
Qepcad b — a program for computing with semi-algebraic sets using CADs

Christopher W. Brown
Department of Computer Science, Stop 9F

United States Naval Academy
572C Holloway Road
Annapolis, MD 21402
wcbrown@usna.edu

Abstract

This report introduces Qepcad b, a program for computing
with real algebraic sets using cylindrical algebraic decompo-
sition (CAD). Qepcad b both extends and improves upon
the Qepcad system for quantifier elimination by partial
cylindrical algebraic decomposition written by Hoon Hong
in the early 1990s. This paper briefly discusses some of the
improvements in the implementation of CAD and quanti-
fier elimination via CAD, and provides somewhat more de-
tail on extensions to the system that go beyond quantifier
elimination. The author is responsible for most of the ex-
tended features of Qepcad b, but improvements to the basic
CAD implementation and to the Saclib library on which
Qepcad is based are the results of many people’s work,
including: George E. Collins, Mark J. Encarnación, Hoon
Hong, Jeremy Johnson, Werner Krandick, Richard Liska,
Scott McCallum, Nicolas Robidoux, and Stanly Steinberg.
Source code, documentation and installation instructions for
Qepcad b are all available at www.cs.usna.edu/~qepcad.

1 Introduction

In the early 1970s, George Collins developed Cylindrical
Algebraic Decomposition (CAD) as the basis of his quan-
tifier elimination algorithm. This algorithm was first im-
plemented by Dennis Arnon in 1980. Subsequent imple-
mentations include Hoon Hong’s Qepcad [11], Strzebon-
ski’s implementation in Mathematica [20], and a current
project to implement CAD in the Redlog system [13]. This
paper describes Qepcad b (version 1.6), an extension of
Hong’s Qepcad system that not only improves the basic
implementation of CAD and CAD-based quantifier elimina-
tion, but provides additional functionality as well. It is a
command-line program written in C (small portions also in
C++), and based on the Saclib library of computer algebra
functions. Source code and documentation are available at:
http://www.cs.usna.edu/~qepcad.

The following section, Section 2, provides a brief descrip-
tion of CADs, semi-algebraic sets, and the quantifier elim-
ination problem. It is only intended to provide sufficient
background to understand what kinds of problems Qepcad

b is able to solve. A more complete description of these top-
ics may be found in, for example, [18], [11] or [9]. Section 2

describes the basic functionality of Qepcad b — namely,
quantifier elimination and quantifier-free formula simplifica-
tion — and Section 4 describes features of Qepcad b that
facilitate more efficient use of CAD by applying it directly
to problems rather than through the intermediate language
of quantified Tarski formulas. Both Section 2 and Section 4
separate the user’s view of Qepcad b from implementation
issues, so they may be (hopefully!) accessible for for people
who are merely interested in what Qepcad b can do as well
as those who are interested in how Qepcad b works.

Several examples of the use of Qepcad b appear in this pa-
per. They are intended to be compact, easily understood,
and to illustrate how the facilities offered by the program
solve problems. Timing comparisons of Qepcad b to Qep-

cad and to other pieces of software or examples of large
“real-world” problems being solved by Qepcad b are be-
yond the scope of this paper. The primary goal of this
paper is to describe functionality that is, to the author’s
knowledge, unique and new in Qepcad b: quantifier-free
formula simplification though CAD, quantifier elimination
for an extension of the language of Tarski formulas, and
quantifier elimination for an extended class of quantifiers.1

2 CAD, semi-algebraic sets, and the quantifier
elimination problem

CADs provide an explicit representation for semi-algebraic
sets, which are subsets of real affine space that are defined
by boolean combinations of polynomial equalities and in-
equalities (which we will henceforth refer to Tarski formu-
las, or simply as formulas). In introducing the concept of
a CAD [10], Collins showed how to construct CAD repre-
sentations of semi-algebraic sets from formulas, and vice-
versa. Figure 1 shows a semi-algebraic set represented by
both a defining formula and a CAD. The connection be-
tween CADs and quantification is that projection onto lower
dimensional spaces is trivial in the CAD representation; af-
ter all, ∃ is simply projection, and ∀ is the negation of a
projection (and negation is also trivial in the CAD repre-
sentation). So, supposing we are given a quantified formula
(Q1xk+1) · · · (Qn−kxn)F , where F is a formula in the vari-
ables x1, . . . , xn and the Qi are in {∃,∀}, we can

1Some of this functionality has been available from the author as
extensions to various versions of the Qepcad system.

