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1 Introduction

The purpose of this document is to illustrate the design process for implementing
a sequential circuit to generate an arbitrary sequence of output numbers. The
restriction imposed for simplicity is that a number appear only once in the
sequence and that the sequence is repeated indefinitely. We also illustrate a
means for initializing the counter to an arbitrary initial state using switches or
pushbuttons.

2 Specifying the Count Sequence

A desired sequence can come from nearly any approach. From the point of
view of this article, it is completely arbitrary. Our example will specify a 3-bit
number sequence which, in decimal, is 5, 7, 3, 2, and 6, repeated indefinitely.
In binary this is 101, 111, 011, 010, and 110.

3 Generating a State Table

To start with, write all the numbers from 0 to 2" — 1 in a column and place
their binary equivalents beside them, as shown in Table [1. We shall label the
binary bits A, B, and C. These represent the bits of the 3-bit number from
most significant bit to least significant bit. For some of these rows, we care

Current State

A B C
0j0 0 O
110 0 1
210 1 0
310 1 1
411 0 O
511 0 1
61 1 0
711 1 1

Table 1: Initial State Table

what state the counter goes to next. We’ll assume that for any states not in the
list 5, 7, 3, 2, and 6 that we do not care about what follows them. This rests on
the belief that these states will never occur. We can cause them not to occur by
initializing the counter to one of the states in the list—say, 5 or 6—and trusting



that no gamma rays will strike the counter and put it into one of the forbidden
(undesirable) states.

The next step in the process, then, is to expand our table to specify the next
states, as shown in Table 2. For example, looking at line 5, we see that the next
state should be 7, or 111 in binary. Similarly, in row 7 we see that the next
state should be a 3, or 011 in binary.

Current State Next State

A B C A B C
00 O O] x| x x X
110 0 1| x]|x x X
210 1 0}6]1 1 O
3]0 1 1210 1 O
411 0 0] x| x x X
5(1 0 1|71 1 1
61 1 051 0 1
71 1 130 1 1

Table 2: State Table Including Next States

The next step is to add in the signals needed to force the flip-flops to assume
the desired values. This is particularly easy to do with D-flip-flops since the
D-input of a D-flip-flop is exactly the same as the value we want the flip-flop to
take on.

Current State Next State Flip-flop Controls
A B C A B C| Dy Dp D¢
00 0O 0] x| x x X X X X
110 0 1] x|x x x X X X
210 1 0|61 1 0 1 1 0
3]0 1 1210 1 0 0 1 0
411 0 0] x| x x X X X X
5(/1 0 1|71 1 1 1 1 1
6|1 1 0|51 0 1 1 0 1
711 1 1130 1 1 0 1 1

Table 3: State Table Including D-Flip-flop Inputs Required

We now have a specification for the control signals we need. There are three
functions to implement: D4, Dg, and D¢.



4 Minimizing the Logic Using Karnaugh Maps

We need three Karnaugh maps, one for each of the functions D 4, Dg, and D¢.

C C C
Dy | 0 1 Dg | 0 1 Do 0 1
00 | x X 00 | x X 00 | x x
ABO1 |1 O ABO01 |1 1 ABO1 |0 O
1171 0 11|10 1 1171 1
10 | x 1 10 | x 1 10 | x 1
DAZE-F@ DBZZ-FC Dc=A

Table 4: Karnaugh Maps for D-Flip-flop Implementation

5 Implementing the Design Using D-Flip-flops

An implementation for the equations derived in Table |4/ appears in Figure [1.

A B C
—D Q —D Q— —D Q—
> CLK > CLK > CLK
QO QO QrH
CLK
A
B
C
D,=B+C D,=A+C| | D =A

Figure 1: Implementation of the Synchronous Counter Using D-Flip-flops



6 Implementing the Design Using JK-Flip-flops

To change the design from one using D-flip-flops to one using JK-flip-flops re-
quires considering what it takes to force a JK-flip-flop from one state to another.
Table 5/ shows this.

Output States | Inputs Required

Qold Qnew J K
0 0 0 X
0 1 1 X
1 0 X 1
1 1 X 0

Table 5: Activation Table for a JK-Flip-flop

We can use this information to fill in the columns of a revised state table.
Whereas Table 13| showed the control signals required to operate D-flip-flops,
Table |6 shows the control signals required to operate JK-flip-flops. There are
twice as many control signals because each flip-flop now has two control signals,
not just one. This is unappealing superficially but the extra investment in
functions often results in less complex logic circuitry. However, we won’t find
out unless we go through the design process.

Current State Next State Flip-flop Controls
A B C A B C|Jas Ka Jp Kp Jo K¢

0/0 O O0]x|x x x| X X X X X X
110 0 1]x]|x x X X X X X X X
210 1 061 1 0 1 X X 0 0 X
3]0 1 12|10 1 0 0 X X 0 X 1
411 0 0]|x|x x x| X X X X X X
511 0 1|71 1 1 X 0 1 X X 0
61 1 0|51 0 1 X 0 X 1 1 X
711 1 1(3]0 1 1 X 1 X 0 X 0

Table 6: State Table Including JK-Flip-flop Inputs Required

In Table [7 the controls of Table |6l have been placed in Karnaugh maps to
facilitate obtaining minimal logic equations, shown below each Karnaugh map.

