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[57] ABSTRACT

A highly sensitive optical fiber interferometer sensor
comprising a laser light source, a [2X2] optical fiber
coupler to split the beam in two, a differential trans-
ducer which converts a signal of interest into optical
phase shift in the laser light transmitted through the two
optical fibers in the interferometer and a [3 X 3] optical
fiber complex which recombines the two beams, pro-
ducing interference which can be electronically de-
tected. The use of the [3X 3] coupler permits Passive
Homodyne demodulation of the phase-modulated sig-
nals provided by the interferometer without feedback
control or modulation of the laser itself and without
requiring the use of electronics within the interferome-
ter.
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1

DEMODULATORS FOR OPTICAL FIBER
INTERFEROMETERS WITH [3 3] OUTPUTS

FIELD OF THE INVENTION

This invention pertains to a method and apparatus for
assembling a sensitive optical interferometer sensor.

BACKGROUND OF THE INVENTION

Since the first application of an optical fiber interfer-
ometer as a means of detecting an acoustical signal,
there have been a long series of improvements to the
sensitivity, selectivity, and robustness of this fiber-optic
sensor strategy. (Bucaro el al, “Fiber optic hydro-
phone”, J. Acoust. Soc. Am 62, 1302 (1977)). This de-
velopment has resulted in the fabrication of fiber-optic
acoustic and vibration sensors which are capable of
reaching the phenomenological limitations of this tech-
nology imposed by the elastic properties of optical fi-
bers and the unavoidable noise introduced by thermal
fluctuations. (Gardner et al, “Fiber optic seismic sen-
sor”, Fiber Optic and Laser Sensors V, Proc. Soc. Photo
Optical Inst. Eng. (SPIE) 838, 271-278 (1987); Garrett
et al, “Multiple axis fiber optic interferometric seismic
sensor”, U.S. Pat. No. 4,893,930 (Jan. 16, 1990); Daniel-
son et al, “Fiber optic ellipsoidal flextensional hydro-
phones”, J. Lightwave Tech. LT-7(12), 195-2002
(1989); Garrett et al, “Flextensional hydrophones”, U.S.
Pat. No. 4,951,271 (Aug. 21, 1990); Garrett et al, “A
general purpose fiber-optic interferometric hydrophone
made of castable epoxy”, Fiber Optic and laser Sensors
V.III, Proc. Soc. Photo Optical Inst. Eng. (SPIE) 1367,
13-29 (1990); U.S. Pat. No. 4,959,539 (Sept. 25, 1990);
Hofler et al, “Thermal noise in a fiber-optic sensor”, J.
Acoust. Soc. Am. 84(2), 471(1988); J. Acoust. Soc. Am.
87(3), 1363 (1990).) In order to produce a complete
fiber-optic interferometric sensing system, one must
also provide a light source and an opto-electronic recei-
ver/demodulator, in addition to the sensor.

The receiver/demodulator converts the time varying
optical power into a representation (analog or digital) of
the original stimulus. The optical power modulations
contain the information about the measurand that has
been encoded as an optical phase modulation by the
interferometric sensor. Ideally, this conversion creates a
signal which is linearly proportional to the measurand.
This conversion of the optically encoded signal back
into a linear representation of the stimulus is by no
means trivial. The optical signal may contain frequency
components which are hundreds of times higher than
those in the measurand signal for large signals which
create many interference fringes for each cycle. For
small signals which do not create a complete fringe, it
may not even contain the fundamental signal frequency
of the signal of interest. Furthermore, the demodulator
should be able to compensate for fluctuations in the
amplitude of the light source and drifts in the polariza-
tion of the light within the interferometer and other
changes which might effect the interferometric fringe
visibility (also known as the modulation depth) and the
total optical power received by the demodulator.

The particular choices for these three components of
the interferometric sensor system (i.e., the sensor, light
source, and demodulator) are not independent. For
example, a pseudo-heterodyne demodulation system
using a phase generated carrier, requires that the sens-
ing interferometer have an optical path imbalance and
that the semiconductor laser diode light source wave-
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length be modulated, usually as a result of modulation
of the current through the laser diode. These inter-
locked choices also effect the overall system perfor-
mance. (Dandridge et al, “Homodyne demodulation
scheme for fiber optic sensors using phase generated
carrier”, IEEE J. Quantum Electron. QE-18, 1647
(1982)) For example, a small path length imbalance will
require large amplitude current modulation of the diode
laser which leads to mode hopping and excess noise.
Alternatively, if the path length imbalance is increased
in order to reduce the laser diode current modulation
requirement, then a laser with a longer coherence
length must be used to insure that interference will still
take place. Long coherence length laser diodes are
expensive. In addition, the interferometer noise is also
linearly proportional to the path length mismatch for a
given amount of laser phase noise, so increases in the
path length mismatch also introduce excess noise. (Dan-
dridge et al, “Phase noise of single-mode diode lasers in
interferometric systems”, Appl. Phys. Lett. 17, 937
(1981))

The problems associated with the pseudo-heterodyne
demodulation and other schemes which require a “car-
rier” signal and are not limited to the conflicting re-
quirements for the light source, sensor, and demodula-
tor. There are other technological difficulties which
also degrade both the utility and the performance of
these demodulators. These include system set-up com-
plexity, dynamic range limitations, and scale factor
instability. Although a detailed discussion of these prob-
lems would be beyond the scope of this disclosure, it is
at least worth identifying their common phenomenolog-
ical root.

The interferometric output, represented by the cur-
rent, i, generated by the photodetector that receives the
optical output of the coupler, can be expressed as the
sum of an infinite series of Bessel Functions as shown
below,

®
i = cosba [Jo(¢:) +2 £ Janlbocostnat :| +

sindg [z ,E o 2n+1($6in(@n + Do) ]

where ¢g4 is the quasi-static phase difference between
the electric field vectors in the two legs of the interfer-
ometer and ¢sis the magnitude of the phase modulation,
at angular frequency, o, which was induced in the sen-
sor by the measurand. Heterodyne demodulation tech-
niques introduce a “carrier signal” which consists of a
phase modulation of amplitude ¢, and of frequency
®m, Which must be at least a factor-of-two higher than
the highest frequency of interest generated by the
measurand. The amplitude of the carrier phase modula-
tion (or operationally, the amplitude of the laser diode
current modulation) is usually chosen so that two adja-
cent Bessel function components in the series, for exam-
ple Jy and J5, or 32 and J3, have equal amplitude. The
signal of interest then appears as side-bands on the car-
rier frequency and its harmonics.

These side-bands can then be “stripped” off of the
carrier to provide an in-phase and quadrature signal
which can be used to reconstruct the measurand by a
conventional sine-cosine demodulation process which
involves differentiation, cross-multiplication, summing,
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and integration. The sine-cosine reconstruction algo-
rithm is based on the Pythagorean trigonometric iden-
tity, sin 20+cos 20=1. The differentiation of each of
the signals produces an output which is proportional to
the time derivative d6/dt. The cross-multiplication and
summation produces the constant times the derivative,
(d6/dt) (sin 20+ cos 28). Integration of d6/dt with re-
spect to time then recovers the phase modulation signal
of interest, 6.

Although the heterodyne demodulation process de-
scribed above seems relatively straight-forward to one
skilled in the art, there are many practical difficulties in
its implementation, some of which are rather subtle.
Since the previous process uses only two harmonics of
the infinite series of harmonics, the total optical power
is not available unless some other means is employed to
obtain that parameter. This means that the process can-
not compensate for fluctuations in the laser power or
the interferometric fringe visibility. This leads to varia-
tions in the scale factor which characterizes the circuit’s
conversion of optical phase in radians to electrical out-
put in volts. There is no way, in principal, to differenti-
ate between a change in demodulator scale factor and a
change in the amplitude of the measurement if a calibra-
tion signal is not inserted into the system.

Also, in the previous discussion no mention was made
of how the chosen pair of Bessel function amplitudes
were set equal and how their equality was to be main-
tained. In the present implementation of the pseudo-
heterodyne demodulators (also called “passive homo-
dyne” demodulators), the adjustment of the Bessel func-
tion amplitudes and the determination of their orthogo-
nality (i.e. establishment of the “pure” in-phase and
quadrature relationship) is done by a skilled technician.
This adjustment typically requires the use of a Fast
Fourier Transform (FFT) signal analyzer to adjust the
Bessel amplitudes and an oscilloscope in the Lissajous
mode to determine the orthogonality. Periodic re-
adjustments must be made to compensate for drifts in
the light source and the interferometer. The scale factor
will again be a function of both the Bessel function
equality and orthogonality. Though it should be possi-
ble in the future to make these adjustments, now done
by a skilled technician, using some automatic feed-back
control system, this would again add to the complexity
and cost of the required circuitry. If it were simple, it
would already have been done!