1

x2
1 + x2

2 − 1 = 0 ∧ x1 + x2 > 0

Figure 1: A semi-algebraic set represented by a defining
formula and by a CAD.

1. construct a CAD of Rn representing the set defined by
F ,

2. apply the projections implied by
(Q1xk+1) · · · (Qn−kxn), which results in a
CAD of R

k representing the set defined by
(Q1xk+1) · · · (Qn−kxn)F , and

3. construct a formula representation of the set now rep-
resented by the CAD of Rk.

What results from this process is a quantifier-free formula
in the variables x1, . . . , xk that is logically equivalent over
the reals to (Q1xk+1) · · · (Qn−kxn)F . Constructing such an
equivalent, quantifier-free formula is what is known as the
quantifier elimination problem, and the above procedure is
Collins’ algorithm for solving this problem.

Collins’ CAD-based algorithm for quantifier elimination was
not the first quantifier elimination algorithm. The first pro-
cedure was invented by Alfred Tarski in the 1930s [21]. How-
ever, it was the first algorithm with any hope of practical
utility, having a complexity that is doubly exponential in
the number of variables, but polynomial in the length, num-
ber of polynomials, maximum degree of polynomials, and
maximum coefficient length of polynomials in the input for-
mula. General quantifier elimination algorithms with better
asymptotic complexities have been invented since (see [19],
for example), as have special purpose methods with better
practical performance on restricted types of input (see [22],
for example). However, CAD-based quantifier elimination
remains, to the best of the author’s knowledge, the most
efficient general quantifier elimination algorithm to be im-
plemented. Moreover, CADs can be used for more than just
quantifier elimination, and one of the main goals of Qepcad

b is to efficiently apply CADs to solving problems concern-
ing semi-algebraic sets other than quantifier elimination.

3 Basic functionality

In this section we describe the various functions Qepcad b

performs, both from the user perspective and the implemen-
tation perspective.

3.1 Quantifier Elimination

The user perspective: The user’s view of basic quanti-
fier elimination in Qepcad b is the same as in Qepcad:
the user enters a variable ordering and a quantified for-
mula, and the program returns a quantifier-free equivalent
formula. To provide an example, we consider the follow-
ing problem: When does a real monic quadratic polynomial
have roots only in the unit disc in the complex plane? A
generic monic polynomial is of the form P (z) = z2 + bz + c,
and we’re interested in z ranging over C. Qepcad b, how-
ever, computes over R, so we substitute x + iy for z and
separate P into its real and imaginary parts:

Pr = x2 − y2 + bx+ c, Pi = 2xy + by

Our question is, when is it true that ∀x, y[Pr = 0 ∧ Pi =
0 =⇒ x2 + y2 − 1 < 0]? This is what a Qepcad b session
answering that question looks like:

===

Enter an informal description between ’[’ and ’]’:

[When does a quadratic have all roots in the unit disc?]

Enter a variable list:

(b,c,x,y)

Enter the number of free variables:

2

Enter a prenex formula:

(Ax)(Ay)[[x^2 - y^2 + b x + c = 0 /\ 2 x y + b y = 0] ==> x^2 + y^2 - 1 < 0].

===

Before Normalization >

finish

An equivalent quantifier-free formula:

c - 1 < 0 /\ c - b + 1 > 0 /\ c + b + 1 > 0

==

The “answer” c−1 < 0∧c−b+1 > 0∧c+b+1 > 0 completely
characterizes all real, monic, quadratic polynomials whose
roots lie in the unit disc in the complex plane.

The implementation perspective: Although basic quan-
tifier elimination in Qepcad b is not much different from
Qepcad from the user perspective, the implementation is
different in many ways, the most important of which are
described below.

For the projection phase of CAD construction, Qepcad b

uses the reduced McCallum projection [5] when it can de-
termine that a projection factor is never nullified, and the
McCallum projection [17] otherwise. As described in McCal-
lum’s paper, his projection may fail, though this can always
be detected in the lifting phase of CAD construction. Qep-

cad b will issue an error message if failure of the McCallum
projection is detected (at which point the user must restart
the computation and explicitly instruct the program not to
use McCallum’s projection). Using the criteria described in
[6], Qepcad b is able to verify the validity of the McCallum
projection in many cases for which the original paper does
not guarantee its validity. Qepcad, by contrast, uses Hong’s
projection by default for all projections beyond level 3, and
McCallum’s projection for levels 2 and 3. The reduction in
the size of the projection factor set resulting from improved
projection can have a dramatic effect an both the time and
space requirements of CAD construction.

