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Simple CAD Construction and its Applications∗
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This paper presents a method for the simplification of truth-invariant cylindrical al-
gebraic decompositions (CADs). Examples are given that demonstrate the usefulness

of the method in speeding up the solution formula construction phase of the CAD-
based quantifier elimination algorithm. Applications of the method to the construction
of truth-invariant CADs for very large quantifier-free formulas and quantifier elimination

of non-prenex formulas are also discussed.
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1. Introduction

The method of quantifier elimination by cylindrical algebraic decomposition (CAD) takes
a formula from the elementary theory of real closed fields as input, and constructs a CAD
of the space of unquantified variables. This decomposition is truth invariant with respect
to the input formula, meaning that the formula is either identically true or identically false
in each cell of the decomposition. The method determines the truth of the input formula
for each cell of the CAD, and then uses the CAD to construct a solution formula—a
quantifier-free formula that is equivalent to the input formula (see Collins, 1975; Collins
and Hong, 1991; Hong, 1992). Simple equivalent formulas can be constructed from a
truth-invariant CAD (see Hong, 1992; Brown and Collins, 1996), which motivates the
consideration of both quantified and unquantified input formulas. There are other uses
for this truth-invariant CAD as well, such as determining the topology of the input
formula’s solution space or producing a visualization of the solution space.

Often there will exist a “simpler” truth-invariant CAD than the one produced by the
method.

Definition 1. CAD B is simpler than CAD A if A is a proper refinement of B, i.e.
each cell in B is the union of some cells of A, and A and B are not equal.

Subsequent computations requiring a CAD that is truth invariant with respect to the
input formula may benefit from using a simpler CAD. In this paper a method is presented
for simplifying truth-invariant CADs. The method has been implemented and integrated
into QEPCAD, an implementation of quantifier elimination by CAD, based on the ideas
found in Hong (1990), Collins and Hong (1991), Hong (1992). Examples are presented
which demonstrate the performance of the method, the amount of simplification it can
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Figure 1. A CAD which could be simpler.

Figure 2. Simplifying a CAD by progressively removing projection factors.

achieve, and the effects of its use on solution formula construction. Two new algorithms
are given, both of which make substantial use of CAD simplification, as further appli-
cation of the method. First, a method for constructing truth-invariant CADs for very
large quantifier-free formulas is discussed and applied in an example. Then a method for
performing quantifier elimination on non-prenex formulas efficiently is described.

2. A Motivating Example

The following example is intended to illustrate the idea of a simpler truth-invariant
CAD and show how simplification might be accomplished. The quantified formula

(∃z)
[

19z − 10x+ 10y < 0 ∧[
x2 + y2 + (z − 3)2 < 9 ∨ 2x+ 19z + 10y ≥ 11

] ]
defines a sphere and two half-spaces and asks for the (x, y) pairs which are projections of
points in either the intersection of the first half-space and the sphere or the intersection
of the two half-spaces. Figure 1 shows the CAD produced for this problem. The shaded
region is the solution space, i.e. the (x, y) pairs which satisfy the quantified formula.

Clearly the circle can be removed without destroying the truth-invariance property. In
fact the left ellipse can be removed as well, and even all tangents to the circle and the
left ellipse, and a truth-invariant CAD will still remain—a simpler truth-invariant CAD
than the original (see Figure 2). This is an example of one way in which CADs can be
simplified: by removing projection factors from the projection factor set, and removing
sections of these polynomials from the CAD. The simplification algorithm presented in
the following sections works in exactly this way. It determines that certain polynomi-
als may be removed without destroying the property of truth invariance, and removes
sections of those polynomials from the decomposition.
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3. The General Idea

Suppose that x1, . . . , xk are the free variables of the input formula and that a CAD
has been constructed according to this variable ordering. A polynomial p is said to be
an i-level polynomial if it has positive degree in xi, and degree zero in xi+1, . . . , xk. In
this section we only consider removing k-level polynomials from the projection factor
set. Applied to the earlier example, this corresponds to removing the circle and the left
ellipse but not their vertical tangents, as in the third CAD in Figure 2.

Clearly, any k-level polynomial can be removed without destroying the truth invariance
of the decomposition if none of its sections form the boundary between a true and a
false region in k-space. It is this criterion that makes it obvious that the circle can be
removed from Figure 1, and this observation provides the nucleus of the method of CAD
simplification presented in this paper.

Since only k-level projection factors are being removed, all the boundaries between
different stacks will remain in the simpler CAD regardless of which polynomials are
removed. Therefore, only boundaries between true and false regions within the same
stack need to be considered. These boundaries must be section cells, and if c is a section
cell, we will call it a truth-boundary cell if c and its two stack neighbors do not all
have the same truth value. A k-level section cell is by definition the zero set of one or
more k-level projection factors. As long as one such projection factor is retained in the
projection factor set, the section cell will remain in the simpler CAD. Thus, each truth-
boundary cell gives a condition on the set of k-level projection factors that are kept in the
projection factor set. If Pk is the set of k-level projection factors, and Q is a subset of Pk,
the polynomials in Q may be removed from the projection factor set without destroying
the property of truth invariance if and only if for each truth-boundary cell c there is a
polynomial in Pk − Q which is zero in c. This condition can be used to construct a Q
such that Pk−Q is minimal, in the sense that adding any other k-level projection factor
to Q would leave a truth-boundary cell in which none of Pk −Q’s polynomials are zero.
Polynomials are chosen from Pk one at a time and it is determined whether adding the
chosen element to Q would leave a boundary cell in which no polynomial in Pk − Q is
zero. If not, the chosen polynomial is added to Q. In this way, a minimal Pk − Q can
be constructed in O(N · |Pk|) time, where N is the number of boundary cells (assuming
that the boundary cells have already been determined).

Given a truth-invariant CAD D with projection factor set P , the set Q can be con-
structed, its elements removed from P , and sections of those elements removed from D.
Because Q is minimal in the above sense, the resulting CAD cannot be simplified any
further by removing k-level projection factors.

4. Level k − 1k − 1k − 1 and Below

We now consider removing projection factors from levels lower than k. How we proceed
to do this depends on what kinds of simplification we want to allow.

4.1. sign-invariant CADs

In Collins’ original algorithm for quantifier elimination by CAD (Collins, 1975), a CAD
of free variable space is produced that is sign-invariant with respect to the projection
factor set.
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Figure 3. The left CAD is sign invariant, the right is not.

Definition 2. A CAD is sign-invariant with respect to its projection factor set if, for
any cell in the CAD and any projection factor, the sign of the projection factor is the
same at every point in the cell.

The partial CAD introduced by Hong has a slightly weaker condition that we will call level
sign invariance. It says that for any cell c there is a level j such that the projection factors
of level less than or equal to j have invariant sign in c, and if the point (α1, α2, . . . , αr) is in
c then any points whose first j coordinates are (α1, α2, . . . , αj) is in c. Figure 3 shows two
CADs of 2-space which are truth invariant with respect to the quantified formula from
Section 2. The decomposition on the left is sign-invariant, that on the right is not. The
polynomial defining the ellipse does not have invariant sign within the right-most cell of
the right-hand CAD, nor does the 1-level projection factor defining the ellipse’s tangents.

Which projection factors are removed and which are kept may depend on whether or
not it is desirable to retain either of these two sign-invariance properties. In solution
formula construction, sign invariance is useful because a sign-invariant CAD contains
enough information to decide whether or not a formula constructed from the projection
factors is a solution formula. With that motivation, we devote the following two sections
of this paper to a method for simplification that retains sign-invariance with respect
to the reduced projection factor set. Modification of the method to deal correctly with
partial CADs (i.e. to retain level sign invariance) is discussed in Section 6.

Sign invariance will be preserved by requiring that the reduced projection factor set
be closed under the projection operator. This requirement is easy to satisfy, because the
reduced projection factor set is a subset of the original projection factor set, and the
projection of all those polynomials has already been computed. So ensuring that the
reduced projection factor set is closed under the projection operator just requires some
bookkeeping. As projection factors of level less than k are removed, the two properties
of truth-invariance and closure under the projection operator will be retained in the
resulting CAD.

4.2. simplifying while retaining sign-invariance

Suppose that D is a truth-invariant CAD with projection factor set P , and that D is
a simpler truth-invariant CAD with projection factor set P1 ∪ · · · ∪ Pi ∪ P i+1 ∪ · · · ∪ P k.
We will consider the problem of simplifying D by removing i-level projection factors.

