vs. 66.7 2.6 vs. fail | 0.3 vs. fail
10 4.1 vs. 6176.5 | 0.8 vs. 6173.2 | 9.2 vs. fail 1.1 vs. fail
12 7.2 vs. fail 1.4 vs. fail 23.4 vs. fail | 1.8 vs. fail
100% Term Density
10 Bit Coeflicients 50 Bit Coefficients
total total lifting total lifting
degree time (sec) time (sec) time (sec) time (sec)
6 0.3 vs. 66.1 0.1 vs. 65.9 0.8 vs. fail | 0.2 vs. fail
8 1.2 vs. 1762.9 | 0.3 vs. 1762.0 | 3.1 vs. fail | 0.5 vs. fail
10 3.9 vs. fail 0.6 vs. fail 11.9 vs. fail | 2.7 vs. fail
12 9.4 vs. fail 1.8 vs. fail 32.5 vs. fail | 13.2 vs. fail

Figure 4: Timing data comparing the New vs. Old lifting method for pairs of

randomly generated polynomials.

Curvel | Curve 2 | Curve 3 | Curve 4 | Curve 5 | Curve 6
tdeg 8 6 6 10 4 4
coef 6 7 6 8 17 5

Figure 5: A collection of “interesting” curves. this figure gives a picture, along
with the total degree and coefficient bit length of the defining polynomial for

the each curve.

13

render our lifting improvements often inapplicable. Thus, they are certainly not
a good case for our method. On the other hand, they are a fairly good case
overall for CAD construction! Our trials involve constructing CAD’s for pairs of
these curves, and constructing a CAD for all six curves together. Timing data
for these experiments appear in Figure 6.

Time | Old | New | x speedup

Total | 3.0 | 05 6.0 ES
Curves 1 & 2 Lifting | 2.8 | 0.3 9.3

Time | Old | New | X speedup

Total | 0.5 | 0.5 1.0 @
Curves 3 & 4 Lifting | 0.1 | 0.1 1.0

Time | Old | New | x speedup

Total | 0.30 | 0.06 5.0
Curves 5 & 6 Lifting | 0.27 | 0.03 9.0

Time | Old | New | x speedup

Total | 25.2 | 8.0 3.15
Curves 1 — ¢ | | Lifting | 23.6 | 6.4 3.69

Figure 6: Timing data for CAD’s involving “interesting” curves.

5.3 Resultants of pairs of random trivariate polynomials

The “interesting curves” of the previous section provided bad examples for the
improved lifting method because of the presence of higher multiplicity factors
in the discriminants of input polynomials. However, finding large polynomials
defining “interesting” curves is somewhat difficult. So we consider constructing
CAD’s for resultants of pairs of random trivariate polynomials. Theorem 3.4
of [McC99] states that the discriminant of such a polynomial is not squarefree.
Thus we know that there will be stack constructions for which the the new
lifting method does not apply. None the less, the improved lifting produces
substantial speedups and extends the scope of problems for which CAD’s can
be constructed. Figure 5.3 shows timings of experimental trials in which two
random trivariate polynomials, p and ¢, were generated and their resultant, r,
used as the sole input polynomial for CAD construction. It shows the new lifting
method substantially outperforming the old, though not as decisively as with
random bivariate polynomials. This is, of course, because exact lifting must be
performed over the roots of the multiple factors of the discriminant of r. Were
the ideas of this paper to be extended to deal with double roots of resultants and
discriminants, we could expect much more substantial speedups, and we could
tackle much larger problems. To give some idea of the size of the polynomials

14

tdeg p, q Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
tdegp =2 | New | 0.02/0 | 0.03/0.01 | 0.05/0.01 | 0.09/0.05 | 0.04/0.01
tdeg; =2 | Old | 0.18/0.14 | 0.15/0.13 | 0.21/0.18 | 0.23/0.19 | 0.16/0.13
tdeg, =3 | New | 0.23/0.03 | 0.28/0.04 | 0.23/0.01 | 0.41/0.17 | 0.35/0.16
tdeg;, =2 | Old | 9.6/9.4 8.8/8.6 7.5/7.3 | 10.7/10.4 | 6.9/6.7
tdeg, = 3 | New | 23.8/21.8 | 23.3/21.3 | 2.1/0.07 | 20.8/19.0 | 19.3/17.2
tdeg; =3 | Old | 496/494 | 467/465 | 476/474 | 430/429 | 367/365
tdeg, =4 | New | 810/800 | 719/709 | 10.4/0.1 | 922/912 | 983/973
tdeg, =3 | Old | > 2036 > 1949 > 1241 > 2148 > 2210

Figure 7: Times (in seconds) for trials of New vs. Old lifting method. Times
given are “total time” / “lifting time”. Input is res, (p, ¢), where p and g are two
random polynomials in z, y, and 2z, with 8-bit coefficients, 50% term density,
and varying total degrees. The Old lifting method failed due to exhaustion of
the prime list for all inputs from the last row, so the numbers given are the time
taken up to the point of failure.

considered here, the resultant r from Trial 5 of the data set with tdeg, = 4 and
tdeg, = 3 has degree 12 in y and in =, has coefficients from 40 to 60 bits in
length, and consists of 91 terms.