In the lifting phase of CAD construction, Qepcad b makes
some use of validated numerical computation, as described

2

in [12]. The implementation in Qepcad b and Saclib is
due to Collins, Johnson and Krandick, the authors of [12].

The solution formula construction phase of Qepcad b is
based on [3, 4, 8]. It offers several different methods for con-
structing simple solution formulas, each with different ideas
of what constitutes “simple”. Perhaps most importantly,
barring failure of McCallum’s projection (and lack of com-
putational resources), Qepcad b is guaranteed to produce
a solution formula, and produce one using simple solution
formula construction techniques. This was not true of the
original Qepcad (see [4] for details).

3.2 Quantifier-free formula simplification

Simplifying quantifier-free formulas is a very important
problem. Other quantifier elimination algorithms, like the
method of virtual term substitution implemented in Redlog
[22, 23, 24] or the combinatorial approach described in [14],
tend to produce very large quantifier-free equivalent formu-
las. Moreover, a variety of problems outside of quantifier
elimination have solutions that are boolean combinations of
polynomial equalities and inequalities, and these solutions
do not necessarily come in the simplest possible form. If
given a quantifier-free formula as input, Qepcad b attempts
to produce a simple equivalent formula.

The user perspective: If a formula that is already quan-
tifier free is entered into Qepcad b, the program produces a
simple equivalent formula. As an interesting example of for-
mula simplification Qepcad b, consider the following: Fig-
ure 2 shows a triangle ABC with what we might call the
“external bisector of vertex B with respect to A”. It is

A

B Ca

bc

D

φ θ
θ

Figure 2: Triangle ABC with the external bisector of vertex
B with respect to A.

fairly clear from the diagram that this external bisector ex-
ists as drawn if and only if θ > (π−φ)/2. Suppose we want
a characterization in terms of the side lengths a, b and c
rather than the angles θ and φ. Straightforward application
of the common trigonometric identities produces the equiv-
alent characterization that, if a, b and c are the side lengths
of a non-degenerate triangle, this external bisector exists if
and only if

b2 +a2− c2 ≤ 0∨ c(b2 +a2− c2)2 < ab2(2ac− (c2 +a2− b2)).
(1)

Of course a, b and c are the side lengths of a non-degenerate
triangle if and only if

a > 0∧ b > 0∧ c > 0∧ a < b+ c∧ b < a+ c∧ c < a+ b. (2)

The conjunction of (1) and (2) completely characterizes the
triples of real numbers (a, b, c) that are side-lengths of non-
degenerate triangles for which the above described exter-
nal bisector exists. Entering this conjunction as input to
Qepcad b produces the equivalent formula c > 0 ∧ b >
0 ∧ a − b + c > 0 ∧ a − c < 0 ∧ a + b − c > 0, which is a
little hard to interpret, because it’s unclear which conditions
simply specify a non-degenerate triangle, and which are spe-
cific to characterizing the existence of the external bisector.
Qepcad b allows us to declare “assumptions”, which are
conditions on the free variables that are “assumed” by the
solution formula produced. A true solution formula is ac-
tually the conjunction of the assumptions and the solution
formula Qepcad b produces. Here is a Qepcad b session
for this simplification problem:

===

Enter an informal description between ’[’ and ’]’:

[Charaterizing triangles with external bisectors]

Enter a variable list:

(c,b,a)

Enter the number of free variables:

3

Enter a prenex formula:

[b^2 + a^2 - c^2 <= 0 \/ c (b^2 + a^2 - c^2)^2 < a b^2 (2 a c - (c^2 + a^2 - b^2))].

===

Before Normalization >

assume [a > 0 /\ b > 0 /\ c > 0 /\ a < b + c /\ b < a + c /\ c < a + b]

Before Normalization >

finish

An equivalent quantifier-free formula:

a - c < 0

==

In other words, given the assumption (i.e. the conditions
that a, b and c really form a triangle), the input formula is
equivalent to a− c < 0. Simplification has “discovered” the
theorem that the external bisector described above exists if
and only if side c is longer than side a.