Given the above discussion it is clear that, if S is the set of i-level polynomials in
the closure under the projection operator of P i+1 ∪ · · · ∪ P k, S must be retained in the
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Figure 4. An example of a truth-boundary of lower level.

projection factor set. The set P1∪· · ·∪Pi−1∪S∪P i+1∪· · ·∪P k, defines a sign-invariant
CAD, but not necessarily one that is truth invariant. It may be that other polynomials
from Pk have to be kept in order to ensure truth invariance (see last two decompositions
in Figure 2). Which polynomials to keep can be decided in a way analogous to the way
it was decided for level k: if Q is the set of polynomials to be removed from Pi, then
for each truth-boundary cell c there must be a polynomial in Pi −Q which is zero in c.
However, the truth-boundary cell cannot be defined as it was for level k. In the k-level
case, truth-boundary cells are sections which form a boundary between true and false
regions within a stack. Since the CAD is a decomposition of k-space, such cells must be
defined by k-level polynomials. When considering the removal of polynomials of level i,
section cells in the induced CAD of i-space are considered, since they are defined by i-
level polynomials. However, a cell in the induced CAD of i-space does not in general have
a truth value. Instead, the cylinder above it is partitioned into truth-invariant regions.
So the definition of “truth-boundary cell” must be extended to one that makes sense for
levels less than k.

Definition 3. An i-level cell c is said to be over a j-level cell d if j ≤ i and the projection
onto j-space of c is d. The stack over d consists of all (j + 1)-level cells over d.

Consider an i-level section cell c. Suppose that all polynomials of level greater than i
are delineable over the union of c and its two stack neighbors, call them b and d. In this
case there is a natural correspondence between k-level cells over b, c, and d. If the cells
b, c, and d are merged into one cell, each k-level cell over b ∪ c ∪ d is the union of three
corresponding cells over a, b, and c. If there are three corresponding cells which do not all
have the same truth value then their union is not a truth-invariant region, and c defines
a boundary between true and false regions in the CAD.

Definition 4. Cell c is a truth-boundary cell if there exists some triple of corresponding
cells over b, c, and d which do not all have the same truth value.

Figure 4 shows a section cell c of level 1 and its two stack neighbors b and d from the
now familiar example of Section 2. Cell c is a truth-boundary cell because the cells b′,
c′, and d′ are corresponding cells which do not all have the same truth value. Were cells
b, c, and d to be merged there would be cells in the resulting stack over b ∪ c ∪ d that
would not be truth invariant—b′ ∪ c′ ∪ d′, for example.

A sufficient condition for the delineability of the polynomials of level greater than i
(i.e. P i+1, . . . , P k) over b ∪ c ∪ d is that no i-level polynomial that is zero in c is in the
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projection of P i+1, . . . , P k. So if S is, as above, the set of i-level projection factors in
the projection of P i+1, . . . , P k, the set of truth-boundary cells are chosen from the set of
i-level section cells that are not sections of polynomials in S. Some truth-boundary cells
may be missed this way, but only cells that are sections of some polynomial in S, and
S is going to be retained in the projection factor set. Just as in the k-level case, each
truth-boundary cell gives a condition on the set of polynomials to be kept. For truth-
boundary cell c, let lc be the set of i-level projection factors which are zero in c. The set
of i-level projection factors to be retained must have non-empty intersection with lc for
every truth-boundary cell c. Such a set is called a hitting set for the set of all lc’s. The
set Pk −Q constructed in the previous section was a minimal hitting set, and the i-level
minimal hitting set problem can be solved the same way. Let S′ be such a minimal hitting
set for the set of all lc’s. Any i-level projection factor in neither S nor S′ may be removed
from Pi without destroying the property of truth-invariance or of sign-invariance in the
resulting CAD. All truth-boundary cells remain, since for each truth-boundary cell c an
element of either S or S′ must be zero in c.

5. An Algorithm

The algorithm SIMPLECAD, which simplifies a truth-invariant CAD, is presented in
this section. In addition, implementation issues are discussed, and an analysis of SIM-
PLECAD’s computational complexity given.

5.1. algorithm description

Suppose P is the initial set of projection factors and D is the sign-invariant CAD
constructed from P . SIMPLECAD constructs a sign-invariant CAD D with projection
factor set P , such that D is a simpler truth-invariant CAD than D.
D and P are constructed iteratively, a level at a time, starting from level k and working

down to level 1. At the beginning of the iteration corresponding to level i, D is the sign-
invariant CAD defined by P1∪· · ·∪Pi∪P i+1 · · ·∪P k. At each iteration this CAD retains
the property of truth invariance with respect to the input formula.

Algorithm SIMPLECAD.
Inputs: Projection factor set P and CAD D defined by P . D is sign-invariant with respect
to P and truth invariant with respect to the input formula.
Outputs: P , a subset (if possible a proper subset) of P that is closed under the projection
operator, and D, a CAD that is sign-invariant with respect to P and truth invariant with
respect to the input formula.

(1) Set D = D.
(2) For i from k down to 1 do

(a) Construct S, the set of i-level projection factors in the closure under the pro-
jection operator of P i+1 · · · ∪ P k.

(b) Construct C, the set of all i-level truth-boundary cells in D which are not
sections of any elements of S.

(c) Set L equal to {lc|c ∈ C}, where lc is the set of all elements of Pi which are
zero in cell c.
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(d) Set S′ to a minimal hitting set for L. (S′ is a subset of Pi.)
(e) Set P i = S ∪ S′ and modify D for the next iteration.

(3) Set P =
⋃k
i=1 P i.

5.2. implementation issues

The complexity of SIMPLECAD cannot be examined without some kind of information
about the data structures defining CADs and projection factors. Therefore, some imple-
mentation issues have to be addressed before attempting any kind of complexity analysis.

Since our implementation is built into QEPCAD, assumptions about CAD and projec-
tion factor data structures will be based on those structures in QEPCAD. In particular:

cells Given a cell c, a list of the cells in the stack over c (ordered bottom to top) can be
retrieved in O(1) time. These cells are c’s children.

truth value The truth value of a cell can be determined from its data structure in O(1)
time.

sign information For an i-level cell c, a list of the signs of the i-level projection factors
in c is can be retrieved in O(1) time.

projection Given a projection factor data structure p, a list of all derivations of p can
be retrieved in O(1) time. A derivation of a projection factor describes where it
came from; was it a factor of some polynomial appearing in the input formula,
or a factor of a discriminant of some projection factor, a factor of a coefficient
of some projection factor, or a factor of the resultant of some pair of projection
factors? (Assuming the McCallum projection operator (McCallum, 1998), these
are the possibilities.)

One implementation issue is the representation of the simpler CAD. In our implemen-
tation, each cell of the simpler CAD is represented as a data structure with two fields.
The first is a list of the cell’s children, the second a pointer to a “representative cell” in
the original CAD. The representative cell is one of the group of cells from the original
CAD which comprise the represented cell from the simpler CAD. Information about the
signs of projection factors, truth value, or sample points can all be read off from the
representative cell. Thus, the simpler CAD requires very little space.

Another issue concerns minimal hitting set problems. It may be desirable to have hit-
ting sets be as small as possible, as that corresponds to a fairly intuitive notion of “as
simple as possible” for the resulting CAD. For example, if the truth-invariant CAD is
to be used for solution formula construction, then few projection factors in the truth-
invariant CAD may correspond to a formula containing few polynomials. So one might
want to ask for hitting sets which are of minimum cardinality rather than just minimal.
The minimum hitting set problem, it turns out, is NP-Hard (Garey and Johnson, 1979).
While the problem instances created by SIMPLECAD may not also be NP-Hard, min-
imum hitting set algorithms could have time complexity exponential in Pi. In practice,
however, Pi has moderate size, and most truth-boundary cells are sections of few of the
elements of Pi. In fact, often there will be truth-boundary cells which are sections of
exactly one i-level projection factor. A polynomial which is zero in such a cell must be
included in the reduced set of i-level projection factors, so this allows one to simplify
the minimum hitting set problem. In practice, it is usually not difficult computationally
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to find a hitting set of minimum cardinality, so our implementation of SIMPLECAD
constructs minimum hitting sets. For complexity analysis, however, it will be assumed
that minimal hitting sets are constructed via a method similar to that outlined for the
k-level case.

5.3. complexity analysis

Proposition 1. Given a CAD with projection factor set P and assuming that the CAD
data structure has the operations and complexities given above, the time required for
SIMPLECAD is O((N + kn + |P |2) · |P |), where N is the number of cells in the CAD,
and n = maxi(ni), where ni is the maximum degree in xi of any i-level projection factor.

Consider the time complexity for each step of the loop in Step 2. During the loop it-
eration corresponding to level i, step (a) determines which elements of Pi are in the
projection of P i+1 ∪ · · · ∪ P k. For each p ∈ Pi there is a list of derivations of p. To
decide whether p is in the projection, potentially each derivation must be examined. Ex-
amining a derivation means determining whether the polynomials in the derivation are
in P i+1 ∪ · · · ∪ P k. This can be done in constant time. The number of derivations for P
must be less than the total number of possible derivations. There are |P | possible dis-
criminants, n|P | possible coefficients, and |P |2 possible resultants, so the time required
for step (a) is O

(
(n|P |+ |P |2) · |Pi|

)
. This bound is, of course, quite pessimistic.

