
1How to Make the PIC16F84 Work 30 January 2001

Hints for Successful Use of the PIC16F84 Microcontroller

Objectives:

There are many things necessary to successful use of any microcontroller and the PIC16F84
is no exception. Most of these things are necessary all at the same time and it can be hard
to get off to a good start without doing them all. These hints are intended to help you get
over the initial hurdle of using the PIC16F84 successfully.

Particulars:

� Decide what use to make of each of the 13 I/O pins. There are five for Port A and
eight for Port B. If you plan to output eight-bit data, a natural assignment is to use
Port A for this purpose. That leaves Port A for any additional I/O you must perform.
Fill out the following tables:

Port Bit # Purpose

A

4

3

2

1

0

2How to Make the PIC16F84 Work 30 January 2001

Port Bit # Purpose

B

7

6

5

4

3

2

1

0

� The PIC16F84 has numerous features which you select when you download a
program to it. Decide which settings you want.

Feature Setting Reason

Watch Dog
Timer

On/Off

Power-up
Timer

On/Off

Code
Protection

On/Off

Oscillator
Selection

LP/XT/HS/RC

3How to Make the PIC16F84 Work 30 January 2001

� On power-up, the PIC16F84 initializes some of the registers to known values while
others are left in an undetermined state. On a reset signal, the PIC16F84 will also
perform some register initialization but not with the same results. Sometimes you
will find the initial values acceptable; sometimes you will not. It is good
programming practice to consider which values require modification and to do make
the necessary changes at the start of your program. In the PIC16F84 the key
registers are shown below. Fill in the values you would like them to contain and
make sure they either are initialized that way by the processor or by code you write.

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

STATUS
IRP RP1 RP0 TO PD Z DC C

OPTION
RBPU INTEDG T0CS T0SE PSA PS2 PS1 PS0

INTCON
GIE EEIE T0IE INTE RBIE T0IF INTF RBIF

TRISA

TRISB

� Decide how you want to provide a clock signal to the PIC16F84. An easy way is to
use RC timing. However, this does not permit exact prediction of the clock’s
frequency. If you need to know it, measure it with an oscilloscope by examining the
output at pin 15 (OSC2/CLKOUT). Alternatively, provide an external clock signal
of known frequency and run the PIC16F84 in any one of the HS, XT, or LP oscillator
configurations.

� Consider how you might provide a reset signal to the microcontroller. One easy way

is to connect the pin (#4) to through a 4.7 k6 resistor rather thanMCLR VDD

directly. You can then also tie the pin to a debounced, normally open pushbutton.
Pushing the button applies a ground potential to pin 4, resetting the microcontroller.
Normally, with the switch open, pin 4 has a HIGH signal on it. (The resistor

prevents a short from to ground when you push the button.)VDD

� Storage is quite limited in the PIC16F84. Make a table showing what data locations
you are using and what purpose they serve. If you are using EEPROM, keep a
separate table for its locations.

� Break your program up into smaller, more manageable pieces. Don’t try to write an
entire program at once. Rather, write and test the pieces one at a time. Once one

4How to Make the PIC16F84 Work 30 January 2001

section is known to be working satisfactorily, add another piece and test it, fixing it
until you are satisfied. (This is exactly what you should be doing when building
hardware, incidentally.)

� Make sure you have a complete schematic diagram including all pins of the
PIC16F84 as well as all other devices you connect it to.

� Document the design completely, explaining why you picked the external
components you did pick and why you made the processor configuration decisions
you made earlier in this document.

� Use a flowchart to explain the steps in your program.

� Use comments liberally in your assembly language programs so that each group of
instructions has a clear purpose.

� Use symbolic names rather than numbers of special, almost mystical, significance.
For example, it is much easier to understand this code:

init_count equ 5
counter equ 12

movlw init_count ; Get the initial value for the
; counter.

movwf counter ;Store it in a register.

than this code:

movlw 5
movwf 12

� There are three ways to introduce delays of a desired duration:

� Calculate the number of machine cycles it takes to execute delay
loops.

� Use the Timer0 module to interrupt your program when a desired
delay has elapsed.

� Use the Timer0 module to measure out a desired delay time and have
your program check repeatedly to see if it’s done yet.

- The first method is conceptually easy but it can be hard to calculate the
correct number of times to execute a loop.

- The second method is clean and efficient but interrupt service routines can
be hard to debug.

- The third method is called polling. It is probably the easiest method to use.
However, your program may wind up wasting time if you aren’t careful.

- Whichever method you use, describe it clearly, showing how you arrived at
the values you used to control the delay time. If you use the prescaler for the
Timer0 module, be sure you document this choice.

� Be sure to include observations showing why you think your project does or does not
work correctly and explain these observations thoroughly.