It is impractical to try to simplify a very large formula by
a single application of Qepcad b. For such formulas it is
better to simplify pieces of the original formula, put the
simplified pieces together and try to simplify that result as
described in [7]. A program called SLFQ (Simplifying Large
Formulas with Qepcad b), which applies Qepcad b over
and over again in this manner is available through the Qep-

cad b website.

The implementation perspective: The same general
technique that Hong used to create simple solution formulas
for quantifier elimination problems [15] can be applied to
simplifying formulas that are already quantifier free. How-
ever, the time requirements of Hong’s method are too great
to make this practical when the input formula is large —
which is precisely when we really need to simplify formu-
las. Qepcad b uses CAD simplification [3] before attempt-
ing solution formula construction, and the solution formula
construction algorithms described in [8], which are typically
faster than Hong’s algorithm, to speed up solution formula
construction on the simplified CAD.

3

3.3 Plotting of 2-dimensional CADs

Qepcad b is able to produce eps-file plots of 2-dimensional
CADs that are guaranteed to be topologically correct. This
part of the program is not very developed in terms of user
interface or optimization for speed, but the topological ac-
curacy of the plots Qepcad b produces may be of inter-
est to people and so it is included. The CAD illustrations
in Figure 1 and Figure 4 were produced with Qepcad b’s
p-2d-cad command.

With the addition of information about adjacencies between
cells, a CAD of R2 provides a complete topological descrip-
tion of the set represented by the CAD (in [1], Arnon de-
scribes this for sets of the form p(x, y) = 0). Adjacency
information can be computed fairly easily by the “ladder”
method described in [2], which essentially amounts to re-
peated integral polynomial real root isolation. Qepcad b

first attempts to deduce adjacencies based on information
about multiplicities of polynomials in section cells, falling
back on the ladder method when multiplicity information
does not suffice. The plots Qepcad b produces always re-
spect the topological description based on adjacency infor-
mation.

4 More efficient use of CADs

Quantifier elimination is, in some sense, an inefficient way
to use CADs. A CAD representation of a semi-algebraic set
contains far more information about the set than is needed
for quantifier elimination. By attacking problems directly
with CADs, rather than translating them first into the lan-
guage of quantified Tarski formulas and then using CADs
for quantifier elimination, we can make use of this extra in-
formation and solve problems more efficiently. One of the
major goals in constructing Qepcad b has been to facilitate
this more efficient use of CADs, and the remainder of this
section describes several original features of Qepcad b that
address this goal.

4.1 Simplification and quantifier elimination in an
extended language

Qepcad b can both read input and produce output in an
extension of the language of Tarski formulas — one which
also allows atomic formulas of the form

xi σ rootk f(x1, . . . , xi) (3)

where σ ∈ {=, 6=, >,<,≥,≤}, k is a nonzero integer, and f is
an integral polynomial of positive degree in xi. This atomic
formula is true at point α if and only if f(α1, . . . , αi−1, xi)
is a non-zero polynomial with at least k roots, and αi holds
relation σ to the |k|th of those roots, ordered smallest to
largest when k > 0 and largest to smallest when k < 0.
The language of Tarski formulas augmented by such atomic
formulas is the language of extended Tarski formulas. (Note
that the variable ordering x1, . . . , xi plays a role in this def-
inition!) From the perspective of CADs, the language of ex-
tended Tarski formulas provides a more efficient means for

representing semi-algebraic sets than Tarski formulas. For
example, as a Tarski formula two polynomials are needed
to represent the set {

√
2}, e.g. x2 − 2 = 0 ∧ x > 0, while a

single polynomial suffices in the language of extended Tarski
formulas, e.g. x = root2 x

2 − 2.

We can convert back and forth between the extended Tarski
formula representation of a set and the CAD representation
of a set more efficiently than between the regular language
of Tarski formulas and CADs. [7] described how comput-
ing directly with simplified CAD representations of semi-
algebraic sets could lead to efficient simplification of very
large formulas and efficient quantifier elimination for non-
prenex formulas; using extended Tarski formulas as an in-
termediate representation during computation is essentially
equivalent. For details on the language of extended Tarski
formulas and computing with them via CADs see [8].