In step (b) the set of all truth-boundary cells is constructed. In determining whether
a given i-level section cell is a truth-boundary cell, it may be that the truth values of all
descendents of the cell and both of its stack neighbors need to be inspected. Since an i-
level sector cell may neighbor two sections in its stack, some cells may be examined twice,
but never more. Thus, ifN is the number of cells in the CAD, fewer than 2N examinations
per iteration are made. When a k-level cell is examined, its truth value is determined,
which requires time O(1). When a lower level cell is examined it is determined whether
it is a section of some element of S. This operation is O(|Pi|), since S is a subset of Pi.
Otherwise its child cells are fetched for examination, which is a constant time operation.
Thus, the complexity of the step for the i-level iteration is O(N · |Pi|).

Step (c) is O(N · |Pi|), since for each of at most N cells a subset of Pi must be chosen.
Since we require only a minimal hitting set, the method outlined in Section 2 can be
adapted to construct a minimal Pi −Q to perform step (d) in O(N · |Pi|) time.

In step (e), D must be modified to reflect setting P i to S ∪ S′. Since some i-level
projection factors have been removed, some cells in stacks over (i − 1)-level cells may
need to be merged. Specifically, sections cells in which no element of S∪S′ are zero must
be removed. This simply means examining the child list of each (i−1)-level cell for section
cells in which no element of S ∪ S′ is zero. Such a section cell and the following sector
are removed from the child list. The cell data structure for the sector preceding such a
section represents the union of all three cells. The (i − 1)-level cells must be collected,
and the signs of the polynomials in S ∪S′ must be examined for every section cell in the
stack over each (i− 1)-level cell. Thus, step (e) requires O(N · |Pi|) time.

Over all iterations, each of steps (b) through (e) require O(N · |P |) time. So together
with step (a), the total time requirement is O((N + kn+ |P |2) · |P |).
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6. Extension to Partial CADs

The sole problem in extending SIMPLECAD to deal correctly with partial CADs is
the identification of truth-boundary cells. Definition 4 states that an i-level section cell
c is a truth-boundary cell if there is no triple of corresponding cells over c and its two
stack neighbors in which not all three cells have the same truth value. That there is
a natural correspondence between k-level cells over c and its two stack neighbors is
guaranteed because:

(1) the projection factors of level greater than i are assumed to be delineable over c,
and

(2) the CAD is assumed to be sign-invariant.

Partial CADs are level-sign-invariant but not sign-invariant, so the second condition
fails. However, the definition of truth-boundary cell can be extended so that the algo-
rithm “works” for partial CADs. Suppose D is a partial CAD with projection factor
set P . “Works” means that the same simplified projection factor set is constructed by
SIMPLECAD for D as would have been constructed for the sign-invariant CAD defined
by P . Indeed, this basically provides the extended definition for “truth-boundary cell”.

Once again suppose D is a partial CAD with projection factor set P , and let D′ be
the sign-invariant CAD defined by P . For any k-level cell c in D, there is a level j such
that all projection factors of level j and lower are sign-invariant in c. The projection of
c onto j-space is some j-level cell, call it c∗, which must also be a j-level cell in D′.

Definition 5. A j-level cell c∗ is a truth-boundary cell if:

(1) All projection factors of level j or lower are sign-invariant in c∗.
(2) c∗ is a section cell.
(3) c∗ is a truth-boundary cell in D′.

With this extended definition of truth-boundary cells, SIMPLECAD performs identically
for sign-invariant and level-sign-invariant CADs.

Deciding whether a given cell satisfies Definition 5 is not quite straightforward. The
first two criteria are easily checked, but the third is more difficult, since it is a condition
on a cell in D′, which presumably has not even been constructed. The question can,
however, be decided without considering cells in the truth-invariant CAD D′.

If b′, c′, and d′ are corresponding cells, then they are said to agree if

• the stacks over each of a′, b′, and c′ consist of cells in which all (j+1)-level projection
factors have invariant sign, and each triple of corresponding (j + 1)-level cells over
b′, c′, and d′ agree,
or

• all k-level cells over a′, b′, and c′ have the same truth value.

Let c be a j-level section cell in D such that all projection factors of level greater than j
are delineable over c and its stack neighbors, call them b and d. Cells b, c, and d agree if
and only if c is not a truth-boundary cell. This characterization involves only cells in D,
and provides an easy procedure for deciding whether a cell is a truth-boundary cell.
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Table 1. x-axis ellipse problem.

Level Proj. fac.’s Cells
1 2 3 1 2 3

Original CAD 7 9 7 15 105 635
Simple CAD 3 6 3 7 37 103

7. Examples

In this section we present some quantifier elimination problems, look at how SIM-
PLECAD performs for these examples, and examine the effect of truth-invariant CAD
simplification on solution formula construction. It is important to note that it may hap-
pen that a solution formula can be constructed from the projection factor set of the
original CAD but not the simpler CAD. This situation can be dealt with quite simply
(Brown and Collins, 1996) but, as it applies solely to solution formula construction, is
outside the scope of this paper. As stated in the introduction, these examples were inves-
tigated using a version of QEPCAD extended by an implementation of SIMPLECAD.
Computations were performed on a Sun Ultra-2/1170 with 320 MB of memory. Times
for garbage collection are not included.

7.1. the x-axis ellipse problem

The x-axis ellipse problem, a special case of the general ellipse problem posed by Kahan
(1975), is a traditional benchmark example for quantifier elimination (see Hong, 1992;
Dolzmann and Sturm, 1997). The problem asks when the ellipse (x− c)2/a2 + y2/b2 = 1
lies in the unit circle. Of course we require a and b to be non-zero, and in fact we are
only interested in the case where they are positive. The formula

(∀x)(∀y)
[
a > 0 ∧ b > 0 ∧

[
b2(x− c)2 + a2y2−

a2b2 = 0 −→ x2 + y2 − 1 <= 0
] ]

expresses this as a quantifier elimination problem. With the variable ordering a < b <
c < x < y, QEPCAD produces a truth-invariant CAD for this input in about 22 seconds.
Our program uses this CAD to construct a simple CAD in about 34 milliseconds. Table 1
shows the difference in the number of projection factors and in the number of cells in
these two truth-invariant CADs.

Using the simplified CAD as input, QEPCAD’s solution formula construction program
(Hong, 1992) produces a solution formula in 846 milliseconds. Using the original CAD
as input, 20.4 seconds is required, and a slightly longer formula is produced.

In Hong (1990, 1992) this problem is phrased somewhat differently. Hong argues that
because of symmetry, we need only consider values of c greater than zero. He also points
out some obvious necessary conditions and arrives at

(∀x)(∀y)

 0 < a ≤ 1 ∧ 0 < b ≤ 1 ∧ 0 ≤ c < 1− a ∧[ [
c− a < x < c+ a ∧ b2(x− c)2+
a2y2 − a2b2 = 0

]
−→ x2 + y2 − 1 <= 0

] 
as his formulation of the x-axis ellipse problem. QEPCAD requires 2549 milliseconds to
construct a truth-invariant CAD for this input. From this CAD, QEPCAD constructs
an equivalent formula in 72 milliseconds. Our algorithm produces a simplified CAD from
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Figure 5. The original CAD and the simple CAD.

the original in 22 milliseconds. When Hong’s solution formula construction method is
run with this simpler CAD as input, the same formula is returned in 5 milliseconds.

7.2. the complex product of an edge and a square

Consider the complex segment L = {x + i | x ∈ [0, 2]}, and the complex square
S = {x+ iy | x ∈ [2, 4], y ∈ [−1, 1]}. Quantifier elimination can be used to determine the
complex product of S and L. Since there are the easily derived necessary conditions that
the product lies in the box [−1, 9] × i[−6, 6], the product can be expressed as all pairs
(x, y) satisfying

(∃x1)(∃x2)(∃y2)


x = x1x2 − y2 ∧ y = x1y2 + x2 ∧
0 ≤ x1 ≤ 2 ∧ 2 ≤ x2 ≤ 4 ∧
−1 ≤ y2 ≤ 1
∧ − 1 ≤ x ≤ 9 ∧ −6 ≤ y ≤ 6

 .
These necessary conditions are added to the quantified formula because QEPCAD can
use them to speed up its computations. Figure 5 shows two CADs that are truth invariant
with respect to this input formula—the shaded regions are those in which the formula is
satisfied. The first CAD is the original one produced by the quantifier elimination process.
The second is the minimal truth invariant CAD constructed from the original CAD by
SIMPLECAD. Table 2 gives a quantitative comparison of the two CADs. Construction
of the original CAD was accomplished by QEPCAD in 171 seconds, with the variable
ordering x < y < x1 < x2 < y2. The simpler truth invariant CAD was constructed in
134 milliseconds. With the original truth-invariant CAD as input, QEPCAD required
10298 seconds to produce a solution formula. Using the simplified CAD as input, a
formula was produced in 191 seconds.