Finally, the use of the phase modulation of the carrier
places a limit on the dynamic range of the heterodyne
demodulator. As stated before, large signals create fre-
quency components which can be higher harmonics of
the signal of interest. Since the frequency spacing of the
carrier frequency harmonics is @, the demodulation
algorithm fails when the signal of interest contains fre-
quency components which are greater than or equal to
©m/2 because the lower side-bands of the upper carrier
would become indistinguishable from the upper side-
bands of the lower carrier. One cannot arbitrarily in-
crease wm in order to increase the dynamic range since
thermal time constants of the laser diodes restrict cur-
rent induced wavelength modulation frequencies to
about 100 Khz. Due to this dynamic range limitation,
most of the heterodyne fiber optic sensor demodulators
have been restricted to low phase rates and hence have
had to produce acceptable dynamic ranges (=120 dB)
by being able to detect very low amplitude phase modu-
lations (=1~ 10 prad/V'Hz).

4

From the previous discussion of the sine-cosine de-
modulation process, it should be apparent that two
signals (i.e. in-phase and quadrature) which contain the
phase information are required to reconstruct the
measurand. In the heterodyne demodulator, this was
accomplished by using the side-bands of two carrier
harmonics. Another approach which has been used to
produce the in-phase and quadrature signals is an inter-
ferometer that employs a [3X3] coupler as the output
coupler. (A. Dandridge, “Fiber optic sensors based on
the Mach-Zender and Michelson interferometers”, in
Fiber Optic Sensors: An Introduction for Engineers and
Scientists, Eric Udd, editor (Wiley-Interscience, 1991),
Chap. 10) Due to energy conservation, the outputs of a
[2X2] coupler are 180° out-of-phase. When one of the
[2X2] outputs is at its maximum, the other must be a

" minimum, since the total optical power out of the cou-
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pler, which is a passive device, must be constant for a
constant input power. In an ideal, symmetric (i.e. equal
split ratio) [3X 3] coupler, the outputs have a relative
phase difference of 120°,

In the previous attempts to produce a demodulator
using the outputs of a [3:X 3] coupler, two of these three
outputs were combined in order to produce the in-phase
and quadrature signals which would then be processed
by the sine-cosine demodulation algorithm described in
the previous sub-section. (K. P. Koo, A. B. Tveten, and
A. Dandridge, “Passive Stabilization Scheme for Fiber
Interferometry Using (3X3) Fiber Directional Cou-
plers, Appl. Phys. Lett. 41, 616 (1982)) If we represent
two of the three outputs from the [3 X 3] coupler, I, and
I3, as shown below,

I=B1+B; cos Ad+Bj3 sin Ad (03}

I3=B|+B; cos Ap—B3 sin Ad 3
then by forming their sum and difference,

DL+13=2B)+2B; cos Ad and J,—J3=2B3 sin Ad @

the in-phase (cos A¢d) and quadrature (sin A¢) signals
can be obtained after gain adjustment and offset subtrac-
tion.

Although the use of the [3 X 3] coupler to produce the
in-phase and quadrature signal eliminates the problems
of the heterodyne approach such as light source wave-
length modulation, the required optical path imbalance,
Bessel function balance and orthogonality, and the in-
trinsic dynamic range limitations, the [3X 3] homodyne
demodulation using only two of the three outputs to
produce inputs for the sine-cosine algorithm has its own
limitations. Again, the total power is not available, since
only two of the outputs were utilized, hence no com-
pensation is included for light source power variations
or changes in fringe visibility. The lack of symmetry in
the demodulation process also reduces the robustness of
the algorithm against fluctuations in the split ratio,
which is assumed to be equal for each of the three out-
puts.

It is within this context, and in response to the recent
availability of [3 X 3] with good environmental stability
and polarization insensitivity, that the new “Symmetric
Demodulator for Optical Fiber Interferometers with
[3X3] Outputs” was developed. (Davis et al, “Charac-
terization of 3X3 Fiber Couplers for Passive Homo-
dyne Systems: Polarization and Temperature Sensitiv-
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ity”, paper WQ2, Proc. Optical Fiber Communications
Conference, Houston, Tex., Feb. 6-9, 1989)

OBJECTIVES OF THE INVENTION

The primary objective of this invention is the cre-
ation of an opto-electronic circuit that will convert the
time varying output intensities from an interferometer
having a three-by-three [3X 3] evanescent wave fiber-
optic coupler into an electrical signal. The electrical
signal produced by the demodulator should be an ana-
-log or digital reconstruction of the time-varying ampli-
tude modulation of the optical path difference in an
interferometer which is terminated by such a coupler.
The path modulation would typically be produced in an
interferometric fiber-optic sensor where a measurand or
signal of interest, such as acceleration or acoustical
pressure variation, would produce a signal encoded as
an optical phase modulation within the two legs of an
optical fiber interferometer. The technique should be
capable of demodulation both small (less than one
fringe) and large (multi-fringe) optically phase-encoded
signals and automatically compensate for intensity vari-
ations due to such factors as changes in the optical
power of the light source and changes in interferomet-
ric fringe visibility (modulation depth).

SUMMARY OF THE INVENTION

These objects of the invention and other objects,
features and advantages to become apparent as the spec-
ification progresses are accomplished by the invention
according to which, briefly stated, a highly sensitive
optical fiber interferometer sensor comprising a laser
light source, a [2X2] optical fiber coupler to split the
beam in two, a differential transducer which converts a
signal of interest into optical phase shift in the laser light
transmitted through the two optical fibers in the inter-
ferometer and a [3X3] optical complex which recom-
bines the two beams, producing interference which can
be electronically detected. The use of the [3 X 3] coupler
permits Passive Homodyne demodulation of the phase-
modulated signals provided by the interferometer with-
out feedback control or modulation of the laser itself
and without requiring the use of electronics within the
interferometer.

LIST OF ADVANTAGES OF THE INVENTION

In considering the advantages of the symmetric de-
modulator, it is important to remember that the choice
of the demodulator also impacts on the sensor and the
light source.

The advantages of this demodulator over the hetero-
dyne demodulators are summarized below:

a. This technique works from the sub-fringe through
the multiple-fringe range of optically encoded interfero-
metric signals.

b. No modulation of light source wavelength is re-
quired. This reduces noise, since there is less probability
that the laser will “mode hop”, and cost, since the addi-
tional laser current modulation circuitry is not required.

c. No optical path-length mismatch is required. This
means that laser phase noise does not appear as interfer-
ometer output power noise which is linearly propor-
tional to the interferometer optical path length mis-
match. This also means that the coherence length of the
laser used as the light source can be significantly shorter
and hence cheaper laser diodes can be used.

d. Since the signals required for demodulation are not
extracted as side-bands on a carrier, no Bessel amplitude
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6
equalization or orthogonalization is required. Hence, a
skilled technician with expensive test equipment (FFT
analyzer and oscilloscope) is not required for demodula-
tor set-up and adjustment.

e. Since no carrier is required, there is no intrinsic
limitation on the magnitude of the phase modulation
produced by the sensor which the demodulator can
successfully process. This has the advantage of allowing
exploitation of the newly developed class of push-pull
fiber optic interferometric sensors that produce signals
which are 20 to 50 dB greater than the older sensor-ref-
erence coil interferometric topologies which relied on
special coatings on the fibers to enhance sensitivity to
the measurand of interest while suppressing response of
the sensing leg.

f. Since all of the power from the interferometer is
used by the symmetric demodulator, the symmetric
demodulator is capable of maintaining a stable scale
factor (volts/radian) even in the presence of variations
in the total power and in the fringe visibility.

The advantages of the symmetric demodulator over
the homodyne demodulator which uses only two of the
three outputs of the [3 X 3] coupler to provide the inputs
to the sine-cosine demodulator include stability of scale
factor for variations in the average power and fringe
visibility, and robustness against imperfections in the
fabrication of the [3X3] coupler which lead to small
deviations in the power split ratio and deviations from
an exact 120° phase relation between the three out-
puts.

General advantages of this new symmetric demodula-
tion technique also arise out of the fact that this demod-
ulator does not require elaborate diode laser modulation
and stabilization circuitry and does not require expen-
sive (long coherence-length laser diodes. Due to the
fact that simple power circuits and cheap lasers are
employed, new multiplexing topologies are now eco-
nomical and potentially more robust. For example, each
sensor can now be provided with its own laser that can
be “chopped” at a specific (probably RF) frequency.
The three outputs from each sensor can be place on a
single “bus” which requires only three fibers, either
multimode or single mode, that can carry a great num-
ber of sensor signals back to the three receivers. The
signals from the individual sensors can be separated
after the receiver using conventional techniques used
extensively in radio receivers and sent to individual
symmetric demodulation circuits. In heterodyne based
multiplexed systems, use of separate lasers is typically
not economical since those lasers are expensive and
require elaborate control circuitry.

In some applications the user requires output in a
digital format. This symmetric demodulator may be
implemented digitally as well as in analog electronic
circuitry. This would be accomplished by performing
the analog-to-digital (A-to-D) conversion at the output
of each of the three receivers and then performing the
mathematical operations digitally. Because the signal is
phase-modulated, the demodulator is capable of pro-
ducing an output which has a dynamic range which is
much greater than that of the input analog-to-digital
converter. Large amplitude signals result in higher fre-
quencies, not greater optical power modulation. Ac-
cordingly, a faster A-to-D is required to increase dy-
namic range, not necessarily an A-to-D with more bits
of resolution.