The user perspective: Formula simplification and quan-
tifier elimination using the extended language is not much
different than for the usual language. Here is a toy example
using the extended language for input: Consider the point
traced by a ray from the origin into the first quadrant as it
exits the circle with radius 1 centered at (1, 1) (see Figure 3).
Can we produce a semi-algebraic description of the distance
of this point from the origin as a function of m, the slope
of the ray? Substituting y = mx (we assume that m > 0)

Figure 3: Point traced by a ray from the origin though the
first quadrant as it exits the circle with radius 1 centered at
(1, 1).

into (x − 1)2 + (y − 1)2 − 1, the equation of the circle, we
get (x− 1)2 + (mx− 1)2 − 1, which has two positive roots.
The x-coordinate of the point we want is the larger of these
two roots, in other words x = root2(x− 1)2 + (mx− 1)2− 1.
Similarly, we find that y = root2(y−m)2 +(my−m)2−m2.
The Qepcad b session in Figure 4 produces a description
of d as a function of m, where m > 0, both in the ex-
tended language and in the usual language of Tarski formu-
las. Notice that more polynomials are required to produce
the Tarski formula description. Any subsequent computa-
tions with Qepcad b involving this semi-algebraic set will
be faster if the extended Tarski formula description is used.

The implementation perspective: A complete descrip-
tion of how CAD can be used to perform quantifier elimi-
nation in the extended language may be found in [8]. The
basic idea is this: CAD decomposes Rn into cylinders in

4

===

Enter an informal description between ’[’ and ’]’:

[Find a semi-algebraic description of d as a funciton of m.]

Enter a variable list:

(m,d,x,y)

Enter the number of free variables:

2

Enter a prenex formula:

(Ex)(Ey)[

x = _root_2 (x - 1)^2 + (m x - 1)^2 - 1

/\

y = _root_2 (y - m)^2 + (m y - m)^2 - m^2

/\

d^2 = x^2 + y^2

/\

d > 0

].

===

Before Normalization >

assume [m > 0]

Before Normalization >

go

Before Projection (y) >

go

Before Choice >

go

Before Solution >

solution E

An equivalent quantifier-free formula:

d = _root_-1 m^2 d^4 + d^4 - 2 m^2 d^2 - 8 m d^2 - 2 d^2 + m^2 + 1

Before Solution >

solution T

An equivalent quantifier-free formula:

d >= 0 /\ m^2 d^2 + d^2 - 2 m^2 d - 2 m d + m^2 >= 0 /\

m^2 d^2 + d^2 - 2 m d - 2 d + 1 >= 0 /\

m^2 d^4 + d^4 - 2 m^2 d^2 - 8 m d^2 - 2 d^2 + m^2 + 1 = 0

Figure 4: Qepcad b session and plot of the CAD it produces

which the zero sets of n-level polynomials are delineable —
meaning they are the graphs of finitely many continuous
real-valued functions over the cylinder’s base that are non-
intersecting. These graphs are called sections of the poly-
nomials of which they are zero sets, and because they are
non-intersecting, sections are ordered in an obvious way. If
polynomial P is zero in section S, we can count the number
of sections below S that are sections of P , and if there are
k such sections we have determined that S is the (k + 1)st
root of P . Any sector (regions between sections are sectors)
or section above S satisfies, for example, xn > rootk+1 P .
Thus, if we can decide the signs of a polynomial p in a stack
of a CAD of Rn, we can also decide atomic formulas of the
form xn σ rooti p(x1, . . . , xn), where σ ∈ {=, 6=, >,<,≥,≤}.

[8] shows how to construct simple solution formulas in the
extended language from a CAD. Moreover, it shows that a
formula representation of any set defined by a CAD can be
constructed in the extended language using only the poly-
nomials in that CAD’s projection factor set. This is what
makes the extended language a better “intermediate for-
mat” for CAD-based manipulations of semi-algebraic sets.
Converting from a CAD representation to a Tarski formula
representation often requires “adding” polynomials to the
CAD’s projection factor set — polynomials which appear in
the resulting formulas. Using the extended language, this is
unnecessary.