5.4 Discriminants and Resultants of pairs of random trivari-
ate polynomials

We consider sets of polynomials consisting of the two discriminants and the
pairwise resultant of two randomly generated trivariate polynomials. From
Theorem 3.4 of [McC99] we see that the discriminants of the resulting three
bivariate polynomials will not be squarefree, and from Theorem 3.3 of [McC99]
we see that at least two of the three resultants will also not be squarefree.
Thus, input polynomials generated in this way provide an especially bad case
for the improved lifting. Figure 8 shows timing data for a number of exper-
imental trials. For given total degrees di and da, and term density D, we
generated two random polynomials in z, y, and 2z with total degrees d1 and d2,
term density D, and 8-bit coefficients. The bivariate input polynomials were

{disc,(p),disc,(q),res,(p,q)}-

6 Possible applications and future research

This paper presents an improved lifting method for 2D CAD construction. Ex-
perimental evidence suggests that the improved method not only substantially

15

Term Density 20%
tdeg, 2 3 3 4
tdeg, 2 2 3 3
New | 0.15/0.11 | 0.77/0.21 | 2.0/0.4 28/1
Old | 0.22/0.18 | 9.8/9.2 | 10.6/9.0 | > 1352

Term Density 100%
tdeg, 2 3 3 4
tdeg, 2 2 3 3
New | 0.13/0.07 | 3.1/2.2 | 24/20 | 1596/1561
Old | 0.31/0.26 | 19.7/18.8 | 568/563 | > 1268

Figure 8: Timing data for New vs. Old lifting method. Times are given in
seconds, “total time” / “lifting time”. Random trivariate polynomials p and ¢ are
generated with given total degrees and term densities, and with 8-bit coefficients.
The input polynomials for 2D CAD construction consist of disc,(p), disc.(q),
and res;(p,q). An entry “> n” indicates that lifting failed due to prime list
exhaustion after n seconds.

speeds up the overall 2D CAD construction process, but also brings problems
that were completely inaccessible using the old lifting method well within the
realm of what can be computed in a reasonable amount of time. This section
will briefly discuss potential further improvements to the method, the possible
extension of the method to 3D CAD construction, and one potential application
of CAD in light of these improvements.

6.1 Improvements of the method

There are, as has been noted, a number of ways that our implementation of
the new lifting method could be improved. But there are also some substantial
areas for improvement in the method itself.

First of all, it may be possible to optimize the interval Descartes method for
this problem. For example, as presented in [JK97], the method may fail for all
precisions even if the input interval polynomial contains only squarefree polyno-
mials. It should be possible to ensure that the method works at some precision
for any input interval polynomial containing only squarefree polynomials. Opti-
mizing the interval Descartes method for non-squarefree polynomials also bears
investigation, as does refinement of intervals which may contain double roots.

Secondly, it would be nice to extend the method described in this paper to lifting

over multiple roots of discriminants and resultants. For example, if we lift over
some « that is a double root of the discriminant of polynomial p, we may end up

16

with exactly two “fail” intervals. We would need to determine how many roots
were in each of the intervals, and what their multiplicities were. Let (i1,i2) be
the isolating interval for «, and let (j1, j2) and (k1, k2) be the two fail intervals.
In effect reversing the “box method” of [ACM84b], we construct the “boxes”
By = [i1,i2] X [j1,J2] and By = [i1,142] X [k1, k2], and determine the intersection
points of p(z,y) with By and Bs. For some configurations of intersections we
may be able to determine the arrangement of the roots of p(«,y), as is indicated
in Figure 9.

k k k2
k1 k1 k1
: © denotes a poil
2 2 2)
))) at which p(x,y
is zero.
i1 i i1
—r— 1 — & ——— — | —&———

i1 i2 i1 i2 i1 i2

A vertical tangency in Could try, perhaps, to prove Perhaps there is an
in (j1,j2) and in (k1,k2). that there is a singularity in isolated point in one

Both are isolating inter- (k1,k2). Then we would of the two intervals?
vals for double roots. know that (j1,j2) contained
no roots.