These and further objectives, constructional and op-
erational characteristics, and advantages of the inven-
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tion will no doubt be more evident to those skilled in the
art from the detailed description given hereinafter with
reference to the figures of the accompanying drawings
which illustrate a preferred embodiment by way of
non-limiting example.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic drawing of a Mach-Zender
optical fiber interferometric sensor with [2 2] optical
fiber couplers at both the input and the output.

FIG. 2 is a schematic drawing of a Michelson optical
fiber interferometric sensor with a single [2X2] optical
fiber coupler serving as both the input and the output.

FIG. 3 shows a Mach-Zender optical fiber interfero-
metric sensor with a [2X2] optical fiber coupler at the
input and a [3X 3] optical fiber coupler at the output.

FIG. 4 shows a Mach-Zender optical fiber interfero-
metric sensor with a [3 X 3] optical fiber coupler at the
input and a [3 X 3] optical fiber coupler at the output.

FIG. 5 shows a Michelson interferometer with a
[3X3] coupler serving both as input and output with
only two outputs available, since one of the three
strands of glass in the coupler is devoted to the input.

FIG. 6 shows graphs of the outputs described in Eqn.
5 for amplitude of the stimulus, A =57 radians.

FIG. 7 shows graphs of the outputs differing from
FIG. 6 only in different choice of the amplitude of the
stimulus, A=10.57 radians.

FIG. 8 shows the physical layout of an optical fiber
interferometric sensor of voltages.

FIG. 9 shows a detail of the assembly of the piezo-
electric cylinders with fiber wrapped around them.

FIG. 10 shows the apparatus used to obtain constant
tension in the fiber wrapped by hand on the cylinders.

FIG. 11 is a block diagram of the fringe rate demodu-
lator.

FIGS. 12A and 12B are Karnaugh maps of logic
needed to generate LL.

FIG. 13 is a comparator circuit used to convert bipo-
lar interferometric outputs to binary levels.

FIG. 14 shows a Tee-network used to obtain large
resistance.

FIG. 15 is a block diagram of the symmetric demodu-
lation algorithm.

FIG. 16 is a phasor diagram depicting the operation
of the asymmetric demodulation technique.

FIG. 17 is a phasor diagram depicting the operation
of the symmetric demodulation technique.

FIG. 18 is a diagram showing the adding of the three
products of signals with differences of derivatives,
showing the original stimulus of A=>57 radians super-
imposed.

FIG. 19 is a Bode plot of the gain and the desired
differentiator gain characteristic.

GLOSSARY

The following is a glossary of elements and structural
members as referenced and employed in the present
invention.
10-laser used as an optical beam source for coherent

Light
12, 14-[2 X 2] optical coupler
16, 18-transducers used to introduce a signal of interest

into the optical beam
20, 22, 26-optical signal detectors, for example photo

diodes
24, 28-optical couplers
30, 32-piezoelectric cylinders
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34-[2X 2] coupler

36-[3 X 3] coupler

38-baseplate

40-rubber washer

42-acrylic spacer

44-rubber washer

46-metal washer

50-table

52-spindle

54-pulley

56-weighted pulley

60, 62-comparators

64-erasable programmable logic device (EPLD)

66-frequency to voltage convertor

68-optional invertor

70-integrator

301-optoelectronic converter

303-modulation stripper

305-derivative cross multiplier

307-modulation depth compensator

401,402,403-photodiodes

405,406,407-photodiode amplifiers

410-summing and scaling circuit

412,413 ,414-difference amplifiers

416,417,418-differentiating circuits

420,421,422-difference amplifiers

426,427,428-multiplying circuits

430-summing circuit

432,433,434-squaring circuits

436-summing circuit

440-division circuit

446-integrating circuit
DESCRIPTION OF THE PREFERRED

EMBODIMENT

First we describe a mathematical prediction of the
performance of an optical fiber interferometer in the
Mach-Zender configuration. The Mach-Zender config-
uration is distinguished from the Michelson configura-
tion in that the two optical paths in the interferometer
are only traversed once by light, rather than twice. The
implication of this for an optical fiber interferometer is
that there must be two optical fiber couplers: one for the
input and a second for the output.

In general, Mach-Zender interferometers produce
more output power than do Michelson interferometers
because they do not rely on reflection for light to be
output. On the other hand, Michelson interferometers
are twice as sensitive as Mach-Zender interferometers
because the light is twice subject to the phase shift in-
duced by the transducer, once for each pass through the
interferometer. They are cheaper, too, since only one
optical fiber coupler is required, instead of two.

FIG. 1 is a schematic drawing of a Mach-Zender
optical fiber interferometric sensor with [2 X 2] optical
fiber couplers 12, 14 at both the input and the output.
FIG. 2 is a schematic drawing of a Michelson optical
fiber interferometric sensor with a single [2X2] optical
fiber coupler 12 serving as both the input and the out-
put. The drawback to the use of [2X 2] couplers is that
the two interferometric outputs are 180° out of phase
from each other, and so there is insufficient information
in them to faithfully to reconstruct the signal of interest.
In the case of the [2X 2] Michelson configuration, there
is only one output, and the inability to reconstruct the
input is more blatant, although no more real.

To take advantage of passive homodyne demodula-
tion techniques, we can use a [3 X 3] coupler at the out-



5,313,266

9

put. FIG. 3 shows a Mach-Zender optical fiber interfer-
ometric sensor with a [2X 2] optical fiber coupler 12 at
the input and a [3X3]} optical fiber coupler 24 at the
output. FIG. 4 shows a Mach-Zender optical fiber inter-
ferometric sensor with a {3 X 3] optical fiber coupler 24
at the input and a [3 X 3] optical fiber coupler 28 at the
output. One could also construct a Michelson interfer-
ometer with a [3 X 3] coupler serving both as input and
output. In this case, there would be only two outputs
available, since one of the three strands of glass in the
coupler is devoted to the input. This situation is de-
picted in FIG. 5.

The purpose of the derivation hereinafter is to obtain
a theoretical model of the optical power in the output
generated by a Mach-Zender optical fiber interferomet-
ric sensor like those in FIG. 3 and FIG. 4. Of these two,
that using the [2X2] coupler at the input is more effi-
cient. As we shall show, this yields a 1.76 dB improve-
ment in output power.

The model we derive in detail hereinafter is given by
equation (5).

. ®)
2
&;‘)'—=D+Ecos[§(x)+¢(z)-(k_ l)-;—w].

We shall complete the derivation of the model de-
scribed in Eqn. (5) for the interferometer whose input is
a [2X 2] coupler, that of FIG. 3. The completion of the
model for the interferometer whose input is a [3X3]
coupler, that of FIG. 4, proceeds upon very similar
lines, most of which are supplied hereinafter.

In Eqn. (5), k is an index which can take on the values
1, 2, or 3. It specifies which of the three outputs is being
considered. D represents a central value, around which
the outputs of the interferometer can fluctuate by £E,
at most. Whether or not they actually reach the two
extrema at D+E and D—E depends on the signal £(t).
If it has a very small amplitude, then the cosine will not
vary much and so the extreme values will not, in gen-
eral, be achieved. On the other hand, if £ has a very
large amplitude, more than =7 radians, in particular,
then the signals are guaranteed to reach both extrema,
possibly many times for each cycle of £ The term ¢(t)
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is contributed to the phase by phenomena which are of 45

no interest to us.

In an acoustics application, for example, we would
prefer that acoustic waves impinging on the interfero-
metric sensor be the only phenomena to induce a phase
shift in the light within the interferometer. Acoustic
waves are the signals of interest in this application, and
we represent them by £(t). Temperature changes also
can induce phase shifts within the interferometer, al-
though we do not desire this effect. Thus they contrib-
ute to the unwanted phase shift, ¢(t). We often find that
the frequency of ¢(t) is much less than the frequency
band of the signal of interest, which makes its elimina-
tion somewhat easier. With proper construction of the
transducer, unwanted effects can be made to produce
the same effect on both legs of the interferometer, and
this helps to suppress ¢(t), too. In any event, we shall
often suppress this term for mathematical convenience,
and because it can be removed by filtering, but it is
never truly absent. _

In FIG. 6 we show graphs of three samples of the
kind of outputs described by Eqn. (5). These graphs
were drawn by computer. Superimposed over the three
interferometric outputs is a plot of the stimulus itself,

60

65
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£(t)=A sin(27rft). This graph is not to the same scale as
the other three; it is centered vertically over the middle
output for convenience. For the purpose of illustration,
we chose to let the signal of interest be a pure tone (a
sinusoid) with phase amplitude A =57 radians. The plot
does not show the scale of time along the horizontal
axis, and so the choice of the frequency f is not speci-
fied. By suitable scaling of the time axis, the plot will
look the same no matter what f might be. The three
plots are offset from one another vertically only to
make them easy to see. The model specifies that they
will all really be centered around the same central value
D.

The choice of amplitude A dictates the amplitude of
¢, of course, but it also dictates the number of fringes
(complete cycles of 27 radians, or multiples of 7 in A)
in the three outputs between each successive extremum
of &

As the stimulus passes through zero (its midpoint), it
changes at its most rapid rate. Simultaneously, the out-
puts achieve their highest instantaneous frequencies.
When the stimulus stops changing (when it reaches an
extremum), the outputs also stop changing and their
instantaneous frequency drops to zero. The phase shift
is directly proportional to & The instantaneous fre-
quency of the interferometric outputs is given by the
rate of change of &.