One property that both of these examples have in common is that the hitting set
problems that arise during SIMPLECAD’s computations (there is one problem for each
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Table 2. Complex product of an edge and a square.

Level Proj. fac.’s Cells
1 2 1 2

Original CAD 73 18 143 1795
Simple CAD 14 6 27 179

level) have unique minimal solutions. Our algorithm constructs a simple CAD with two
important properties: (1) truth invariance, and (2) a projection factor set which is closed
under the projection operator and is a subset of the original projection factor set. If all
the hitting set problems during the computation have unique minimal solutions, then
the CAD SIMPLECAD produces is the simplest possible with these two properties.

8. Simple CADs for Very Large Quantifier-free Formulas

This section shows how CAD simplification can be used to help construct truth-
invariant CADs for very large quantifier-free input formulas—formulas for which the
usual methods are impractical. Very large quantifier-free formulas sometimes arise in
practice. The quantifier elimination method of Weispfenning (1994, 1997), for example,
is able to construct solution formulas for problems for which CAD-based quantifier elim-
ination is impractical, but the formulas it produces are often quite large. This is true
even for formulas describing relatively simple semi-algebraic sets.

Simplification of these very large quantifier-free formulas is not easy to achieve (see
Dolzmann and Sturm, 1997, for work in this area). However, if we can construct a truth-
invariant CAD for a formula, we can use the method of Hong (1992) and CAD simpli-
fication to construct a simple equivalent formula. In fact, depending on the application,
a truth-invariant CAD might be more useful than any formula, no matter how simple
(for computing dimension or plotting, for example). Constructing a truth-invariant CAD
directly from a very large formula may be impractical due to the number of polynomi-
als in the formula. But if the formula describes a relatively simple semi-algebraic set,
many of those polynomials will be removed by the CAD simplification process, leaving
a simplified CAD with a small projection factor set and few cells.

The next section describes a problem that leads to a very large quantifier-free for-
mula which, as we will see, describes a relatively simple semi-algebraic set. The next
section outlines an algorithm, Form2SCAD, that uses CAD simplification to help with
the construction of a truth-invariant CAD for a very large formula. Finally, Form2SCAD
is applied to the example formula to obtain a simple CAD, and even a simple equiva-
lent formula.

8.1. a more difficult complex product problem

The edge-square complex product problem is a difficult one for the method of quantifier
elimination by CAD, but a tractable one. Adding another dimension and considering the
complex product of a rectangle and a square results in problems that are too large for
QEPCAD. For example, consider the complex product of the square [1, 2] × i[1, 2] and
the rectangle [0, 1] × i[−3,−1]. This can be expressed as the complex numbers x + iy
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such that

∃x1∃y1∃x2∃y2

 x = x1x2 − y1y2 ∧ y = x1y2 + x2y1 ∧
x1 ≥ 1 ∧ x1 ≤ 2 ∧ y1 ≥ 1 ∧ y1 ≤ 2 ∧
x2 ≥ 0 ∧ x2 ≤ 1 ∧ y2 ≥ −3 ∧ y2 ≤ −1

 .
QEPCAD cannot produce a truth-invariant CAD for this formula in a reasonable

amount of time and space. Using the McCallum projection, the program computes a
projection factor set containing 161 bivariate and 8873 univariate polynomials. With
even 12 times QEPCAD’s default size for garbage collected space, memory is exhausted
before the CAD of 1-space can be constructed.

However, this input formula satisfies the degree requirements of the method of Weispfen-
ning (1994, 1997), which has been implemented in the Redlog system (Dolzmann and
Sturm, 1996). Redlog is able to produce a quantifier-free equivalent formula for this input,
but the formula is very large. Printed out, it consists of 344,346 ASCII characters. At the
top level, it is the disjunction of 131 sub-formulas. It contains 1141 distinct atomic formu-
las, built from 442 distinct irreducible bivariate and eight distinct irreducible univariate
polynomials. QEPCAD cannot construct a truth-invariant CAD from this formula in a
reasonable amount of time and space, it is simply too big. Given 140 minutes of CPU
time QEPCAD was unable to even complete its projection phase.

The next section describes a method for using CAD simplification to construct a truth-
invariant CAD for a very large quantifier-free formula—like the one produced by Redlog
for this problem. In Section 8.3, an approximation of the method is applied to Redlog’s
quantifier-free formula for the rectangle–square product. As will be seen, the resulting
CAD is quite small, and the equivalent formula

x− 1 ≥ 0 ∧ y + 3x− 20 ≤ 0 ∧ y − x+ 2 ≤ 0 ∧ 2y + x− 5 ≤ 0 ∧
y + 6 ≥ 0 ∧ y + 2x ≥ 0 ∧ y − x+ 12 ≥ 0

is easily obtained from it.

8.2. truth-invariant CADs from very large formulas

Divide and conquer is one of the most common techniques used in algorithm design
and, as this section describes, it can be applied to the construction of truth-invariant
CADs from very large formulas. It is assumed that the very large formula given as
input describes a relatively simple semi-algebraic set, so one expects that most of the
polynomials appearing in the original formula are irrelevant as far as constructing a simple
truth-invariant CAD is concerned. If this is indeed the case, then simplifying the original
formula’s constituent sub-formulas eases the task of constructing a truth-invariant CAD,
since it removes many of the irrelevant polynomials.

To make the discussion a bit clearer: for a set of polynomials, A, let us call the sign-
invariant CAD that is produced for A by the usual CAD construction process the CAD
defined by A. (Note that this CAD will depend on the projection operator used.) De-
note by PROJ(A) the projection factor set produced for this CAD. The usual method
for constructing a truth-invariant CAD for a formula F is to construct the CAD for
the set of polynomials appearing in F . For very large formulas, however, this approach
(constructing a CAD directly from F ) is not always best.

For sets of polynomials A and B, PROJ(A)∪PROJ(B) is contained in PROJ(A ∪B),
and the former is typically much smaller than the later (how much depends on the over-
lap between A and B, the number of variables involved, and the number of coincidental
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common factors that spring up). This means that the time and space required for con-
structing the CAD defined by A and the CAD defined by B is typically much smaller
than what is required to construct the CAD defined by A ∪B.

Let F = FA op FB , where op is either ∧ or ∨, be a quantifier-free formula. Let A be the
set of polynomials in FA, and let B be the set of polynomials in FB . The CAD defined by
A ∪B is a truth-invariant CAD for F . Suppose A′ and B′ are the projection factor sets
of simplified truth-invariant CADs for FA and FB respectively. Then clearly the CAD
defined by A′∪B′ must also be truth invariant with respect to F . If a significant amount
of simplification takes place, the CAD defined by A′ ∪ B′ will be substantially smaller
than the CAD defined by A ∪B, and take a lot less time to construct.

The preceding paragraph points to a method for constructing a truth invariant CAD
for F that has the potential to be significantly faster and require a lot less space than
constructing a CAD directly from F . A truth-invariant CAD for F can be constructed by:

(1) constructing CADs for FA and FB ,
(2) simplifying the CADs for FA and FB , and
(3) constructing a CAD for A′ ∪B′.

Provided that there is not too much overlap between the sets A and B, and provided
that a substantial amount of simplification takes place in Step 2, this is much more
efficient than constructing a CAD directly from F . However, to simplify the resulting
CAD for F , the truth value of F must be determined for each cell of the CAD. This is
actually easily accomplished using the simplified CADs for FA and FB . The CAD for F
is a refinement of the CAD for FA, and is also a refinement of the CAD for FB . Each
cell of the decomposition for F is contained in a cell from the CAD for FA as well as a
cell from the CAD for FB . If we make a traversal of the cells in the CAD for F , we are
simultaneously making traversals of the cells of the CADs for FA and FB . We can then
assign truth values to cells in the CAD for F using the truth values of the corresponding
cells in the CADs for FA and FB .

Algorithm Form2SCADversion1.
Input: a formula F = FA op FB .
Output: a simple truth-invariant CAD for F .

(1) Construct CA a truth-invariant CAD for FA, and simplify it.
(2) Construct CB a truth-invariant CAD for FB , and simplify it.
(3) Construct C, a sign-invariant CAD for A′ and B′, the simplified projection factor

sets for CA and CB , respectively.
(4) Using CA and CB , assign the cells of C truth values with respect to F .
(5) Simplify C.

If a simple truth-invariant CAD for F can be constructed more efficiently via the
algorithm Form2SCADversion1(F) than by direct means, why not apply the same
technique in Steps 1 and 2 in order to construct CA and CB? That would be the true
divide-and-conquer technique, and that gives the method proposed in this section:

Algorithm Form2SCAD.
Input: a formula F = FA op FB .
Output: a simple truth-invariant CAD for F .
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Figure 6. Simplified truth-invariant CAD for the rectangle–square complex product problem.

(1) If F is an atomic formula, construct by usual means a truth-invariant CAD for F ,
and return it.