Figure 2/ shows our implementation of the synchrounous counter using JK-
flip-flops. Circuitry to permit the state to be initialized to 1015 = 519 has been
added using the preset P and clear C functions of these JK-flip-flops. The P
input of flip-flop A, the C input of flip-flop B, and the P input of flip-flop C' are
asserted whenever the ST ART signal is applied, forcing the binary value 1014
into the three-flip-flop counter immediately, without waiting for a high-going
CLOC K-transition. Otherwise these inputs are tied to ground via resistor R.
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Figure 2: Implementation of the Synchronous Counter Using JK-Flip-flops.
Circuitry to put the counter into state 1012 = 519 has been added using the preset

and set functions of these JK-flip-flops.




The other three asynchronous inputs are never asserted, so they are always tied
to ground. These are the C inputs of flip-flops A and C' and the P input of
flip-flop B.

7 Implementing the Design Using T-Flip-flops

To change the design from one using D-flip-flops or JK-flip-flops to one using
T-flip-flops requires considering what it takes to force a T-flip-flop from one
state to another. Table [8 shows this.

Output States | Inputs Required

Qold Qnew T
0 0 0
0 1 1
1 0 1
1 1 0

Table 8: Activation Table for a T-Flip-flop

We can use this information to fill in the columns of a revised state table.
Whereas Table 13| showed the control signals required to operate D-flip-flops,
Table 9 shows the control signals required to operate T-flip-flops. There are
just as many control signals because, as with D-flip-flops, each flip-flop has only
one control signal, not two as was the case with JK-flip-flops.

Current State Next State Flip-flop Controls
A B C A B C|Tq4 Ts Tc
00 O O0|x|x x x X X X
1710 0 1| x|x x x X X X
210 1 061 1 0 1 0 0
3]0 1 1{2]0 1 0] O 0 1
411 0 0] x| x x X X X X
51 0 1|71 1 1 0 1 0
6|1 1 0|51 0 1 0 1 1
711 1 11310 1 1 1 0 0

Table 9: State Table Including T-Flip-flop Inputs Required

In Table 10 the controls of Table (9l have been placed in Karnaugh maps to
facilitate obtaining minimal logic equations, shown below each Karnaugh map.
Figure 3| shows our implementation of the synchrounous counter using T-
flip-flops. Circuitry to permit the state to be initialized to 1102 = 619 has been
added using the preset P and clear C functions of these T-flip-flops. Note that
we initialize the counter in the JK-flip-flop implementation to 519, not 61¢. This



C C C
Ta | 0O 1 Tg | 0 1 Tc | 0 1
00 | x X 00 | x X 00 | x X
ABO01 | 1 0 ABO0O1 |0 O ABO01 |0 1
1110 1 1171 0 1111 0
10 | x 0 10| x 1 10| x O
Ty=AC + ABC Tg=AC +B Tc = AC + AC

Table 10: Karnaugh Maps for Implementing f Using T-Flip-flops

T VCC
:,
START i 5 5
P A P B P C
i T Q— T Q— |MT Q—
— CLK > CLK CLK
QA QH QA
C C C
CLK ﬁ)
A
B
C

AC + ABC AC +BC AC + AC

Figure 3: Implementation of the Synchronous Counter Using T-Flip-flops.

As with the JK-flip-flop implementation, this implementation contains circuitry to put
the counter into an initial state. In this case, we chose an initial state 1102 = 619, just
to illustrate that any initial state is easy to obtain. As before, we use the asynchronous
preset and clear functions of these flip-flops, with the difference that these are now
T-flip-flops, not JK-flip-flops. Also, we have made the asynchronous inputs active-low
inputs rather than active-high inputs to illustrate what is needed to accommodate this
change. Since the term AC appears twice, we can simply use the output of the gate
that computes it in the two places it is required.



change is simply to show that it is easy to start with any desired initial state,
as long as it is in the list of desired states. Also, the flip-flops used here have
active-low asynchronous inputs, not active-high asynchronous inputs as our JK-
flip-flops did. Thus the P input of flip-flop A, the P input of flip-flop B, and the
C input of flip-flop C are asserted whenever the ST ART signal is applied, forc-
ing the binary value 1102 into the three-flip-flop counter immediately, without
waiting for a high-going C LOC K -transition. Otherwise these inputs are tied to
Voo via resistor R. The other three asynchronous inputs are never asserted, so
they are always tied to Vgoo. These are the C' inputs of flip-flops A and B and
the P input of flip-flop C.

Our implementation shows that we have eliminated one 2-input AND gate
by noting that the term AC is needed as part of both Ts and T. We can
compute it once and apply it in the two places it is needed, saving a gate.

8 Comparison of the Three Implementations

A comparison of the control-signal logic in the three implementations of the
synchronous counter shows which designs require the most circuitry. Generally,
more circuitry requires more debugging effort and so is to be avoided.

This comparison shows an unusual result: the JK-flip-flop implementation
takes two 2-input AND gates, compared to two 2-input OR gates for the D-flip-
flop implementation. This is unusual because the use of JK-flip-flops usually
leads to fewer input gates, not the same number or more.

The comparison also reveals another unusual result: the T-flip-flop imple-
mentation takes substantially more gates than either of the other two imple-
mentations. It requires four 2-input AND gates, three 2-input OR gates, and
one 3-input AND gate. It is more common for T-flip-flop implementations to
be simpler than their corresponding D-flip-flop implementations.

In general, there is no way to predict which of several possible equivalent
implementations will be most economical unless this kind of detailed design
is done. Here, we could pick either the D-flip-flop or the JK-flip-flop imple-
mentation as the most economical, at least in the sense that they require less
debugging and less hardware.