In FIG. 7 we show another set of sample graphs.
They differ from those of FIG. 6 only in the different
choice for the amplitude of the stimulus, A=10.57
radians. Note that there are more fringes in this second
example than in the first. Yet the locations of the points
where the instantaneous frequency reaches its maxi-
mum and where it reaches zero have not changed, since
these depend only on the frequency f of the stimulus.

It is worth discussing the units of £ at this point. In the
previous paragraph, we treated £ as measured in radi-
ans. £ is indicative of the amount of strain on the glass in
the optical fiber interferometer. The signal of interest,
no matter what its natural units, produces differential
strain in the two legs of the interferometer, with a con-
sequent differential optical path length. The number of
wavelengths of differential path length corresponds to
the number of multiples of 2 radians of phase shift
induced in the interferometric output.

The differential equations which describe the ampli-
tudes of the phasors within the [2X2] and [3X 3] cou-
plers are given in Sheem, “Fiberoptic Gyroscope with
[3% 3] Directional Coupler”, Appl. Phys. Lett., 37(10),
pp.869-871, Nov. 15, 1980; Sheem, “Optical Fiber In-
terferometers with [3 X 3] Directional Couplers; Analy-
sis”, J. Appl. Phys., 52(6), pp.3865-3872, June 1981. Be-
fore presenting the differential equations themselves,
we first establish some notation.

The fibers will be denoted by numbers 1 and 2 for the
[2X 2] case and 1, 2, and 3 for the [3 X 3] case. We shall
denote electrical field intensities by phasor amplitudes.
The electrical field phasor ax(z) within fiber k is a func-
tion of position z measured from the point where light
enters the coupler. For instance, a;(z) is the electric
field in optical fiber 1 at a distance z from the entry
point. The differential equations include coupling coef-
ficients K; between fibers i and j. For example, Kizis
the coupling coefficient between optical fibers 1 and 2
within a coupler. For the [2X2] case, the differential
equations given by Sheem are
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da d 13
19 4 Ko =0 © 1D | jKeate) + JKa(a) = O, “
d 14
w S 29 ke + ik = 0, “
220 | Ko = 0. @ and
For the [3X3] case, they are very similar: das@ . i (%)
, they Ty similar: 10 = + iKai(@) + jKax@) = 0.
) jKpax@) + jKaas) = 0 ® Sheem ’81 [p. 3865] give the solutions to equations
az (11) and (12) as
Adm@) (©) ) .
—— +Kne@) + jKnaia) = 0, 15 a1(2)=ay(0) cos (K2)—ja2(0) sin (Kz) (16)
and and
da: = —jay(0) sin (Kz).
3;) + JKnan(®) + jKpaxd) + 0. (10) a3(2)=a2(0) cos (K2)—jay(0) sin (K2) an
20

If we compare these equations with the general result
given in Snyder, we note two differences. Firstly,
Sheem ’80 and ’81 renames Snyder’s coupling coeffici-
ents Cjs and brings them to the left-hand side of the
equations as K;;. [Snyder, “Coupled-Mode Theory for
Optical Fibers”, J. Opt.Soc. Am., 62(11), pp. 1267-1277,
Nov. 1982.]. This is a minor difference in notation,
which we shall nonetheless adopt in order to keep this
development similar to Sheem’s.

A more important difference is the droppmg of the
term jB7;in Snyder. The effect of the missing term is
zero in the case where the three fibers are identical.
That they all are identical is a reasonable approximation
in a [3X 3] optical fiber coupler. Hereinafter, we pro-
vide details of the solution of the differential equations
where this approximation is valid.

It will be noted that in equations (6) and (7) there is
little point in appending subscripts to the coupling coef-
ficient K3, so we shall replace it with coupling coeffici-
ent K and rewrite these equations as

day(z)
dz

an

+ jKax(?) =
and

da(2)
dz

(12)

+ jRAY2) = 0.

Also, in equations (8) through (10) there are three dis-
tinct coupling coefficients, K2, K23, and K3, Strictly
speaking, the coupling between each pair of optical
fibers in a [3 X 3] coupler may be different. However, in
order to make the mathematics tractable, we shall as-
sume that the coefficients all are equal to the same
value, K. This would obviously be a valid assumption
for three fibers arranged equidistant from each other, as
if at the vertices of an equilateral triangle. However, it
is not valid for three fibers aligned in a plane. Asit turns
out, this assumption leads to a good description of the
actual behavior of the interferometers we have built in
the laboratory. A more elaborate theory could be cre-
ated treating the coupling coefficients as random vari-
ables dependent on the position z, something we have
not found necessary to get useful results, but which
might assist in optimization of a practical system.

Replacing all coefficients K; by K, equations (8)
through (10) simplify to
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We can verify that these are indeed solutions by differ-
entiating equations (16) and (17) and substituting into
equations (11) and (12). Because this is straightforward,
we omit this verification.

The solution to equations (13) through (15) is also
given by Sheem ’80 [p. 869]:

a1(2)==c16K2 4 de—12Kz (18)

ax(2)=c20/KZ - de—12Kz, (19)

and

a3(2)+ 30K 4 de—2K2 (20)
where

c1+c2+c3=0. @D

We can verify that equations (18) through (20) are in-
deed solutions of differential equations (13) through (15)
by taking their derivatives and substituting them into
the differential equations. Because this is straightfor-
ward, we omit the verification. Note, however, that
Eqn. (21) is useful in performing the verification.
Eqns. (11) and (12) for the [2X2] coupler and Eqns
(18 through 20) for the [3X 3] coupler are general. Par-
ticular solutions depend on the initial conditions. At the
input to our Mach-Zender interferometer, we have

a1(0)=A4 (22)

a3(0)=a3(0)=0. @3)
This represents the situation where a laser of constant
amplitude A injects light into one leg of the fiber and
the other leg (in the case of a [2X2] coupler) or both
other legs (in the case of a [3 X 3] coupler) are unillumi-
nated.

We shall analyze both these situations before moving
on to the next stage, which entails taking the outputs
from either a [2X2] coupler or a [3X3] coupler and
using them as inputs to a second coupler, a [3X3] cou-
pler. Either of these configurations comprises a Mach-
Zender interferometer with a [3X3] coupler as an out-
put.

First we consider the case where the input to the
interferometer consists of a [2X2] coupler. Evaluating
Eqns (16) and (17) we get
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a1(z)=A cos (Kz2) 4)
and
82(2)=—jA sin (K2). 25)

At the outputs of the coupler, z=L and so the aver-
age power represented by these two outputs is given by

jaD)|? 26)
out] = 2
Pount = 5 aiDar*(L) @n
28
Pourp = =5 cos((KL) @
and
lax(@)|2 @)
ou =5
Poury = 5 aa(Da*@) €0
Poun = - (~Msin(KD)]ljAsin(KL)] éb
Pouy = ’;—2 sin2(KL). 62

The sum of the average power emitted by each output
of the coupler is a constant, as should be expected from
the law of conservation of energy if the couplers are
assumed to be lossless. (Although couplers are not
100% lossless, this approximation is quite good.)

We next consider the case where the input to the
interferometer consists of a [3X3] coupler. We shall
suppose that laser light of amplitude A is injected into
input 1; inputs 2 and 3 will be left dark. Evaluating

equations (18) through (20) at z=0 we get
a10)=A=c1+d (33)
a(0)=0=c2+d (34
and
a3(0)=0=c3+d. (39)
So
ci=A—d (36)
and
o=c=—d. @37

If we sum the three equations (33) through (35) we get

A=c+a+a+3d 38)

3d
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this, we see that

A (39)
d=37
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and substituting this into equations (36) and (37), we get

o @0

u‘k ®,

A4

A

4

2
3

—d @1

4
-

Substituting equations (39) through (41) into equations
(18) through (20) yields the particular solutions

ai(2) = $40Kz 4 j4e—2Kz 42)

ayz) = — 3A0KZ 4 yae—S2Kz @3)

and

ay(z) = — 340Kz § jge—RKz 44)
= ax2).

Note that outputs 2 and 3 are identical, which intu-
itively they should be, since they have not yet been
distinguished from one another in any way except by
the arbitrary assignment of index numbers to them.
The average power contained in output 1 is given by

“35)
1y|2

Pouty ‘01(2)|

_ a@err®)

= —-

Substituting z=L into Eqn. (42) and rewritting Eqn.
(45) yields

. ) (
Pan = + 4 QoL 4 e~PKL 4 @KL o oKD
A2

i

@+ 1+ 20KLe2KL  3e~/2KLe—JKL)

2
4[5 + 2PKL + e~PKD)

We can replace the complex exponentials with trigono-
metric functions as follows:

“n
A2
18

J3KL ~j3KL
s +4_@J__-§=_1_1]

Poury

A2
45— [5 + 4cos(3KL)).
similarly, the power in outputs 2 and 3 is given by

laz(L)|? 8
7

ax(Lyaz*(L)
2

fl

Paurz = Paut3

Substituting z=L into Eqn. (44) gives

; ; 9
Pors = Py = o 4 (—0KL 4 e~PKL) & (e KL 4 2KEF)
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-continued
2
=41+ 1 - KL _ KL

We can replace the complex exponentials with trigono-
metric functions as follows: -

(50)
Poury = Poury =

A2 (JBKL } e—jSKL)
rel Kdmls )

2
=411 - cos3kz).