Figure 9: Using “boxes” to determine what’s happening in a “fail interval”.

6.2 Extensions to 3D CAD construction

In the construction of cylindrical algebraic decompositions of R3, the bottleneck
is in lifting over single-point cells in an induced CAD of R?. These points are of
the form (a, 8), where « is the root of some polynomial M (z), and § is a root
of some polynomial A(«,y). Lifting means isolating and ordering the roots of a
set S of polynomials in Q(a, 8)[2], namely the set of polynomials resulting from
substituting z = a and y = J into each element of P;. The lifting algorithm
does this by:

1. computing a polynomial N(z) and a root -, such that Q(v) contains a
and g,
2. computing B, a squarefree basis for S, where B C Q(v)[z], and

3. isolating and ordering the real roots of the elements of B.

17

The first step, computing the primitive element -, is quite expensive, and N,
the minimal polynomial for v, is of high degree. Thus, the second step is quite
expensive as well. Using the interval Descartes method, the final step can be
done fairly quickly.

Were we to develop an 3D analogue of the method described in this paper, we
could lift over some of these points (depending on multiplicities) without steps
one or two. For each trivariate projection factor f(z,y, z), we would construct an
interval polynomial containing f(a, 8, 2) and use the interval Descartes method
to isolate the roots of this interval polynomial. If this succeeds, we will have
isolated the roots of f(a, 8, z) without computing primitive elements. We could
then order the roots of different projection factors using information about the
order of roots over neighboring cells in the induced CAD. There are many issues
to work out with such a scheme, but the potential time savings are quite large,
because computing the primitive element 7 is so expensive, and computing in
the large extension defined by + is so expensive.

6.3 Potential application

The improvements described in this paper dramatically speed up CAD construc-
tion for certain types of problems — most dramatically for sets of non-singular
polynomials. Perhaps CADs may therefore be applied to problems for which
they were previously deemed to be too expensive to compute.

For example, Keyser et al. [KCMKO00] report on algorithms and software for
performing exact manipulation of algebraic points and curves, with the intended
field of application being Computer Aided Design (the other CAD). One prob-
lem they consider is computing arrangements of non-singular planar algebraic
curves. The same information they compute may computed by CAD construc-
tion augmented with adjacency computation. Because we don’t have the data
sets they report on in their paper, we cannot really compare the time required
by the improved CAD construction and adjacency computation with the time
required by their method. They give the number and coefficient bit length of
polynomials in their trials, but not degree or term density. They report, for
example, that an arrangement of 3 curves defined by polynomials with 25-bit
coefficients was computed in 8.38 seconds on a 40 MHz Pentium II machine.
The picture given of the 3 curves shows that their degrees in y must be at least
2, but not much more can be said. To do some rough comparison, we gen-
erated 3 random, dense polynomials of total degree 5 with 25-bit coefficients,
and constructed a CAD with adjacency information for them. This took 0.7
seconds using the improved lifting, and 179 seconds using the original lifting
method. Whether this comparison of CAD versus the method of Keyser et al.
is meaningful depends, of course, on the degrees and term densities used in
their experiment, and whether or not the polynomials used there were random

18

(although we do know they were non-singular). However, it does provide some
evidence that with the old lifting method CAD does not provide a competi-
tive alternative to the method described in Keyser et al., whereas with the new
lifting method it does.

7 Acknowledgments

I would like to thank Werner Krandick for his help in understanding the interval
Descartes method, Josef Schicho and Will Traves for answering my questions
about algebraic geometry, and George Nakos for helping me with my proofs.
This work was supported by a grant from the Naval Academy Research Council.

8 Appendix

This section contains theorem statements and proofs for results used in this pa-
per. Note that for polynomials P, Q € Rz, y] with resultant r(z) = res,(P,Q),
we have resy(P(z —a,y — b),Q(z — a,y — b)) = r(z — a). When proving many
statements about polynomials and their resultants and discriminants at some
arbitrary point, this allows us to assume that the point is in fact the origin.

Theorem 1 Let P(z,y) and Q(x,y) be relatively prime, squarefree polynomials
with real coefficients, and let their degrees in y be m and n respectively. Let
Pp(z) and Qn(x) be their leading coefficients, and let r(z) = resy(P,Q). Let
a € R be a simple root of r that is not a root of discy(P), discy(Q), Pp, or
Qn. The real curves defined by P and (Q have ezxactly one common point with
xz-coordinate «, and they are not tangent at this point.