4.2 Variant quantifiers

Qepcad b provides several “quantifiers” in addition to ∀
and ∃ with which the user can pose his problem — quan-
tifiers that the program can handle particularly efficiently
using CADs. In all cases these new quantifiers express with
one variable what would take several if only ∀ and ∃ were
allowed, and the savings in variables is real, meaning that
if k variables appear in the input, Qepcad b will solve the
problem by constructing a CAD of Rk. Since CAD construc-
tion is very sensitive to the number of variables, Qepcad b

can solve problems expressed with the new quantifiers much
more quickly than if expressed using only ∀ and ∃. The
quantifiers available in Qepcad b in addition to ∀ and ∃
are:

• “Exist exactly k”: This quantifier means what one
might expect, if formula F (x) is quantified with “there
exist exactly k x such that”, then the resulting for-
mula is true if an only if there exist exactly k distinct
real values for x such that F (x) is true. To recast a
formula containing a “there exist exactly k” quanti-
fier using just ∀ and ∃ requires k extra variables. One
odd aspect of this quantifier is that subformulas in the
unquantified variables cannot always be moved in and
out of the quantified block. For example, using ∃k to
denote the quantifier, we see

(∃2b)[a > 2 ∨ b2 − a = 0] < a > 2 ∨ (∃2b)[b
2 − a = 0]

which may be a bit counterintuitive.

• “Exists infinitely many” and “for all but finitely many”:
Denoted F and G respectively in Qepcad b, the mean-
ings of these quantifiers should be clear. Either can be

5

replaced with ∀ and ∃ at the cost of two extra variables.
For example: Fx[H(x)] can be rewritten without the
new quantifier as ∃x, y[x < y∧∀z[x < z < y =⇒ H(z)]].
In addition to requiring fewer variables, these quanti-
fiers can be decided even if values at several points are
undetermined. Qepcad b uses this to substantially
improve the time and space requirements of CAD con-
struction.

In fact, CAD-based quantifier elimination can handle “quan-
tifiers” corresponding to any arrangement of points and in-
tervals along a line, all equally well. For example, Qepcad b

also has a “for a connected subset” quantifier. A future im-
plementation could easily provide facilities for user-defined
“quantifiers”.

The user perspective: The goal in using new “quanti-
fiers” as a way of signalling Qepcad b that certain opti-
mizations can be made is to keep the user’s perspective of
the program pretty much the same. The “Exists exactly k”
quantifier is given as X followed by the value for k. So, for
example, the following Qepcad b session determines when
a monic quadratic has a unique positive root.

===

Enter an informal description between ’[’ and ’]’:

[When is the positive root of a monic quadratic unique?]

Enter a variable list:

(a,b,x)

Enter the number of free variables:

2

Enter a prenex formula:

(X1 x)[x^2 + a x + b = 0 /\ x > 0].

===

Before Normalization >

finish

An equivalent quantifier-free formula:

4 b - a^2 <= 0 /\ [b < 0 \/ [a < 0 /\ 4 b - a^2 >= 0]

\/ [a < 0 /\ b <= 0]]

==

Using Qepcad b’s interactive solution formula construction
commands, it’s possible to find a somewhat nicer solution
formula: a < 0 ∧ 4b− a2 = 0 ∨ b <= 0 ∧ a < 0 ∨ b < 0.

While “there exist exactly k” is useful for phrasing certain
problems with as few variables as possible, the “exists in-
finitely many” and “for all but finitely many” quantifiers
are probably useful more for speeding up CAD construction
in situations where one would normally use ∃ and ∀. They
may be viewed as allowing limited error in Qepcad b. In
particular, the evaluation of FxH(x) (or GxH(x)) by CAD
is correct even if finitely many points in R are miscatego-
rized with respect to H(x). Extending this to the multi-
variate case, the “exists infinitely many” and “for all but
finitely many” quantifiers can be eliminated correctly from
FxH(t1, . . . , tk, x) (or GxH(t1, . . . , x)) even if some cells in
the CAD representation of H(t1, . . . , x) have the wrong (or
unknown) truth values, as long as these cells have measure
zero in their stack. This means that we can ignore cer-
tain cells when the “exists infinitely many” and “for all but
finitely many” quantifiers are used, and the ones we ignore
are the ones for which truth value determination requires
the most work.

This same idea can be carried over into free variable space
— i.e. the user may allow Qepcad b to miscategorize some

points in free variable space, so long as the set of miscatego-
rized points is a measure zero subset of free variable space.
Indeed, Qepcad b has a command measure-zero-error
with which the user allows it the freedom to miscategorize
a measure zero subset of free variable space in the formula
it produces, in return for which Qepcad b can dramatically
reduce the time and space requirements of the computation.
(Mathematica’s implementation of CAD offers essentially
the same thing as “generic CAD”.) The following example
illustrates this command and the error that is allowed in the
output formula.