We now have ovtained expressions for the output of
both a [2X2] coupler and a [3 X 3] coupler when they
are provided with a laser input on only one optical fiber.
These are the conditions at the input of the interferome-
ter. Both outputs of the [2X2] coupler will comprise a
leg of the interferometer. In the case of the {3 X 3] cou-
pler, we arbitrarily pick two of the three available out-
puts of the coupler for the two legs of the interferome-
ter. The third output is not used. To eliminate back
reflection into the laser (a cause of instability in the laser
and consequent phase noise), we can put the end to the
unused fiber into some index matching fluid. Any light
emitted from this strand of the output of the coupler
will be transmitted into the fluid, from which it will be
more difficult for it to reflect back into the fiber.

We next derive the conditions under which the cou-
plers split the input power evenly over the outputs. To
get an even split, -we require that the power out of each
leg of the interferometer be equal. For a [2X2] coupler,
this means that

Pouty=Poun. (s1)

Substituting Eqns. (28) and (32) into Eqn. (51) yields.

A2 (52)

2
4 cos?KL = 4~ sin?KL

The common factor

A2

2
can be divided into both sides, so
cos 2KL=sin 2KL (53)

This equation is true only when

KL=-;'—+n G

o

where n is an arbitrary integer. For example, n might be
0, in which case the condition is that KL =45°.Eqns.
(24) and (25) can be rewritten with this choice of n and
with z=L as

al,mlf - .\l-__ (55)
2
and
crou = - 9
2
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16

-continued
—j
e 2.

4
N2
Other choices for n will result in different signs, and the
net effect will be that aj ey, will either lead a3 g by 90°
or vice versa. This is tantamount to inverting the choice
of labels for the two legs of the coupler. When these
two signals are shifted in phase by some differential
transducer in the arms of the interferometer, this initial
static phase difference will cease to be of any conse-
quence at all since it will be augmented by other sources
of phase shift. These other sources include a quasi-static
phase shift due to temperature, pressure, and other ef-
fects, and by a dynamic phase shift due to the physical
quantity we really want to measure with our trans-
ducer.

Turning now to the question of how to obtain even
splitting from a [3X 3] coupler, we must have
Pounn=Pourn=Pour3 (C))]
Note from Eqn. (49) that the power in output legs 2 and
3 is equal since the electric fields in these legs are identi-
cal. Setting Eqns. (47) and (50) equal to one another, we
get

2 2 58
4 (5 + 4cos3KL) = 4 (1 — cos3KD). 8

Dividing through on both sides by the common factor
A2/9 and multiplying both sides by 2 gives

5+4 cos 3KL=2(1— cos 3KL). (59)
Gathering like terms, we get

2—5=4 cos 3KL+2 cos 3KL (60)

6 cos 3KL=~3 61y

cos 3KL=—13 (62)
Eqn. (62) can only be satisfied when

KL =7 =% % = n2w (63)

T T 2 (64)
KL = g = g +n ;r

where n is an arbitrary integer. For example, n might be
0, in which case the conditions are that KL.=40" or
KL=380".

Summarizing what we have to this point, the electric
fields from the [2 X 2] coupler are given by Eqns. (24)
and (25). The corresponding expressions for the power
contained in each output are given in Eqns. (28) and
(32). The electric fields from the [3X3] coupler are
given by Eqgns. (42) through (44). The corresponding
expressions for the power contained in each output are
given in Eqns. (47) and (50).

We shall now consider what happens when the light
from the input coupler (either [2X2] or [3X 3]) travels
through the two legs of the interferometer to the output
coupler (which is a [3X 3] coupler, always). We shall
refer to the input to leg k of the output coupler as ax(z)
where z is the distance from the point where leg k enters
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the output coupler. Note that we have redefined the
origin of the z-axis. Earlier, z=0 defined the input to the
first optical fiber coupler in the interferometer. Now it
defines the input to the second coupler, the one which
terminates the interferometer.

First let us consider what happens when the laser
light is split by a [2X2] input coupler. After travelling
along the two legs of the interferometer, the electric
fields in each leg will have undergone some amount of
phase shift. Let us suppose that we have configured the
interferometer as shown in FIG. 3.

Output 1 of the input coupler is fed to input 2 of the
output coupler. Output 2 of the input coupler is fed to
input 3 of the output coupler. Input 1 of the output
coupler is left dark. No matter whether the phase in
input 2 of the output coupler initially led that in input 3
by 90° or vice versa, at the point where the two optical
signals enter the [3X3] coupler, we can say that the
light in the input to leg 2 of the [3X 3] coupler has been
shifted through an angle ¢ and that in the input to leg 3
has been shifted through an angle 7. Thus, the light
waves in these two legs have phasor representations

a2(0) = Acos(KL)o/d 65)
= Bt

and

a3(0) z ;;:insin(KL)ef" (66)
where

By=A cos (KL) ©7
and where

B3=—jA sin (KL). (68)

Now let us consider the output from a [3X3] input
coupler. After travelling along the two legs of the inter-
ferometer, the electric fields in each leg will have un-
dergone some amount of phase shift. Let us suppose that
we have configured the interferometer as shown in
FIG. 4. Output 2 of the input coupler is fed to input 2 of
the output coupler. Output 3 of the input coupler is fed
to input 3 of the output coupler. Output 1 of the input
coupler is left disconnected and input 1 of the output
coupler is left dark. The light in input 2 of the output
coupler initially was in phase with that in input 3, but at
the point where the two optical signals enter the [3X3]
coupler, their relative phases have been shifted. We can
say that the light in the input to leg 2 of the [3X3]
coupler has been shifted through an angle ¢ and that in
the input to leg 3 has been shifted through an angle 7.
These shifts are partly due to the quasi-static phase
difference induced by temperature, pressure, and other
effects and partly due to the dynamic phase shift which
we are trying to measure. Multiplying Eqn. (43) by the
phase shift e/ gives us the input to the [3X 3] coupler.
Input 2 of the output coupler thus has phasor represen-
tation

(69
a3(0) = [- + 40KL o se-KL ]d’é
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-continued
= — 4 (oKL — e~ KL,

We can remove a complex exponential factor thus:

@0)
T e ul e s o

. 3KL . 3KL

jEL 3K

(3 -_ N

————— |,
R

Finally, we can simplify this by replacing the difference

of the two complex exponentials by a trigonometric
function.

an

_. KL
a(0) = —j & sin (3TL-)= ITT o
= B/,
In this equation we define

2

By = —j&sin

(;&.L_);f-“r‘-
> ,
whichis a different definition than the one we used
when a [2 X 2] coupler served as the input coupler of the
interferometer.

In a very similar manner, we can multiply the equa-

tion for input number 3 (Eqn.(44)) by the phase shift
which affects it, 7. This gives us

73)
a3(0) = [_ -;- AKL 4 L 4e—PKL :Iefn
24 3KL —i—z—“
= —j = sin (T)e o
= B3,
From this equation, we see that
B3;=B3. (74)

If we compare Eqn. (65) to Eqn. (71) and Eqgn. (66) to
Eqn. (73), we see that the form of the inputs to the
second optical fiber coupler is the same whether we use
a [2X2] coupler or a [3X3] coupler at the input to the
interferometer. The only difference is in the definitions
of Bz and B3 in each case. For the [2X2] coupler at the
input, these are defined by Eqns. (67) and (68); for the
[3% 3] coupler, they are defined by Eqns. (72) and (74).
In fact, if the input coupler is a [3X3] coupler, then
B>=Bas.

Our next goal is to find the outputs of the [3X3]
coupler when two inputs receive light (legs 2 and 3) and
one is left dark (leg 1), as illustrated in FIG. 3 and in
FIG. 4. We will find this output in terms of Bz and B3 so
that the results may readily be applied to either of two
cases: a [2X 2] coupler at the input to the interferometer
or a [3X3] coupler at the input. Earlier, in discussing
what happens at the input coupler, we used L to denote
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the length of the coupler. We shall continue to use this
notation here, but one should not infer that the length of
the various couplers in a system must be the same.
Later, when we combine equations that include the

length of more than one coupler, we shall take care to 5

use symbols that distinguish one length from another.

