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Elements of Transfer Diagram for an Ideal Linear ADC

Figure 1. The Ideal Transfer Function (ADC)



3 SOURCES OF STATIC ERROR

Static errors, that is those errors that affect the accuracy of the converter when it is converting static (dc) signals, can
be completely described by just four terms. These are offset error, gain error, integral nonlinearity and differentia
nonlinearity. Each can be expressed in L SB units or sometimes as a percentage of the FSR. For example, an error of 1/2
L SB for an 8-hit converter corresponds to 0.2% FSR.

3.1 Offset Error

The offset error as shown in Figure 3 is defined as the difference between the nominal and actual offset points. For an
ADC, the offset point is the midstep value when the digital output is zero, and for aDAC it isthe step value when the
digital input iszero. Thiserror affectsall codes by the same amount and can usually be compensated for by atrimming
process. If trimming is not possible, this error is referred to as the zero-scale error.
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3.2 Gain Error

Thegain error shown in Figure 4 is defined as the difference between the nominal and actual gain points on thetransfer
function after the offset error hasbeen corrected to zero. For an ADC, thegain point isthe midstep valuewhen thedigital
outputisfull scale, andfor aDAC itisthestep valuewhenthedigital inputisfull scale. Thiserror representsadifference
inthe slope of the actual and ideal transfer functions and as such correspondsto the same percentage error in each step.
This error can aso usually be adjusted to zero by trimming.
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3.3 Differential Nonlinearity (DNL) Error

The differential nonlinearity error shown in Figure 5 (sometimes seen as simply differential linearity) isthe difference
between an actual step width (for an ADC) or step height (for a DAC) and theideal value of 1 LSB. Thereforeif the
step width or height is exactly 1 LSB, then the differential nonlinearity error is zero. If the DNL exceeds 1 LSB, there
isapossihility that the converter can become nonmonotonic. This means that the magnitude of the output gets smaller
for an increase in the magnitude of the input. In an ADC thereisalso apossihility that there can be missing codesi.e.,
one or more of the possible 2N binary codes are never output.
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3.4 Integral Nonlinearity (INL) Error

Theintegral nonlinearity error shownin Figure 6 (sometimesseen assimply linearity error) isthedeviation of thevalues
on the actual transfer function from astraight line. Thisstraight line can be either abest straight linewhich isdrawn so
asto minimize these deviations or it can be aline drawn between the end points of the transfer function once the gain
and offset errorshave been nullified. The second method iscalled end-point linearity and isthe usual definition adopted
sinceit can be verified more directly.

For an ADC thedeviations are measured at the transitions from one step to the next, and for the DA C they are measured
at each step. The name integral nonlinearity derives from the fact that the summeation of the differential nonlinearities
from the bottom up to a particular step, determines the value of the integral nonlinearity at that step.
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Figure 6. Integral Nonlinearity (INL) Error



3.5 Absolute Accuracy (Total) Error

The absolute accuracy or total error of an ADC as shown in Figure 7 is the maximum value of the difference between
ananalog valueandtheideal midstep value. It includesoffset, gain, and integral linearity errorsand al so the quantization
error in the case of an ADC.
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4 APERTURE ERROR
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Figure 8. Aperture Error

Aperture error is caused by the uncertainty in the time at which the sample/hold goes from sample mode to hold mode
asshownin Figure 8. Thisvariation is caused by noise on the clock or theinput signal. The effect of the aperture error
isto set another limitation on the maximum frequency of the input sine wave because it definesthe maximum slew rate
of that signal. For a sine wave input as shown, the value of the input V is defined as:

V = VO sin2snft

The maximum slew rate occurs at the zero crossing point and is given by:

av

If the aperture error is not to affect the accuracy of the converter, it must belessthan 1/2 L SB at the point of maximum
slew rate. For an n bit converter therefore:
d—V =

Ep =Ta Gt = 1/2 LSB = 557

Substituting into this gives
on+1

So that the maximum frequency is given by

faay = —=——r
MAX TAnzn +1



5 QUANTIZATION EFFECTS

The real world analog input to an ADC is a continuous signal with an infinite number of possible states, whereas the
digital output is by its nature a discrete function with a number of different states determined by the resolution of the
device. It follows from this therefore, that in converting from one form to the other, certain parts of the analog signal
that were represented by a different voltage on the input are represented by the same digital code at the output. Some
information has been lost and distortion has been introduced into the signal. Thisis quantization noise.