Enter an informal description between ’[’ and ’]’:

[Allowing limited error in the output formula.]

Enter a variable list:

(a,b,c,x)

Enter the number of free variables:

3

Enter a prenex formula:

(E x)[a x^2 + b x + c = 0].

===

Before Normalization >

measure-zero-error

Before Normalization >

finish

An equivalent quantifier-free formula:

4 a c - b^2 <= 0

==

Here Qepcad b is told to characterize the polynomials of
the form ax2 + bx+ c that have at least one real root. The
formula it returns, however, miscategorizes the points a =
b = 0 ∧ c 6= 0.

The implementation perspective: First we consider
what kind of “quantifier” we can effectively decide using
CAD in the one-dimensional case. Given a formula F (x),
we construct a CAD that decomposes R1 into finitely many
points and open intervals, each marked true or false accord-
ing to whether or not F is satisfied in that cell. One may
“quantify” x with any finite description of the topology of
a subset of the line, and simply check the decomposition to
see whether the points and intervals for which F (x) holds
satisfy that topology. For example, if we quantify x with
“there exist infinitely many” we need to check our CAD of
R

1 to see if any of the open intervals are marked true, since
only then are there infinitely many points satisfying x. If,
on the other hand, we quantify x with “there exist exactly
k”, we need to check that there are no open intervals marked
true and that there are exactly k single-point cells marked
true.

Given a formula G(x1, . . . , xk), we construct a CAD that
decomposes Rk into finitely many cells, which are “stacked”
above regions in Rk−1. If A is a region in Rk−1 above which
cells of the CAD are stacked, all lines α×R, where α ∈ A, are
decomposed by their intersections with the cells in the stack
in topologically the same way. So analyzing the entire stack
can be affected by analyzing a single line α × R — which
is exactly the information contained in a CAD datastruc-
ture. Thus, applying quantifiers in the multi-dimensional
case really boils down to applying quantifiers in the one-
dimensional case.

The quantifiers “exist infinitely many” and “for all but
finitely many” can be decided particularly efficiently because
we can ignore the truth values of section cells in stacks (sin-
gle points in the one-dimensional case). This means that

6

if xk is quantified with either of these quantifiers there is
no need to lift over k-level section cells, and lifting over
section cells is what increases the algebraic degrees of sam-
ple point coordinates. This is essentially the observation
underlying [16]. Moreover, McCallum’s projection can be
improved when projecting (k+ 1)-level polynomials if we’re
not going to lift over any k-level section cells, as pointed out
in [20]. Both of these observations carry into free-variable
space with the measure-zero-error command. In fact, if
the measure-zero-error command is used and “exist in-
finitely many” and “for all but finitely many” are used for all
but the highest level variable, all computation with algebraic
numbers is avoided, which can result in a huge reduction of
Qepcad b’s time and space requirements.

5 Conclusion

This paper has provided a brief description of the functional-
ity of the Qepcad b system, and given examples of how this
functionality allows the user to solve problems. While Qep-

cad b’s implementation of quantifier elimination by CAD
improves upon that of Qepcad, the system it extends, much
of what’s unique to the program are facilities that allow
the user to apply CAD directly to a problem, rather than
through the intermediate language of quantified Tarski for-
mulas. This can result in CAD construction problems in
fewer variables, fewer polynomials and requiring fewer alge-
braic number computations — all of which substantially re-
duces time and space requirements. Additionally, Qepcad

b is very effective at simplifying quantifier free formulas,
which is an important problem in its own right.

Performance is an issue that has not been discussed in this
paper. Practically speaking, Qepcad b is limited in the
size of problem it can solve in a reasonable amount of time
and space, but there is no good characterization of what
kinds of problems it solves quickly in practice. Experimen-
tal comparisons with other programs and methods of quan-
tifier elimination or formula simplification would comprise
another paper entirely.

References

[1] Arnon, D. S. Topologically reliable display of alge-
braic curves. In Proceedings of SIGGRAPH (1983),
pp. 219–227.

[2] Arnon, D. S., Collins, G. E., and McCallum, S.