Because the output coupler is a {3X3] coupler, the
electric field phasors are specified by Eqns. (18)
through (20). We would like to find the constants cxand
d in these equations, for then we could evaluate the
equations at z=L, where the light leaves the terminat-
ing [3X 3] coupler. Evaluating each of these equations
at the point z=0, where signals are injected into the
coupler and are known, we get

aj(0)=cy+d=0, (75)
a)0)=c2+d=Byd%, @6
and
a3(0)=c3+d="B3e™. an
Summing Eqns. (75) through (77) gives

% ai(0) = 3d + % Ck ®

k=1 k=1
= Byof + By,

This invention is not limited to the preferred embodi-
ment and alternatives heretofore described, to which
variations and improvements may be made, without
departing from the scope of protection of the present
patent and true spirit of the invention, the characteris-

tics of which are summarized in the following claims.
Making use of Eqn (21),
3 . . (79)
& | KO = 3d = Boef® + Befn.
So
d = 5 (B + Byoi) (20)
Using Eqn (80) in Eqns (75) through (77) lets us calcu-
late the constants cx.
c1+d=c1+3[Bre® + B3eM]=0. @n
c1=—13[B26®+ B3é/M. (82)
Also
so
2 = Bye® — §[Bref + Bye/M) (84)
= 2826/ — BsefM).
Finally,
c3+d=B30M. (85)
So
¢3 = B3e/m — i[Bye/® + B3e/M) (86)

15

20

25

45

55

65

20

-continued
= — §[B2of® — 2B30/M).

We now have obtained expressions for all the con-
stants in Eqns (18) through (20). Replacing the con-
stants by these expressions gives us the ability to com-
pute the output power at the end of the coupler, where
z=L.

= ; meKL o+ Bz
algze.l ng[szd#’w;dﬂ] +3(B20%+ B3

(CY)
This can be rearranged to give
(88)
By | B R 2
ai(l)y = — - | e e —-c -
k[ .3kL . 3kL
-%—J’ieﬁ Z [ej T _e 72 ]
kL ), 5
= —J% [B2e® + Bae/Misin (T)e =
The complex conjugate of this is
(89)

. KL
a*l) = j%—- [By*e=/ + By*e—Msin (;Isz_)el T

We get the power in strand 1 at the output point z=L
by multiplying the complex conjugates and dividing by
2.

lay(L)|? 0

2

+ aWarw)

2
—;' (%) [B2By* + B3B3* + ByB3*ef4— +

e myemiey st ( L. ),

The same procedure applied to output 2 gives

ay(L) = c20/KL  de—j2KL o

= &ZS(ZBzef'i’ — Bye/MeKL + §[Bre +
BiefMe—i2KL,

This can be rearranged a little to give a marginally
improved form.

(92)

al) = —1-33-2- &/ [26KL 4 e—2KL] —?— o1 [fKL — e—2KL}

The complex conjugate of this is

a*(L) = 93)
By B3*

5 e—Jé [2e—iKL 4 o2KL] _

e/ [e—/KL — 2KL).

The power in this output is
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Jax(L)|2 94)

T =+ s
2
((—}') BiBo*[4 + 1 4 20PKL 4 2e=BKL} 4
2
(-;—) B3By*{l + 1 — oPKL — =KL}

N!-—

2

(-;—) BoBy*ef¢—M [2 —~ 1 — 2¢BKL 4 ¢—BKL]
2

(4) ormeremi-i+

oKL zc—f.’aKL] }

We can simplify this expression by replacing certain

pairs of complex exponentials with trigonometric equiv-
alents.
2 ©5)
-‘—#’— — =L {BBI5 + 4c0sGRL)] +
2B3By*[1 ~ cos(3KL)] — ByBy*efd= [1 — 203KL 4 e—BKL]
By*Bye—Ro- [1 4+ &KL — 2¢—PKL]}.
Now we turn to the last of the three outputs, number 3.
ay(L) = c3o/KL 4 de—RKL 096
= — 3[Boef — 2B3eMeKL + §[Bef +
Bze/Me—2KL,
We can rewrite this as
7

. By o, . By ..
ay(l) = — 5 OMKL — e=RKL) = ofi20KL + e~PKLY,

Comparing this with Eqn (92), we see that they are
identical except that B; and Bs are interchanged, and )
and 7 also are interchanged. This permits us to write the
power in output leg 3 by performing the same inter-
change on Eqn (95).

axD)|? ©8)
l—s—z-ﬂ— = e 2B2B11 — cosGRL)] +
B3Bs*[S + 4cosGKL)] — ByBy*efé—m[1
* oKL _ 2—PKL]
By*Bye—Kd—m[1 — 2¢3KL 4 ¢—BKL]}.

Eqns (90), (95), and (98) are general solutions to the
power in the three outputs of an optical fiber interfer-
ometer with one dark input. Knowing the values of B2
and B3 as well as the product of K and L permits one to
find specific solutions as functions of ¢ and 7.

As mentioned before, once we start to combine re-
sults of the analysis of more than one coupler, we must
be careful to distinguish between the coupling coeffici-
ents K and the coupling interaction lengths L of each.
Our next task is to perform this combination for the two
cases where the output [3 X 3] coupler gets signals from
an interferometer with either a [2X2] coupler or a
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[3x 3] coupler at its input. We shall designate as K;and
L;the parameters which apply to the input coupler, and
we shall designate as K, and L, the parameters which
apply to the output coupler. We shall denote by z; the
position in the input coupler, and as z, the position in the
output coupler.

For the [2 X 2] coupler at the input to the interferome-
ter, we can therefore rewrite Eqns (65) and (66) as

B20®=03(Z,)] ,=0=A cos (KiL)e® ©9)
and
ByoM=a3(Zg)| ;== —jA sin (KiLDe. (100)

We now compute the various products of Bx which
appear in Eqn (90),(95), and (98). By using the trigono-
metric identity.

cos (20)=2 cos 2 (8)—-1. (101)
we get
1
ByBy* = Alcosi(KiL) (102)
A2
= L= lcos2 KiL) + 1]
By using the trigonometric identity
cos (26)=1—2 sin (). (103)
we get
104
B3By* = A%in(KiL) (108
A2
= =5—[1 — cos(KiL)]}-
By using the trigonometric identity
sin (26)=2 sin (6) cos (6). (105)
we get
' (106)
ByBy* = jAsin(KLicos(KiL)

it

2
—j-42—- sin(KL).

Finally, we can use the same trigonometric identity to
get

107
By*By = jdsin(KiLjcos(KiL) uon
2
= —j=5— snQKL).
Substituting them into Eqn (90) gives
(108)

|alLa)|2 _
—=
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-continued -continued
\ 4 \
,;_2 [cosRKL) + 1] + Scos2KiL)) + 4cos(3Kolo) + 5 +
2 5 4cos(2KiLcos(3KoLo) + 2 — 2c0s(2KiLj) ~
. ( , )2 4= 11— cosKiL)] + » ( KL, ) 2c05(3KoLo) + 2c05Q2KiL)cos(3KoLo) +
>\ F ) pin? [ —— }. - o
4 sinQKLYHS~) — 2 | 2sinQKL) o I o S % /¢ ")]_
4 - % -
j<£— sin(2K.L)e—Aé—m - il
\J 5— sin(2KiLj)e ) 10 4sinQKiL) & 1)+3K0Lo)2;. e—id 11+3KOLo)]+
In this expression, the braces do not denote a matrix of . [ efé—n—3KoLo) _ e—A$—n—3KolLo)
values. They are used in order to keep the lengthy sum- Zein@KiL) | 2
mation within from sprawling across the page. We shall 15 \ /

use braces in this manner whenever it lends clarity to
the expressions. We can rewrite the expression as

[a1(Lo))?
2

=% AZ{ 1 — sin(2KiL) [
2
=4~ [l — sinQRLsin@ — M1 — cos(3KoLo)

For the power in the second output leg, we get

o= _ e—o-m]).
2 m

Summing like terms within the brackets and factoring

2 ( 3KoLo )
2

(109)

some terms gives a simpler, though still quite formida-
ble, form

laaLo)|2 (10
2 T laxLo)|? 12)
0 —3 — =
L 1;
5 [cos@KiL) + 115 + 4cos(3KoLo)) + 7+ Soos@EL) + 2008GK.L) +
P & 21 — cos@RLN[ — cosBKL] — 42| 6cos2KiL)cosBKLY) +
18 35 36 | 2sin(KiL) [sin(d — 7) — 2sin( —

— L (KLY~ [1 — 20PKoLo 4 e=PKolo] 4

L sinQKLye=A$= [1 + eBkolo — 2e=Kolo)

4

Jax(Lo)|?
2

A2 ]
36

\

We can remove the factor of 4 from within the admit- gp
tedly forbidding-looking expression within the brackets,
multiply out the terms within the brackets, and get
ready to replace the complex exponential functions
with trigonometric functions.