For theideal staircasetransfer function of an ADC, the error between the actual input and itsdigital form hasauniform
probability density functionif theinput signal isassumed to berandom. It can vary intherange+1/2 L SB or +g/2 where
g isthe width of one step as shown in Figure 9.
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6 IDEAL SAMPLING

In converting a continuous time signal into a discrete digital representation, the process of sampling is afundamental
requirement. In anideal case, sampling takestheform of apulsetrain of impulseswhich areinfinitesimally narrow yet
have unit area. The reciprocal of the time between each impulse is called the sampling rate. The input signal is also
idealized by being truly bandlimited, containing no components in its spectrum above a certain value (see Figure 10).
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Figure 10. Ideal Sampling

Theideal sampling condition shown is represented in both the frequency and time domains. The effect of sampling in
thetime domain isto produce an amplitude modul ated train of impulses representing the value of theinput signal at the
instant of sampling. In the frequency domain, the spectrum of the pulse train is a series of discrete frequencies at
multiplesof the sampling rate. Sampling convolvesthe spectraof theinput signal with that of the pulsetrain to produce
the combined spectrum shown, with double sidebands around each discrete frequency which are produced by the
amplitudemodulation. In effect some of the higher frequenciesarefolded back sothat they produceinterferenceat |ower
frequencies. Thisinterference causes distortion which is called aliasing.

If theinput signal isbandlimited to afrequency f1 and is sampled at frequency fg, as shown in the figure, overlap (and
hence aiasing) does not occur if

fl <fg—fl e, 21 < fg

Thereforeif sampling is performed at afrequency at least twice as great as the maximum frequency of theinput signal,
noaliasing occursand all of thesignal information can beextracted. ThisisNyquist’s Sampling Theorem, andit provides
the basic criteria for the selection of the sampling rate required by the converter to process an input signal of agiven
bandwidth.
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7 REAL SAMPLING

The concept of animpulseisauseful oneto simplify the analysis of sampling. However, it isatheoretical ideal which
can be approached but never reached in practice. Instead the real signal is a series of pulses with the period equalling
thereciprocal of the sampling frequency. Theresult of sampling with this pulsetrain isaseries of amplitude modul ated
pulses (see Figure 11).
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Figure 11. Real Sampling

Examining the spectrum of the square wave pulsetrain showsaseriesof discrete frequencies, aswith theimpulsetrain,
but the amplitude of these frequencies is modified by an envelope which is defined by (sin X)/x [sometimes written
sinc(x)] where x in this case is ifg. For a square wave of amplitude A, the envelope of the spectrum is defined as

Envelope = A(%)[sin(:rcfsr)] / g

The error resulting from this can be controlled with a filter which compensates for the sinc envelope. This can be
implemented as a digital filter, in aDSP, or using conventional analog techniques.
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8 ALIASING EFFECTS AND CONSIDERATIONS

Nosignal istruly deterministic and thereforein practice hasinfinite bandwidth. However, theenergy of higher frequency
components becomes increasingly smaller so that at a certain value it can be considered to be irrelevant. Thisvalueis
a choice that must be made by the system designer.

Asshown, theamount of aliasing isaffected by the sampling frequency and by therel evant bandwidth of theinput signal,
filtered as required. The factor that determines how much aliasing can be tolerated is ultimately the resolution of the
system. If the system has low resolution, then the noise floor is already relatively high and aliasing does not have a
significant effect. However, with a high resolution system, aliasing can increase the noise floor considerably and
therefore needs to be controlled more compl etely.

Oneway to prevent aliasing isto increase the sampling rate, as shown. However, the frequency islimited by the type
of converter used and also by the maximum clock rate of the digital processor receiving and transmitting the data.
Therefore, to reducethe effectsof aliasingtowithin acceptablelevels, analog filtersmust beused to alter theinput signal
spectrum (see Figure 12).
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Figure 12. Aliasing Effects and Considerations

8.1 Choice of Filter

Asshown with sampling, thereisan ideal solution to the choice of afilter and apractical realization that compromises
must be made. Theideal filter isaso-called brickwall filter which introduces no attenuation in the passband, and then
cuts down instantly to infinite attenuation in the stopband. In practice, thisis approximated by afilter that introduces
some attenuation in the passband, has afiniterolloff, and passes some frequenciesin the stopband. It can also introduce
phase distortion as well as amplitude distortion. The choice of the filter order and type must be decided upon so asto
best meet the requirements of the system.

8.2 Types of Filter

The basic types of filters available to the designer are briefly presented for comparison purposes. Thisis not intended
to be afull analysis of the subject; therefore, other texts should be referenced for more details.
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