(2) CA = Form2SCAD(FA), CB = Form2SCAD(FB).

(3) Construct C, a sign-invariant CAD for A′ and B′, the projection factor sets for CA
and CB , respectively.

(4) Using CA and CB , assign the cells of C truth values with respect to F .

(5) Simplify C, and return the result.

8.3. constructing the rectangle–square product

An approximation of Form2SCAD was performed on Redlog’s quantifier-free for-
mula for the rectangle–square product problem. The method was only approximated
since defining formulas for the simplified CADs were used in Step 4 of the method (the
step that assigns truth values to cells) rather than what was described above. This was
unavoidable unless QEPCAD was to be heavily modified. Fortunately, there was not too
much of a penalty for constructing defining formulas for this example since almost all of
the simplified CADs constructed during this process were projection-definable, and since
small, simple formulas were not required. In another departure from Form2SCAD as
outlined above, the divide-and-conquer approach was not used for sub-formulas of fewer
than 10 atoms—i.e. in Step 1 a CAD was constructed directly not just for atomic formu-
las, but for any formula consisting of fewer than 10 atoms. This kind of optimization is
common in divide-and-conquer algorithms where, at some point, the overhead of dividing
problems and combining solutions outweighs any benefits. The best cutoff point probably
depends on polynomial degrees and the number of variables involved.

Basically, the method was carried out as a script, parsing formulas, creating input
files for QEPCAD, launching QEPCAD (3069 times for this example!), and parsing the
resulting output files. An implementation that was integrated with QEPCAD would
presumably be somewhat faster. As it was, the truth invariant CAD in Figure 6 was
constructed from Redlog’s output formula in about 37 minutes. The formula

x− 1 ≥ 0 ∧ y + 3x− 20 ≤ 0 ∧ y − x+ 2 ≤ 0 ∧ 2y + x− 5 ≤ 0 ∧
y + 6 ≥ 0 ∧ y + 2x ≥ 0 ∧ y − x+ 12 ≥ 0

is easily obtained from the simple truth-invariant CAD, either by inspection or automated
means.
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Figure 7. Simple CADs defined by sub-formulas from Redlog’s output.

8.4. commentary on form2SCAD

Redlog’s formula for the rectangle–square product problem is quite complicated in
that it describes the simple region from figure 6 as the union of some very complicated
regions. (Figure 7 gives examples of some of these.) Taken to even further extremes, this
property could cause problems for Form2SCAD.

The rectangle–square product problem also has just two variables. Formulas in more
variables are, obviously, more likely to prove too difficult for Form2SCAD. The fact that a
problem as large as this one could be completed in a reasonable amount of time indicates
that Form2SCAD can be effective for very large formulas in two variables. In even just
three variables, however, the presence of very large extraneous polynomials, or of sub-
formulas describing complex regions, could render the method inapplicable in practice.

9. Non-prenex Input Formulas

The CAD-based method of quantifier elimination assumes an input formula in prenex
form, which is not natural for some applications. Any quantified formula can be put into
prenex form, but possibly at the cost of additional variables. For example, the formula
∃x[P (x)] ∧ ∃x[Q(x)], where P and Q are quantifier-free formulas, can only be put into
prenex form by introducing another variable, call it y, which yields ∃x∃y[P (x) ∧ Q(y)].
Since quantifier elimination by CAD is doubly exponential in the number of variables
in the input formula, introducing new variables is not attractive†. This section describes
how CAD simplification and the methods of the previous section can be used to deal
efficiently with non-prenex input formulas.

9.1. the obvious approach and its flaws

Any method for quantifier elimination that is able to deal with prenex input formulas
is automatically able to deal with non-prenex formulas without adding any variables.
We simply replace any innermost quantified subformula, which is clearly prenex, with

†In fact, the situation is a little bit complicated. While it is true that quantifier elimination by CAD is
doubly-exponential in the number of variables, it does not follow that the algorithm is doubly exponential
in n for an n-variable prenex formula representing a k-variable non-prenex formula, where k < n.
Projection will typically be easier with such formulas than with arbitrary n-variable formulas because
many polynomials will be constant in many of the variables. It is clear, for example, that no polynomial
will contain all n-variables. However, stack construction will still be quite expensive, since the number
of cells will still grow at least exponentially in n, and since stack construction will still require n-level
towers of algebraic extensions.



Simple CADs 537

the result of performing quantifier elimination on that subformula. This is repeated until
all quantifiers have been eliminated. Considering once again the non-prenex formula
∃x[P (x)] ∧ ∃x[Q(x)], we perform quantifier elimination to compute a quantifier-free
equivalent to ∃x[P (x)], call it F , and eliminate the quantifiers from ∃x[Q(x)] to obtain
a quantifier-free equivalent formula, call it G. Finally, the two subformulas from the
original problem are replaced with their quantifier-free equivalents yielding F ∧ G. For
the CAD-based method of quantifier elimination, this approach, which we will call the
obvious approach, will typically be considerably more efficient than performing quantifier-
elimination on ∃x∃y[P (x) ∧ Q(y)].

This obvious approach has flaws, however. In most cases simply returning F ∧ G is in-
sufficient, and a CAD representation of the set defined by F ∧ G has to be constructed—
first of all because F ∧ G may not be a simple formula for the set it defines (it may even
define the empty set), and secondly because the problem may be embedded in a larger
quantifier elimination problem. The question then becomes as follows: Is it more efficient
to construct F from ∃x[P (x)], G from ∃x[Q(x)], and a CAD from F ∧ G, or to construct
a CAD directly from ∃x∃y[P (x) ∧ Q(y)]? In essence that comes down to the question:
Which is smaller, A—the set of projection factors used in computing F , G, and CAD rep-
resentation of F ∧ G, or B—the projection factor set produced from ∃x∃y[P (x) ∧ Q(y)]?
As long as A is not “larger” than B, then the obvious approach is clearly more efficient.
Otherwise it becomes more difficult to compare the two methods. Unfortunately, we have
the following possibilities: A ⊂ B, B ⊂ A, A = B, and A and B incomparable.

The only projection factors in x or y are those directly from the input formula, and
they appear in both A and B (though possibly with different variable names), so we may
restrict our attention to projection factors in the free variables only.

The obvious approach constructs truth-invariant CADs of free-variable space from
∃x[P (x)] and from ∃x[Q(x)]. Call the projection factor sets of these two CADs SP and
SQ. The free-variable projection factors in B come from projecting ∃x∃y[P (x) ∧ Q(y)],
and are actually exactly the closure under projection of SP ∪SQ†. The obvious approach
then proceeds to construct the formulas F and G. Let SF be the projection of the
polynomials appearing in F , and let SG be the projection of the polynomials appearing
in G. The projection factor set A of the CAD produced from F ∧ G is the closure under
projection of SF ∪ SG.

In the “best case”, CAD simplification takes place before F and G are constructed, so
SF ⊂ SP and SG ⊂ SQ. Thus, barring coincidental common factors, A ⊂ B.

In the “worst case”, the augmented projection (Collins, 1975) must be used to produce
the formulas F and G and no simplification takes place, so that SP ⊂ SF and SQ ⊂ SG.
Thus, barring coincidental common factors, B ⊂ A.

Clearly, if neither case holds we may have A = B, and by mixing cases we may have
A and B incomparable.

In this section it will be demonstrated that by representing F and G as simple CADs
rather than formulas, we may follow the obvious approach and yet ensure that A ⊆ B,
thus providing a method of dealing with non-prenex input formulas that is unambiguously
superior to the method of converting to prenex form. Of course, this method will be
applicable to any non-prenex quantified formula.

†Projecting to eliminate x only involves polynomials in P (x) and produces polynomials in only the free
variables. Projecting to eliminate y only involves polynomials in Q(y) and produces polynomials in only
the free variables. Thus, projecting to eliminate quantified variables in ∃x∃y[P (x) ∧ Q(y)] is exactly like
projecting to eliminate the quantified variable x in the two separate problems ∃x[P (x)] and ∃x[Q(x)].
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9.2. union and intersection of CADs representing semi-algebraic sets

In Section 8 we described how the union and intersection of semi-algebraic sets can be
computed efficiently using the simple CAD representation. There it was assumed that
there was an ordering x1 < x2 < · · · < xk of the variables labeling the axes of Rk, and that
the CADs representing the sets that were to be combined by union and intersection were
all CADs of k-dimensional space with respect to the same ordering x1 < x2 < · · · < xk.

Definition. We will call xi1 < xi2 < · · · < xij , where 1 ≤ i1 < i2 < · · · < ij ≤ k, a
suborder of x1 < x2 < · · · < xk.