65
lax(Lo)|? am
2

7+ 3c05@KiL) + 20053KoL) + 6c0SRRLIOSGKLY +

2sin(2KL)

2sin(2KiL)) [

N + 3KoLo) + sin(¢ — 1 — 3K,Lo)]

This can be further rewritten as

(113)

sin($ — n) —

2sin(¢p — n)cos(3KoLo) —

2cos($p — )sin(3KoLo) +

sin{$ — Mcos(3KoLo) — cos(d — ) —
cos($ — m)sin(3K,Lo)

( 7 + 3cos(2KiLi) + 2c0s(3KpLo) + 6cos(2KiL)cos(3K,Lo) +

sin(¢ — 7) —
sin(¢ — M)cos(3KoLo) — 3cos(¢ — Msin(3K,Lo)

]

Now finding the power in the third output leg is just
as tedious as it was to find the power in the second
output leg. We start with Eqn (98), using the products
found in Eqns (102) through (107).

fax(D)|? 114

2
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-continued -continued
119)
2feas(2KiL) + 11 — cosRoLa) + @KL) = sn [2 (z;- + ng-)]

2 [1 = cos(2KL)I[S + 4cos(3K,L,)) ~
36 | sinQKLYAO~M[1 + ofKolo .. 2e=7Kolo] 4|
Jsin(K;L)e—Aé—m[1 — 2¢3KoLo 4 ¢—/3KoLo]

5

. k8
sm['2—+n1r:|

= =1
Multiplying this out and replacing the complex expo- 10 From Eqn (62)
nentials with equivalent trigonometric functions gives
|a3L)|2 (115)
P ——
p)
2 2c0sQKLi) + 2 — 2c05(3KoLo) — 2c0s(2KiL)cos(3KoLo) +
A 5 — 5cos(2 KiL)) + 4cos(3KoLo) — 4cos(2KiLicos(3K,Lo) +
sin2K:L)[2sin(é — m) + 2sin(p — 1 — 3KoLo) — 4sin(¢ — n — 3KoLo))
This can be further simplified to cos (3KoLo)=~1 20
lax® -
—_—=
p : N (116)
7 — 3cos(2KiL;) + 2cos(3KoLo) — 6cos(2KiLi)cos(3KoLo) +
sin(p — ) +
42 sin(¢ — n)eos(3KoLo) +
36 | 2in@kL) )| cos@ — sin(3LoLo) —
2sin(¢ — mcos(3KolLo) +
2cos(¢ — N)sin(3K,Lo)
\ 7/ _
Finally, we get the equation
Qam
7 — 3c0s(2K;Lj) + 2c08(3K,Lo) — 6cos(2K;Li)cos(3Kolo) +
@2 _ g sin(é —m —
p) =736

36| 2sin(KiL) | sin@ — moos3KoLo) +
3cos(d — M)sin(3K,Lo)

From Eqn (64).

(121)
50

sin(3K;L;)
We now have three expressions for the power from
each of the three output legs of the [3 X 3] coupler at the
output of the interferometer. These very complicated
expressions are given in Eqns (109), (112), and (117). We 35 \3
can apply the conditions derived earlier for couplers 2
which provide even splitting of the power to find sev-
eral of the sines and cosines in these expressions. First If we did not use couplers with evenly split power, or
we use Eqn (54). if we used couplers with imperfections that prevented
even splitting from occurring, then these four trigono-
(1g) - metric quantities would differ, but they still would be
cos [2 ( .2 ):l fixed numbers and so could be used to find equations
4 2 describing the output of the interferometer.
] We shall define two new angles £, and £ as
cos [-g— + nw :I 65
-0 b=d-n+3F

]
g

|
g.
| | ’_w—‘
/N
ulq
+
m'a
+
~
oy
g
—

cos(2K:Ly)

122)
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~continued -continued
and
sin( — m = 3 V3 costé — m)}
Er=¢6—-n— ';"L 23 5 A2

These two definitions amount to two different ways of
specifying the origin of the phase, the point where the
phase is zero. The reason for adopting these definitions
should become clear presently. Substituting Eqns (119)
and (120) into Eqn (109) for the case sin 2KL)=+1
gives

24)
L)|2
-Ia—l(z-ﬂ— = <—[1 —sin(p — n)][ (——)]
= <401 - s - )
- F[i-a(e-1)]
A2
= A1+ costgal.
If sin QK;L)=—1, then
125)
L)|2 2
LD A s - )
- frem(ong)]

2
<41+ costgal

The definitions of £;and &, were rigged to make sure

that the same equation results no matter what the sign of 4

sin (2K;L;). This causes Eqns (124) and (125) to match
Eqn (2.8a) in Crooker except that where she had a
factor of 1/9, we have a factor of 1/6. [Crooker, “Two
Demodulators for High Sensitivity Fiber Optic Inter-
ferometric Sensors,” Naval Postgraduate School, Mon-
terey, Calif. 1987] This represents the 1.76 dB advan-
tage that results from using a [2X 2] coupler at the input
to the interferometer, rather than a [3x3] coupler.

We can go through the same process for outputs 2
and 3, also. In addition to the two possible signs of cos
(2K.L) that can occur, we must also account for the
two possible signs of sin (3K,L,) which can occur, since
this expression appears in Eqns (112) and (117). First we
consider the case where sin QK,L)=+1 and

\s

sin(3k,Lp) = -3 -

For the power from output 2, we substitute Eqns (118)
through (121) into Eqn (112).

|a2(L)}2 (29

2
5 = 4 {6 + 2sin(é — ) +

=-—6-{] +'%"5in(¢-"7)—l2-3_—°°5(¢’-"7)}

A2
6

—‘?—{1 +cos(§a+%-ﬂ)}-

1 - costea) — ¥ sin(g) }

10

15 For the power from output 3, we substitute (118)
through (121) into Egn (117).
L)|2 127
20 2P £ 71 s —m + 33 costs — )
2
=—3‘;—(1 +%sin(¢—n)+—\lz—?-cos(¢—n)>
25 2
- —1’5—{ 1 — 5 cos€) + -‘i}- sin(€) }
=Ag—{l + cos(éa --g—n’)}.
30
Next we consider the change to Eqns (126) and (127)
when
35
sin(3K,Lo) = — l2_3._ .
(128)
L)|? 2
d=Dl . -%-—{1 -4 costea A ERp }
- H{rre(e-30))
= “5 + cos| & — 7 ,
45
(129)
L)|2
d=@l 4 1-—-oos<§a)+£sm(§a)}

50

—';i-{l +cos(§a+%ﬂ)}

55 By comparing these two equations with Eqns (126) and
(127), we see that the effect of this change is equivalent
to interchanging legs 2 and 3 in its effect on the outputs.

Next we consider the case where sin 2k;L;)=—1 and

sin(3KoLo) = + ¥ .
65
For the power from output 2, we substitute Eqns (118)

through (121) into Eqn (112).
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laa(L)|2
2

[

2
41— % costen + -\‘zl sinés) }

=)

For the power from output 3, vwe substitute (118)
through (121) into Eqn (117).

i

jaa(l)|2
z

A2 \3

2
-"6—( 1 — 3 cos(én) — —\?— sin(és) }

(rem(or)

By comparing these two equations with Eqns (126)
and (127), we see that the effect of this change is equiva-
lent to interchanging legs 2 and 3 in its effect on the
outputs. However, we had to redefine the phase origin
(the point where phase is deemed to be zero). This
should not disturb us, since the choice of origin is en-
tirely arbitrary to begin with. A signal exhibiting peri-

2
416 — 2sin(¢ — ) — sin(d — m) — 3 V3 costé — m)}

%2—{7—1——3sin(¢—"1)+3\r3_cos(¢—n)}

30

odic characteristics will take on every possible value of 35

phase over time, so redefining the phase origin is akin to
waiting a while before looking at a signal, and it does
not affect the appearance of any of the signals.

By this time, it should be clear that the final condi-
tion, namely

132)

AEY

sin2K:Lj) = ~1 and sin(3K,L,) = >

will not change matters, but for completeness, we pro-
vide the equations anyway.

(133)
@2 g 1 N5
—5 = S\ 1 ~ 5 coslp) — —5— sin(¢y)
_ A2 i 2 -
= <= + cos| & + heulk
(134)
L)|? 2
_L‘_:’%L = —‘%——( 1- —;— cos(&p) — '\lz—? sin(€p) }

—'—462—{1+COS(§b+‘§-¢)>

This exhaustive consideration of all possible condi-
tions which meet the criteria for couplers with even
split ratios shows that a reasonable model for the three
outputs of the Mach-Zender optical fiber interferometer
constructed with a [2X2] coupler at the input and a
[3X 3] coupler at the output can be given by the follow-
ing equation. In this equation, the index k is an index to

45

50

55

65

30

(130)

2
Jr{l—-;—sin(d’—ﬂ)—lz?‘cos@—ﬂ)}

one of the three output legs. It can take on the values
1,2, or 3.

(131)

: 1-%sin(¢—n>+73oos<¢—n)}

(135)
{a(L)}2

———2—=A6—2<1+cos|:§—(k—l)%w]>.

This equation represents the culmination of this te-
dious mathematics. Even so, this model is not quite
right. That is, it does not describe the actual behavior of
a real optical fiber interferometer sensor precisely.
‘Wherein lie the differences?

First, this equation is based on the presumption that
there are no losses in the couplers or fibers. Since there
are losses in a real interferometer, the leading coeffici-
ent

A2

2

should be replaced by whatever amount of power does
arrive at the output. We shall call this amount D. The
units of D will vary, depending on the context. When
we are speaking of optical power, D will be measured in
watts. When the received optical power has been con-
verted to a current by its action on a photodiode, D will
be measured in amperes. When the current has been
converted to a voltage through the action of a tran-
simpedance amplifier, then D will be measured in volts.
However, the form of the modified model we are devel-
oping here will not be altered.