Cylindrical algebraic decomposition II: An adjacency
algorithm for the plane. SIAM Journal on Computing
13, 4 (1984), 878–889.

[3] Brown, C. W. Simplification of truth-invariant cylin-
drical algebraic decompositions. In Proc. International
Symposium on Symbolic and Algebraic Computation
(1998), pp. 295–301.

[4] Brown, C. W. Guaranteed solution formula construc-
tion. In Proc. International Symposium on Symbolic
and Algebraic Computation (1999), pp. 137–144.

[5] Brown, C. W. Improved projection for cylindrical
algebraic decomposition. Journal of Symbolic Compu-
tation 32, 5 (November 2001), 447–465.

[6] Brown, C. W. The McCallum projec-
tion, lifting, and order-invariance. See
http://www.cs.usna.edu/˜wcbrown/research/techreports.html,
September 2001.

[7] Brown, C. W. Simple CAD construction and its appli-
cations. Journal of Symbolic Computation 31, 5 (May
2001), 521–547.

[8] Brown, C. W. Solution Formula Construction for
Truth Invariant CAD’s. PhD thesis, University of
Delaware, 99.

[9] Caviness, B., and Johnson, J. R., Eds. Quanti-
fier Elimination and Cylindrical Algebraic Decomposi-
tion. Texts and Monographs in Symbolic Computation.
Springer-Verlag, 1998.

[10] Collins, G. E. Quantifier elimination for the elemen-
tary theory of real closed fields by cylindrical algebraic
decomposition. In Lecture Notes In Computer Science
(1975), vol. Vol. 33, Springer-Verlag, Berlin, pp. 134–
183. Reprinted in [9].

[11] Collins, G. E., and Hong, H. Partial cylindrical al-
gebraic decomposition for quantifier elimination. Jour-
nal of Symbolic Computation 12, 3 (Sep 1991), 299–328.

[12] Collins, G. E., Johnson, J. R., and Krandick, W.

Interval arithmetic in CAD computation. to appear in
the Journal of Symbolic Computation.

[13] Dolzmann, A., and Sturm, T. Redlog: Computer
algebra meets computer logic. ACM SIGSAM Bulletin
31, 2 (June 1997), 2–9.

[14] Gonzalez-Vega, L. A combinatorial algorithm solv-
ing some quantifier elimination problems. In Quantifier
Elimination and Cylindrical Algebraic Decomposition,
B. Caviness and J. Johnson, Eds., Texts and Mono-
graphs in Symbolic Computation. Springer-Verlag, Vi-
enna, 1998.

[15] Hong, H. Simple solution formula construction in
cylindrical algebraic decomposition based quantifier
elimination. In Proc. International Symposium on Sym-
bolic and Algebraic Computation (1992), pp. 177–188.

[16] McCallum, S. Solving polynomial strict inequalities
using cylindrical algebraic decomposition. The Com-
puter Journal 36, 5 (1993), 432–438.

[17] McCallum, S. An improved projection operator
for cylindrical algebraic decomposition. In Quanti-
fier Elimination and Cylindrical Algebraic Decomposi-
tion (1998), B. Caviness and J. Johnson, Eds., Texts
and Monographs in Symbolic Computation, Springer-
Verlag, Vienna.

[18] Mishra, B. Algorithmic Algebra. Springer-Verlag New
York, Inc., 1993.

[19] Renegar, J. On the computational complexity and
geometry of the first-order theory of the reals, parts I-
III. Journal of Symbolic Computation 13 (1992), 255–
352.

7

[20] Strzebonski, A. Solving systems of strict polyno-
mial inequalities. Journal of Symbolic Computation 29
(2000), 471–480.

[21] Tarski, A. A Decision Method for Elementary Algebra
and Geometry. University of California Press, Berkeley,
1951. second ed., rev. Reprinted in [9].

[22] Weispfenning, V. The complexity of linear problems
in fields. Journal of Symbolic Computation 5 (1988),
3–27.

[23] Weispfenning, V. Quantifier elimination for real al-
gebra — the cubic case. In Proc. International Sympo-
sium on Symbolic and Algebraic Computation (1994),
pp. 258–263.

[24] Weispfenning, V. Quantifier elimination for real al-
gebra — the quadratic case and beyond. AAECC 8
(1997), 85–101.

8