Here we again consider the union and intersection of two sets, A and B, represented
by CADs. The CAD representing A is constructed with respect to some suborder oA
of x1 < x2 < · · · < xk. The CAD representing B is constructed with respect to some
suborder oB of x1 < x2 < · · · < xk. Defining the union of two suborders in the obvious
way, we would like a CAD representation of A∪B or A∩B with respect to the variable
order o = oA ∪ oB . (Note that o is also a suborder of x1 < x2 < . . . < xk.) This can
be done using the technique employed in Section 8. We simply construct a CAD D with
respect to o from the union of the projection factor sets of the CADs representing A and
B. As we make a traversal of the cells of D, we are simultaneously traversing the cells
of the CADs representing A and B. Thus, we can assign truth values to the cells of D
based on the truth values of corresponding cells in the CAD representations of A and B.

9.3. an algorithm for quantifier elimination for non-prenex formulas

Suppose F is a quantified formula in the parameters α1, . . . , αk and the quantified
variables x1, . . . , xt. We will represent F by an expression tree whose interior nodes are
labeled with the operators ∧, ∨, ¬, ∃xi, or ∀xi, and whose leaf nodes are labeled with
polynomial equalities or inequalities. Obviously, nodes labeled ¬, ∃xi, or ∀xi will have a
single child, and nodes labeled ∧ or ∨ will have two children. For node N , let FN denote
the subformula of F represented by the tree rooted at N .

CADs are constructed with respect to a variable ordering, which we will represent as
a permutation of the sequence α1, . . . , αt, x1, . . . , xk. If o is an order, let mb(o, xi) be the
order represented by moving xi to the end of the sequence o. We now define the algorithm
NPQE—non-prenex quantifier elimination.

Algorithm NPQE(N , o).
Inputs: N , a node, and o, an order
Outputs: a simple CAD representation of the set defined by the tree rooted at N con-
structed with respect to some suborder of o

(1) if N is a leaf node

(a) let C be a simple CAD constructed from N ’s label with respect to the suborder
of o containing exactly the same variables as N ’s label

(b) return C

(2) if N is labeled ¬

(a) let C = NPQE(N ,o)
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(b) negate the truth values attached to each cell in C
(c) return C

(3) if N is labeled ∃xi or ∀xi
(a) let C ′ = NPQE(N ′,mb(o, xi)), where N ′ is the child of N
(b) since xi is the last variable in the ordering with respect to which C ′ was

constructed, we can easily propagate truth values to get a representation of
∃xi[FN ′ ] or ∀xi[FN ′ ] as a CAD, which we then can simplify. Call this CAD C.

(c) return C

(4) otherwise N is labeled with ∨ or ∧

(a) let NL and NR be the left and right children of N , respectively
(b) CL = NPQE(NL,o)
(c) CR = NPQE(NR,o)
(d) let C be the union (if N = ∨) or intersection (if N = ∧) of CL and CR
(e) simplify C
(f) return C

It is clear that Steps 1 and 2 satisfy the output specifications of NPQE. To see why
Step 3 also does, let o = x1 < x2 < · · ·xk. Step 3a produces the CAD C ′ that is
constructed with respect to some suborder o′ of

x1 < · · · < xi−1 < xi+1 < · · · < xk < xi.

If xi does not appear in o′, then o′ is also a suborder of o. Moreover, in this case no
propagation occurs, and C is C ′. If xi does appear in o′, then the propagation process
removes the dimension associated with xi from the CAD, leaving the CAD C constructed
with respect to a suborder of x1 < · · · < xi−1 < xi+1 < · · · < xk, which is also a suborder
of o. Thus, the CAD C that is returned in Step 3 satisfies the output specification that
it be constructed with respect to a suborder of o.

Step 4, of course, satisfies the output specifications as well. Both CL and CR are
constructed with respect to suborders of o, so the CAD representing their union or
intersection will also be constructed with respect to a suborder of o.

9.4. demonstrating that NPQE represents an improvement

Algorithm NPQE is clearly better than the obvious approach of Section 9.1. Essen-
tially, it does the same thing, differing only in that it uses simple CAD representations
instead of formula representations. The advantage of using simple CAD representations
is that the “extra” polynomials needed to make projection-undefinable CADs projection-
definable are never added. In other words, we never need to use the augmented projection,
or the method of adding derivatives to produce a projection-definable CAD described in
Brown (1999a).

However, NPQE is also unambiguously superior to the method of adding variables to
put the input formula into prenex form. What follows are three theorems that make this
assertion precise. Theorem 9.1, the first of the three, essentially shows that the polyno-
mials that arise as projection factors in computing NPQE(F, o) also arise as projection
factors in performing CAD-based quantifier elimination on a prenex equivalent of F .
So even in the worst case, NPQE(F, o) uses the same projection factors as converting
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to prenex. However, instead of computing one CAD of high dimension, NPQE(F, o)
computes several CADs of lower dimension.

Let F be a non-prenex quantified formula in the variables x1, . . . , xk and the parameters
α1, . . . , αt, and let o be the variable ordering α1 < · · · < αt < x1 < · · · < xk. Let
g be a function that maps occurrences of variables in F to elements of {y1, . . . , ym}.
If two occurrences of xi refer to distinct variables, g maps the occurrences to distinct
elements of {y1, . . . , ym}. If two occurrences of xi refer to the same variables, g maps
the occurrences to the same element of {y1, . . . , ym}. By the obvious extension, g maps
F and any subformula of F to a formula in the variables y1, . . . , ym and the parameters
α1, . . . , αt. The formula g(F ) can be put into prenex form by simply moving all quantifiers
to the front, keeping them in the same left–right order. Let F ′ denote this formula.
Without loss of generality, assume that from left to right in F ′ the variables are introduced
in the order y1, . . . , ym. This means that in performing quantifier elimination by CAD
on F ′ we project with respect to the bound-variable order y1 < · · · < ym.

If N is a node in the tree representation of F , let FN denote the subformula of F
represented by the tree rooted at N . Any free occurrence of xi in FN becomes mapped
to the same yj by g. Let gN : {x1, . . . , xk} −→ {y1, . . . , ym} be the partial function that
maps any variable xi that appears free in FN to the appropriate yj . In the obvious way,
extend gN to polynomials and sets of polynomials.

Theorem 9.1. Let Q be the projection factor set that is computed when performing
quantifier elimination by CAD on F ′. Let N be a node in the tree representation of F .
Let P be the projection factor set of the CAD returned by NPQE(FN , oN ). gN (P ) ⊆ Q

Proof. To prove this theorem, we require the following lemma, which essentially shows
that as NPQE moves variables in orders, it is always dealing with orders of the xi’s that
correspond to suborders of y1 < · · · < ym. This will be key in connecting the projection
computed by NPQE to the projection computed by the usual CAD-based quantifier
elimination method for the formula F ′ using the order y1 < · · · < ym. 2

Lemma 9.1. Let N be a node in the tree representing F , and let oN be the variable order-
ing associated with that node. If xi1 < · · · < xij is the suborder of oN containing exactly
the free variables in FN , then gN (xi1) < · · · < gN (xij ) is a suborder of y1 < · · · < ym.

Proof. Suppose xa and xb are two distinct free variables in FN such that xa < xb in
oN . Let Na be the last node on the path from the root to N labeled Qaxa, and let Nb
be the last node on the path from the root to N labeled Qbxb, where Qa, Qb ∈ {∃,∀}.
Since xa < xb in oN , Nb must follow Na in the path from the root to N . Thus, g(FNa) =
Qays[. . . Qbyt[. . .] . . .], where ys = gN (xa) , and yt = gN (xb). Therefore gN (xa) < gN (xb)
in y1 < · · · < ym. 2

We will proceed with our proof of Theorem 9.1 by induction on the depth of the tree
rooted at N .

Suppose the depth of the tree rooted at N is 0. Then N is labeled by a single polynomial
equality or inequality. Suppose that polynomial is p(xi1 , . . . , xij ). Obviously, xi1 , . . . , xij
are all free in FN , so q = p(gF (xi1), . . . , gN (xij )) appears in F ′, and thus its factors are
elements of Q. Moreover, by Lemma 9.1, the suborder of oN consisting of the variables
xi1 , . . . , xij maps under gN to a suborder of y1 < · · · < ym. So the projection of p with
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respect to oN is exactly the projection of q with respect to y1 < · · · < ym, except that
the variable names are different. Therefore, if P is the projection factor set of the CAD
returned by NPQE(FN , oN ), then gN (P ) ⊆ Q.

Suppose the depth of the tree rooted at N is greater than 0. There are three cases to
distinguish:

(1) N is labeled with ¬. In this case, the projection factor set P of the CAD returned
by NPQE(FN , oN ) is the same as the projection factor set P ′ of the CAD returned
by NPQE(FN ′ , oN ′), where N ′ is the child node of N . However, by induction we
have gN ′(P ′) ⊆ Q. Clearly gN = gN ′ , so gN (P ) ⊆ Q.