PROOF. Since « is not a root discy(P) or discy(Q)), the curves defined by P
and @ do not have vertical tangents over a. By Theorem 3, there can be no
non-vertical points of tangency over a between the curves defined by P and @
either. Thus, any common points between the curves define by P and @ must
be at simple intersections. Since « is a root of r, but not of either P,, or Q,,
there is at least one common root of P and () over z = a. Theorem 5 shows
that there is in fact exactly one common root, and since P(a,y) and Q(a,y)
are both real polynomials, this root must be real. [

Theorem 2 Let P(z,y) = Ppy™ + --- + Pry + Po be a squarefree polynomial
with real coefficients that is primitive as a polynomial iny. If a € R is a simple

19

root of discy(P) and Py(a) # 0, the curve defined by P has no singularities
and exactly one vertical tangent over x = a. Moreover, the vertical tangent is
simple and at a point with real coordinates.

PROOF. Theorem 4 shows that P has no singularities over a. A similar argu-
ment shows that P has no points of vertical tangency at which 8?P/dy? also
vanishes, so any tangencies are simple. What remains to be proven is that there
is exactly one point of vertical tangency, and that its y-coordinate is real. Since
discy(P) = 1/Pyresy(P, P'), a is a simple root of resy (P, P'). Therefore, The-
orem 5 shows that there is exactly one common root of P and P’ over 2 = a.
Since P and P’ are real polynomials, this root must be real. O

Theorem 3 Let P,Q € Rz, y] be relatively prime polynomials. Let a be a point
at which the discriminants and leading coefficients of P and @ as polynomials in
y are all nonzero. If the curves defined by P and () have a non-vertical mutual
tangency at some point (c, 5), then o is a multiple root of resy(P, Q).

Proor. Without loss of generality assume (a,3) = (0,0). Let y = kz be the
mutual tangent line, then

P = a(y — kx) + terms of total degree > 2

Since the discriminant of @) does not vanish at z = 0, the roots of () may
be defined as analytic functions of x over some neighborhood of zero. Let
Y1,---,7n be the root functions for). Without loss of generality, suppose 71
defines the portion of the curve passing through (0,0). By a well known identity,
r(@) = (—1)™QmII, P(z, %(x)). Thus,

d/dz[P(z, 1 (x))] - [(-1)"" QT ILL, P(z, ()]

r'(z) = +
P(z,71(x)) - d/dz[(—1)"" QT Iy P(z,i(x))]

The second term vanishes at z = 0, since P(0,7,(0)) = P(a, 8) = 0. If we can
prove that d/dz[P(z,v1(z))] is zero at = 0 the first term would also clearly
vanish, and having shown that 7/(0) = 0, we would be done.

dP(z,m(2))/dy = Pe(z,71(2)) + Py(z,m(x)) - 71 (2)
= —ak + non-constant terms + (a + non-constant terms)~yj (z)

Evaluating this at (0,0) and keeping in mind that v, (0) = k, we get
—ak+0+4+(a+0)k=0

Since r(0) = r'(0) = 0, resy (P, Q) has a multiple root at z = 0. O

20

Theorem 4 Let P(z,y) = Ppy™ + --- + Piy + Py be a squarefree polynomial
with real coefficients that is primitive as a polynomial iny. If P has a singularity
at (o, B) € R?, then a is a multiple root of disc,(P).

Proor. Without loss of generality, assume that («, 8) = (0,0). P is singular at
(0,0), so P, 9P/0y and 0P/dx all vanish at (0,0). Thus, for some A, B € R[z]

and b,c € R, we get Py = 2?A, P, = 2?B + bz, and

P, 0 0
0 z2A 0
. 0 br + 2B x2A
discy(P) =1/P, P, 0 0
0 br + 2B 0
0 c+zC br+2°B

If b = 0, 22 may be factored from the last column, and the theorem is proved. If
z # 0, x may be factored from the last column and, after an elementary column
operation, x may also be factored from the second to last column. O

Theorem 5 Let P,Q € Clz,y] be primitive in y and let R(x) = resy(P,Q) be
non-zero. If a is a simple root of R and at least one of the leading coefficients
is non-zero at o, there is exactly one common root of P(a,y) and Q(a,y).

ProOF. Without loss of generality, assume a = 0. Suppose there are two
common roots, f; and 8. If 81 = [, i.e. if the curves defined by P and @
are tangent at (a, 51), we see by Theorem 3 that @ must be a double root of R,
which contradicts our hypothesis. Thus, 51 # B2. Without loss of generality,
assume (1 = 0.