(2) N is labeled with ∀xi or ∃xi. Let P ′ be the projection factor set of the CAD
returned by NPQE(FN ′ , oN ′), where N ′ is the child node of N . The projection
factor set P of the CAD returned by NPQE(FN , oN ) is {p ∈ P ′|degxi(p) = 0}.
The function gN is exactly gN ′ , except that xi is not in the domain of gN . Thus,
gN (P ) = gN ′(P ) ⊆ gN ′(P ′). But by our inductive hypothesis, gN ′(P ′) ⊆ Q, so
gN (P ) ⊆ Q.

(3) N is labeled with ∧ or ∨. Let N ′ and N ′′ be the left and right children of N . Clearly
oN = oN ′ = oN ′′ . If P ′ is the projection factor set for the CAD resulting from
NPQE(FN ′ , oN ′) and P ′′ is the projection factor set for the CAD resulting from
NPQE(FN ′′ , oN ′′), then by our inductive hypothesis we have gN (P ′)∪gN (P ′′) ⊆ Q.
Moreover, because Q is closed under projection, the complete projection with
respect to y1 < · · · < ym of GN (P ′) ∪ gN (P ′′) is also contained in Q. But,
NPQE(FN , oN ) produces a CAD by computing P∗, the complete projection of
P ′ ∪ P ′′, and then simplifying the resulting CAD. Thus, P ⊆ P∗. But, projecting
P ′∪P ′′ with respect to oN differs from projecting gN (P ′)∪gN (P ′′) with respect to
y1 < · · · < ym only in the names of variables. Thus P ∗ ⊆ Q, which yields P ⊆ Q. 2

Theorem 9.1 shows that in the worst case, when no CAD simplification takes place
during the running of NPQE, all projection factors computed are also projection factors
computed by the usual CAD-based method of quantifier elimination on F ′, our prenex
form of the input formula. Thus, using projection factors as a measure, NPQE is certainly
no worse than adding variables to put a non-prenex input formula in prenex form. To
illustrate why NPQE is, typically, better, consider the following example input:

Q1x[p1(x, α)σ10] ∧ Q2x[p2(x, α)σ20] ∧ · · · ∧ Qmx[pm(x, α)σm0]

where each pi is of the form aix+α+bi, ai, bi are nonzero integers, each Qi is an element
of {∃,∀}, and each σi is an element of {>,<,=, 6=,≤,≥}. Let us compute the number
of cells constructed for this problem by NPQE, and compare it to the number of cells
resulting from putting the formula in prenex form and performing the usual CAD-based
quantifier elimination.

In processing this input, NPQE will construct a CAD for each Qix[pi(x)σi0] consisting
of one 1-level cell and three 2-level cells. After propagation, the resulting CAD will consist
of a single cell. The process of merging these CADs will result in m/2 CADs of 1-space
being constructed, then m/4 CADs of 1-space being constructed, . . . , down to 1 CAD of
1-space being constructed. Each of these will consist of a single cell. Assuming m is a
power of two, 5m− 1 cells will be constructed.

Putting the same formula into prenex form we get

Q1y1Q2y2 · · ·Qmym[p1(y1, α)σ10 ∧ p2(y2, α)σ20 ∧ · · · ∧ pm(ym, α)σm0]



542 C. W. Brown

Each stack construction into the dimension corresponding to yi will result in three new
cells—corresponding to the regions in which aiyi +α+ bi is negative, zero, and positive.
Therefore, the CAD constructed for this formula has one 1-level cell, three 2-level cells,
nine 3-level cells, . . . , 3m (m+ 1)-level cells, for a total of (3m+1 − 1)/2.

Of course, the previous comparison is quite naive. It only compares the number of cells
constructed, ignoring the fact that certain cells are much more costly to construct. When
higher degree polynomials appear in the input, stack constructions involve algebraic
number computations. At each successive level, the degree of the algebraic numbers
involved grows. If, in the previous example, the pi were quadratic instead of linear,
some stack constructions involved in constructing a CAD from the prenex input formula
would require computing in algebraic extensions of degree 2m−1. NPQE, on the other
hand, requires no computations with algebraic numbers for this example, regardless of
the degrees of the pi.

These examples suggest that NPQE constructs fewer cells than are constructed con-
verting to prenex form, and that the sample points for these cells are simpler (i.e. lower
degree algebraic extension) than sample points computed converting to prenex form. The
following two theorems show that this is indeed always the case.

Let F be a non-prenex input formula in k variables (both free and bound), and let F ′

be a prenex form of F in n variables, n > k. For what follows, let us assume that only
full sign-invariant CADs are constructed—i.e. let us leave aside the possibility of partial
CADs.

If C ′ is the CAD produced from F ′, and C is a CAD constructed by NPQE, then in a
sense, each cell in C is the union of one or more cells in C ′. The following theorem makes
this statement precise.

Theorem 9.2. Let N be a node in the tree representation of F . Let C be the CAD
returned by NPQE(FN , oN ). Let xi1 , . . . , xir be the suborder of oN consisting of the vari-
ables that appear free in FN . Let yj1 = gN (xi1), . . . , yjr = gN (xir ). Let h : Rm −→ R

r be
defined as follows:

h((α1, α2, . . . , αm)) = (αj1 , αj2 , . . . , αjr ).

Let c′ be a cell in C ′ and c a cell in C, then either h(c′) ∩ c = ∅, or h(c′) ⊆ c.

Proof. Let P be the projection factor set for C and let Q be the projection factor set for
C ′, then gN (P ) ⊆ Q. By definition, c′ is a region in which all elements of Q have invariant
sign. Let a and b be two points in h(c′) and let p be an element of P . Let a′ and b′ be
points in c′ such that h(a′) = a and h(b′) = b, and let q ∈ Q be gN (p). Then p(a) = q(a′)
and p(b) = q(b′). So q has the same sign at both a and b. Thus, h(c′) is a region in which
all elements of P have invariant sign—i.e. it is contained in some cell of C. 2

Here we will compare the algebraic computations performed during stack construction
for NPQE and the method of converting to prenex form. One detail makes this compar-
ison difficult, and that is that rational sample point coordinates for sectors are chosen
arbitrarily during stack construction. To better compare these two methods, we will as-
sume that both methods “make the same choice” when possible. Specifically, during stack
construction rational sample point coordinates are chosen from open intervals. We will
assume that this choice is made in such a way that if t is chosen for an interval (α, β),
then t will be chosen for any subinterval of (α, β) containing t. (One method for “choos-
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ing” points that satisfies the criteria would be this: choose the rational number in (α, β)
with smallest denominator, breaking ties by choosing the smaller magnitude numerator,
breaking those ties by choosing the smaller rational number.) The following theorem
shows that every sample point computed by NPQE is also computed in constructing a
CAD for F ′.

Theorem 9.3. Let N be a node in the tree representation of F . Let C be the CAD
returned by NPQE(FN ,oN ). Let xi1 , . . . , xir be the suborder of oN consisting of the vari-
ables that appear free in FN . Let yj1 = gN (xi1), . . . , yjr = gN (xir ). Let hs : Rjs −→ R

s

be defined as follows:

hs((α1, α2, . . . , αjs)) = (αj1 , αj2 , . . . , αjs).

Let C ′ be the CAD constructed from F ′. If u is a sample point for an s-level cell in C,
then some cell in C ′ has sample point v such that hs(v) = u.

Proof. We will prove this by induction on s. For s = 0, the root cell, the theorem is
trivially true. Suppose s > 0. Let u = (u1, . . . , us) be the sample point of a cell c in C.
Let b be the (s− 1)-level base cell of the stack in which c resides. The sample point of b
is then w = (u1, . . . , us−1). By induction, there is a js−1-level cell b′ in C ′ with sample
point w′ such that hs−1(w′) = w. We now distinguish two cases.

Case 1, c is a section cell. This means that us is a root of p(u1, . . . , us−1, x), where p is
an s-level projection factor of C. By Theorem 9.1, there is a js-level projection factor q of
C ′ such that gN (p) = q. Stack construction over b′ will construct cells for each section of
q. The sample points of these cells will be (α1, . . . , αjs−1, β), where w′ = (α1, . . . , αjs−1),
for each root β of q(αj1 , . . . , αjs−1 , x). However,

q(αj1 , . . . , αjs−1 , x) = q(u1, . . . , us−1, x) = p(u1, . . . , us−1, x)

so (α1, . . . , αjs−1, us) is a sample point of a cell in C ′, and

hs((α1, . . . , αjs−1, us)) = (αj1 , . . . , αjs−1 , us) = (u1, . . . , us−1, us) = u.

Case 2, c is a sector cell. We will prove the result assuming that c is neither the first
nor the last cell in the stack, since these other cases can be proven the same way. In
this case, let (u1, . . . , us−1, α) be the sample point of the cell directly below c and let
(u1, . . . , us−1, β) be the sample point of the cell directly above c. Both cells are section
cells. The sample point of c is (u1, . . . , us−1, t), where t is chosen from (α, β).