Let Rc(x) = resy(P(z,y(1 —€)),Q(z,y)). As € approaches zero, R(z) ap-
proaches R(x). Moreover, for small non-zero € the origin is the only common
zero of P(z,y(1 —¢)) and Q(z,y) over x = 0. However, in some small neighbor-
hood of (0, 82) there is another common root of P(z,y(1 —¢€)) and Q(z,y). To
see this, change coordinates by rotating both curves so that all distinct roots
have distinct z-coordinates and both transformed polynomials are still primitive
in y. Let P* and Q* be the rotated polynomials and (a*,3*) be the rotated
(0, 81)- Any sufficiently small perturbation of P produces a small perturbation
of P*, which produces a small perturbation of res,(P*,Q*). Thus, there will
be a root of res,(P*,Q*) near in a small neighborhood of a*, and a common
zero of P* and Q* must exist over that root. A continuity argument shows then
that this common zero must be near (a*, *).

21

Let a. be the z-coordinate of the common root of P(z,y(1—¢)) and Q(z,y) near
(0, B2); clearly a. must be a root of R.. As e approaches zero, a, approaches
zero. Thus, as € approaches zero we have two distinct roots of R., x = 0 and
T = ., both approaching zero.

Now, the coefficients of R, are symmetric functions of the roots of R, — two of
which are a, and 0. Let n be the degree of R., and let ¢ be the leading coefficient
of R.. The constant coefficient is ¢ times the product of all n roots of R, and
is therefore zero. The coefficient of z is a linear combination of all products of
n — 1 roots. All such products are zero, or contain a.. Thus, the coefficient of
x is divisible by a.. As € approaches zero, the coefficient of z in R, approaches
zero as well. Thus, z? divides R(z), which contradicts the hypothesis of our
theorem. [Note: I think this proof can basically be extended by induction to
say that there are exactly k common roots of P and @ (including multiplicities
and roots at infinity) over an order k root of res, (P, Q). This could be useful
in extending the lifting method described here.] O

References

[ACM84a] D. S. Arnon, G. E. Collins, and S. McCallum. Cylindrical algebraic
decomposition I: The basic algorithm. STAM Journal on Computing,
13(4):865-877, 1984.

[ACM84b] D. S. Arnon, G. E. Collins, and S. McCallum. Cylindrical algebraic
decomposition II: An adjacency algorithm for the plane. SIAM
Journal on Computing, 13(4):878-889, 1984.

[Arn83] D. S. Arnon. Topologically reliable display of algebraic curves. In
Proceedings of SIGGRAPH, pages 219227, 1983.

[Bro01] C. W. Brown. Simple CAD construction and its applications. Jour-
nal of Symbolic Computation, 31(5):521-547, May 2001.

[CAT6] G. E. Collins and A. Akritas. Polynomial real root isolation using
Descartes’ rule of signs. In R. D. Jenks, editor, Proc. of the 1976
ACM Symposium on symbolic and algebraic computation, pages
272-275, 1976.

[CHI1] G. E. Collins and H. Hong. Partial cylindrical algebraic decompo-
sition for quantifier elimination. Journal of Symbolic Computation,
12(3):299-328, Sep 1991.

[CJ98] B.F. Caviness and J. R. Johnson, editors. Quantifier Elimination
and Cylindrical Algebraic Decomposition. Texts and Monographs in
Symbolic Computation. Springer-Verlag, 1998.

22

[CIK]

[Col75]

[DS96]

[Enc95]

[JK97]

[KCMEKOO]

[McC99]

G. E. Collins, J. R. Johnson, and W. Krandick. Interval arithmetic
in cad computation. Submitted to Journal of Symbolic Computa-
tion, 2001.

G. E. Collins. Quantifier elimination for the elementary theory of
real closed fields by cylindrical algebraic decomposition. In Lec-
ture Notes In Computer Science, volume Vol. 33, pages 134-183.
Springer-Verlag, Berlin, 1975. Reprinted in [CJ98].

A. Dolzmann and T. Sturm. Redlog - computer algebra meets com-
puter logic. Technical Report MIP-9603, FMI, Universitit Passau,
1996.

M. J. Encarnacién. Computing geds of polynomials over algebraic
number fields. Journal of Symbolic Computation, 20:299-313, 1995.

J. R. Johnson and W. Krandick. Polynomial real root isolation
using approximate arithmetic. In Proc. International Symposium
on Symbolic and Algebraic Computation, pages 225-232, 1997.

J. Keyser, T. Culver, D. Manocha, and S. Krishnan. Efficient and
exact manipulation of algebraic points and curves. Computer-Aided
Design, 32:649-662, 2000.

S. McCallum. Factors of iterated resultants and discriminants. Jour-
nal of Symbolic Computation, 27:367-385, 1999.

23