From the preceding case, we see that there is a js-level cell in C ′ with sample point
z = (z1, . . . , zjs), such that hs(z) = (u1, . . . , us−1, α). Let p be a projection factor of
which the cell directly above c is a section. Let q be gN (p). There are js-level section
cells in C ′ with sample points (z1, . . . , zjs−1, γ) for each root γ of q(zj1 , . . . , zjs−1 , x) =
p(u1, . . . , us−1, x). Thus, in particular, there is a cell with sample point (z1, . . . , zjs−1, β).
There are one or more cells in between these two, since they are both sections. Either
some section cell between them has sample point (z1, . . . , zjs−1, t), in which case we are
done, or some sector cell has sample point (z1, . . . , zjs−1, t

′), where t′ is chosen from
some interval contained within (α, β) and containing t. But given our assumption about
choosing rational sample points, t′ equals t, and thus

hs((z1, . . . , zjs−1, t
′)) = (u1, . . . , us−1, t). 2

Putting these three theorems together, we are justified in saying that the set of alge-
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braic problems NPQE has to solve in order to find a quantifier-free equivalent to F is
actually a proper subset of the problems that have to be solved by performing CAD-based
quantifier elimination on F ′. (It is true that NPQE might have to solve each problem
several times, but a clever implementation would simply remember intermediate results,
thus removing this objection.) What is more, it is clear that this claim cannot be made
for the obvious approach of replacing quantified prenex subformulas with equivalent
quantifier-free formulas, since that may involve adding polynomials (either through the
augmented projection or the method of Brown, 1999a) that are not used by NPQE and
not used in performing CAD-based quantifier elimination on F ′. Thus, NPQE is superior
to both alternative approaches.

9.5. examples

NPQE has not been implemented as part of QEPCAD. However, its behavior can
be simulated by running QEPCAD multiple times and taking advantage of QEPCAD’s
interactive user interface.

In practice, NPQE can consider as a leaf node any quantifier-free subformula. Moreover,
the tree representation of the formula need not be binary. In the following examples, these
kinds of obvious improvements are made.

9.5.1. Example 1

This example is intended to illustrate the benefits of not converting formulas to prenex
form.

Consider the family of quadratic curves in x and y defined by p(α, β, x, y) = x2 +αxy+
βy2 − 1 = 0. The question we wish to answer is this: For what parameter values does
this curve have a component that is a straight line? Probably the most obvious way to
phrase this as a quantifier elimination problem is as follows:

F1 = ∃a, b, c∀x, y[ax+ by + c = 0 =⇒ x2 + αxy + βy2 − 1 = 0]

This uses the fact that any line can be represented as ax+by+c = 0. Another possibility
is to use the parameterization y = mx+ k to represent all non-vertical lines, and x = x1

to represent all vertical lines. Putting these together yields the non-prenex formula

F2 = ∃m, k∀x[x2 + αx(mx+ k) + β(mx+ k)2 − 1 = 0] ∨ ∃x∀y[x2 + αxy + βy2 − 1 = 0]

in five rather than seven variables. Of course, this could be put into prenex form, yielding
yet another formula:

F3 = ∃x1∀y1∃m, k∀x2[x2
1+αx1y1+βy2

1−1 = 0 ∨ x2
2+αx2(mx2+k)+β(mx2+k)2−1 = 0].

After more than half an hour, QEPCAD failed to compute a quantifier-free equivalent
of F1. The equivalent formula 4β − α2 = 0 was computed from F2 in 0.45 seconds
by computing simple CADs for the two quantified subformulas separately, computing
a CAD for the union of the two sets, simplifying, and producing a solution formula.
The same equivalent formula was produced from F3 in 3.35 seconds. In total, 2,142 cells
were constructed in producing an answer from F2 using the strategy of NPQE. Applying
QEPCAD to F3 resulted in 13,302 cells being constructed.
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9.5.2. Example 2

This example is wholly artificial, intended to illustrate the benefits of using the simple
CAD representation of an algebraic set, rather than the simple formula representation.
The form of this example is

∃a, b[∃x[F1(a, b, x)] ∧ ∃x, y[F2(a, b, x, y)]],

where F1 = x2 + y2 − 1 = 0 ∧ y − 3x < 0 ∧ 16(a− x)2 + 16(b− y)2 − 1 ≤ 0, and F2 =
((2a−1)−2x)−2(2(x+2)−1)(b−(2x+3)) = 0 ∧ (2x−(2a−1))2+4((2x+3)−b)2−4 ≤ 0.

Both ∃x[F1(a, b, x)] and ∃x, y[F2(a, b, x, y)] result in CADs that are not projection
definable, meaning that projection factors need to be added to their projection factor
sets in order to construct solution formulas. This is not required, of course, if we use
simple CADs to represent solutions.

Putting this input into prenex form results in an impractically large problem. Con-
sider solving this problem by first computing F ′1, a simple quantifier-free equivalent to
∃x[F1(a, b, x)]. This takes QEPCAD 11.58 seconds, and requires adding polynomials to
the projection factor set to produce a quantifier-free equivalent formula. Next the for-
mula F ′2, a simple quantifier-free equivalent to ∃x, y[F2(a, b, x, y)], is computed. This takes
QEPCAD 2.81 seconds, and also requires adding polynomials to the projection factor
set. Finally, quantifier-elimination commences on the formula ∃a, b[F ′1 ∧ F ′2]. QEPCAD
returns FALSE for this input after 3.32 seconds. The entire process requires 17.71 seconds.

Suppose instead that we use NPQE. Computing a simple CAD representation of F1

takes QEPCAD 10.39 seconds. Computing a simple CAD representation of F2 takes
QEPCAD 1.65 seconds. Combining these two CADs and using truth propagation to
eliminate dimensions associated with a and b takes QEPCAD 0.29 seconds. Thus, FALSE
is returned after 12.43 seconds.

Of course, the time difference is not so dramatic. But it illustrates the advantage of
using the simple CAD representation instead of the formula representation.

9.6. commentary on NPQE

It is important to note that the prenex quantified subformulas that NPQE solves
could be sent off to other quantifier elimination packages to solve. Form2SCAD could
then be used to construct a simple CAD representation of the result for further use by
NPQE. Thus, NPQE has the potential to interact well with other methods in solving
difficult problems.

There is another, equivalent way of viewing NPQE (and, in fact, Form2SCAD). It
is shown in Brown (1999b) that the language of first order real algebra can be easily
extended in such a way that any CAD is projection definable with respect to the extended
language, i.e. there is always a defining formula in the extended language that uses only
the polynomials in the projection factor set. Using this extended language to represent
semi-algebraic sets is, as far as these algorithms are concerned, equivalent to using simple
CADs. There is, in fact, a CAD-based quantifier elimination for this extended language.
The extended language, which allows reference to indexed roots of polynomials, is no
more expressive than the usual language of first order real algebra. However, certain sets
can be described with fewer polynomials using the extended language. (Certain sets can
also be defined easily with fewer variables.)
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10. Conclusions

We have presented an algorithm for simplifying the truth-invariant CAD produced by
the partial CAD algorithm of Collins and Hong (1991). Compared to the construction of
the original truth-invariant CAD, constructing the simplified CAD is very fast. Example
problems in Section 7 demonstrate that the simplified CAD may have far fewer cells,
and a much smaller projection factor set than the original, although this is not always
the case. These examples also show that using the simplified CAD as input to Hong’s
solution formula construction method can significantly improve its performance. Section 8
demonstrates that CAD simplification can be be used during the CAD construction
process to construct a truth-invariant CAD for a very large quantifier-free formula—a
formula for which the direct application of Collins and Hong (1991) would be impractical.
Finally, Section 9 shows that CAD simplification allows us to deal with non-prenex
formulas in an efficient manner.

Semi-algebraic sets are usually represented as formulas from elementary real algebra.
However, truth-invariant CADs provide another means of representation. Sections 8 and 9
show that union and intersection can be accomplished directly from this representation
without having to compute equivalent formulas, which is important because constructing
a formula from a truth-invariant CAD may require adding polynomials to the CADs
projection factor set. CAD simplification provides a fast way to remove unnecessary
polynomials after combining via union or intersection, so that a minimal representation
can be retained at each step in a sequence of unions and intersections.

One direction for further research is the investigation of efficient methods for addi-
tional operations on semi-algebraic sets represented as truth-invariant CADs. Union and
intersection have been discussed in this paper, but there are other important operations.
For example, A CAD is constructed with respect to some variable ordering. One inter-
esting question is how to efficiently change the variable ordering. Another problem is the
construction of a truth-invariant CAD representation of a semi-algebraic set described by
“substitution” into another semi-algebraic set. (For example, if S is a semi-algebraic set
in 3-space, one might ask for the set of all points (x, y, z) such that (x+y, y+z, x+z) ∈ S.
The new set would be defined by “substitution” into S.) One could perform either of these
operations by switching to the quantifier-free formula representation, but this sometimes
involves adding projection factors, which can be expensive.
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