A second reason for the inaccuracy of the model
considered here is our failure to include a consideration
of the polarization of the recombined light in our equa-
tions. We have assumed that the two combining beams
can be fully parallel or fully anti-parallel, which implies
that they both have the same amplitudes. (If the polar-
izations are antiparallel, an additional phase shift of =
radians occurs.) In practice, due to different degrees of
attenuation in each leg of the interferometer, imperfec-
tions in the couplers, and rotation of the polarization of
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each beam, this will not be the case. The result of this is
that the intensity of the interferometric output will not
wander through the full range from 0 to D, but from
somewhat above 0 to somewhat less than D. Put an-
other way, the coefficient of the cosine in the above
equation needs to be reduced from 1 to some lesser
value. We shall define a new quantity, E, measured in
the same units as D. This new quantity is defined im-
plicity by the following modified model.

(136)
(RS

We call the fraction E/D the fringe depth. Multiplying
this out gives

E

2
—'“*(.f)' =D{1+3cos

137
2
-l—“"-(zL—)'—=D+Ecos[g-(k—1)%w].

The three signals represented by this equation vary
around a central value, D, by *E, at most. Whether or
not they actually reach the two extrema at D+E and
D-E depends on the signal £. If it has a very small ampli-
tude, then the cosine will not vary much and so the
extreme values will not, in general, be achieved. On the
other hand, if £ has a very large amplitude, more than
=7 radians, in particular, then the signals are guaran-
teed to reach both extrema.

It is worth discussing the units of £ at this point. As
we tacitly assumed in the previous paragraph, £ is mea-
sured in radians. It represents the amount of optical
phase shift due to strain on the glass in the optical fiber
interferometer. So the signal of interest, no matter what
its natural units, produces differential stretching of the
two legs of the interferometer. The number of wave-
lengths of differential stretching corresponds to the
number of multiples of 27 radians of phase shift induced
in the interferometric output.

In the equation as written, there are only two contri-
butions to the phase shift. One is the signal of interest.
The other is the choice of an output leg. However, as

“the earlier lengthy discussion of shifting the phase ori-
gin made plain, we are free to choose any origin we like,
and only the difference in phase between the output of
one leg and another is of importance. )

There are other contributors to the phase. For exam-
ple, changes in temperature and pressure may stretch
the glass or permit it to relax, even if they are not the
phenomena we want our sensor to detect. These addi-
tional factors usually vary slowly with time, although
this is not necessarily so. If we lump them together into
asingle term ¢(t), then we can write the equation which
describes our complete model.

138)

'L)12
la—k(zL=D+Ecosl:§(t)+¢(z)—(k—l)%—1r].

This use of the symbol ¢ is not to be confused with its
earlier use to describe the shift in phase of the light in
one of the two legs of the interferometer (the other was

One final observation about this model is in order. It
is assumed that D and E are equal for any choice of
output leg (1, 2, or 3). In practice, each output leg has its
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own value of D and E. Having noted this fact, we shall
continue to use the approximation that they all are equal
because of the simplicity this assumption entails, and the
fact that it is a fairly good approximation.

Up to the time when we built this optical interferome-
ter, we had been constrained to using simulations of
interferometric outputs. One simulation was provided
by a set of three Analog Interferometric Simulators.
These were limited in the amount of peak phase shift
they could deliver to around 2 rad, although the Analog
Devices AD639 on which they depend permit +=500°.
Exceeding about 2 rad led to increasingly apparent
distortion in the waveforms delivered by the simulators.

A second simulation was provided by a Digital Quad-
rature Phase Shift Modulation Simulator. This simula-
tion could easily achieve phase shifts of several hun-
dreds of radians. Unfortunately, it was only able to
produce square waves at its output. Thus the outputs
were not very good replicas of the output of an optical
interferometer, which can generate a continuous range
of output amplitudes, not just two of them.

One of the chief purposes of building optical fiber
interferometric sensors is to avoid the need to have
electrical signals in inaccessible locations. Eliminating
the need for electrical signals permits reductions in
weight, cost, and susceptibility to electromagnetic in-
terference (EMI). The sensor we have built for experi-
mental purposes is a voltage sensor. Clearly there is no
avoidance of the presence of electrical signals in a sen-
sor which detects electrical signals!. However, the ben-
efit of great sensitivity is still present in our sensor: very
small changes in the size of the piezoelectric cylinders
create a noticeable optical phase shift in the sensor’s
interferometric output, so quite small voltages can be
detected. When we discuss the performance of the Sym-
metric Analog Demodulator, for example, we shall see
that it can detect voltages of 2.2 uV in a 1 Hz band-
width and has a dynamic range of 115 dB (in the same
bandwidth) at a frequency of 600 Hz. The most attrac-
tive feature of our sensor is its ease of operation. Volt-
age sources are easily controlled, so we can generate
optical phase shift of controllable amounts with this
sensor. It is an excellent tool for the kind of research we
conducted into demodulation.

The interferometer according to the inventor was
physically laid out as shown in the diagram in FIG. 8. A
single voltage signal is applied in opposite polarities to
each to two Channel 5500 piezoelectric cylinders 30,32.
This causes one cylinder 30 to expand while the other
32 contracts, and vice versa. The fibers are wrapped
around each cylinder with constant tension. There are
9.099 m of 125 um single-mode optical fiber in each leg,
as measured from the [2 X 2] coupler’s (34) output to the
[3X3] coupler’s (36) input. The actual length is not
critical, so long as the two lengths are within a few
centimeters of being the same. As one cylinder expands,
it applies a strain to its fiber. At the same time, the other
cylinder is contracting and its fiber is relaxing. The first
fiber experiences an increase in its optical path length;
the other fiber experiences a reduction in the optical
path length.

FIG. 9 shows the details of how the cylinder was
clamped onto the mounting brackets in such a way that
it could still respond to the applied voltage without
undue mechanical interference from the mounting hard-
ware. The piezoelectric cylinder 30 is spaced from an
aluminum baseplate 38 with a rubber washer 40. An
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acrylic spacer 42, rubber washer 44, and metal washer
46 are stacked in turn above the piezoelectric cylinder
30. The stack thus formed is bolted through the center
to the baseplate 38.

To apply a constant tension to the fibers wrapped on
each cylinder, we used the apparatus shown in FIG. 10.
A table 50 holds a spindle (not shown) on which the
piezoelectric cylinder 30 is turned. A second spindle 52
with a pulley 54 supports the fiber which in turn is
passed under a weighted pulley 56 and attached to the
table with adhesive. For our purposes, the amount of
tension was not significant. Our desire was simply to
ensure that the tension was a constant so that uniform
expansion and contraction of the cylinders would pro-
duce uniform increases and decreases in the strain on
the optical fiber wrapped around them.

The [2X 2] optical fiber coupler we used was an Am-
phenol Model 945-122-1002. It is specified for a wave-
length of 820 nm, although we operated it at 830 nm. As
we said, the split ratio of the coupler is equal in both
legs (measured by the manufacturer as 47%-53%), and
the coupler is bidirectional. The excess loss is specified
at below 1.0 dB (measured by the manufacturer as 0.59
dB) '

The [3 X 3] coupler is a Sifam Model Special 33S 82C.
It is specified for a wavelength of 830 nm. It also has
equal splits in all three legs, if only one leg is used for
input. Of course, in an interferometer this condition is
not met, and so each output is different. We made our
measurements of split ratios by applying a known cur-
rent to the laser diode, a Sharp LT-015 whose wave-
Iength in a vacuum is 830 nm laser (560 nm in glass).
This laser was repackaged by Seastar as a Model PT-
450. To measure the power from each leg, we fused the
laser diode to each input leg in turn. For each input, we
successively placed a different output leg into 2 slotted
cylinder which we then inserted into a UDT Model 255
Photodiode with a barrel receptacle. A BNC connector
on one end of the Photodiode was then mounted di-
rectly into the mating BNC connector on 2a UDT Model
550 Fiber Optics Power Meter. We did not calibrate the
meter for operation at 830 nm. Since we were only
interested in measuring the relative transmissivity of
each leg, this omission is not a flaw in our technique.
The chief elements of variability in this technique are:

1. The transmission of the fusion splice in each case is
different, but since the total power is measured for
each splice, this is not significant:

2. The insertion of an output into the slotted cylinder
and its placement in the detector barrel is impre-
cise, but the UDT Model 550 is a large-area detec-
tor and hence does not require precise alignment.

The [2X2] coupler had about 10 m of fiber attached
on two leads; the other two leads had only about a
meter of fiber attached. The [3X 3] coupler had only
about 1 m of fiber on each end of its three legs. We
recommend obtaining them with as much fiber already
attached to them as will be needed in the sensor where
they will be used. This will permit the number of fusion
splices to be reduced. Since each splice raises the possi-
bility of more reflections, more transmissive loss, and
more of a nuisance generally, this is a very useful reduc-
tion.

We used a Sumitomo Type 11X Fusion Splicer to
splice our fibers together. It provides a microscope for
precise positioning of the bared fiber prior to fusion by
electric arc. This particular splicer does not permit a
very large range of adjustment in the position of the
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fibers laterally and vertically, so if placement is not
quite good in advance, it is very difficult to get it right
without starting over again. As a consequence, splicing
can consume a large amount of time (and did so).

A good way to check on the success of a splice is to
shine light (we used laser light) through it before the
fusion occurs. The far end of the receiving fiber can be
connected to a photodetector and thence to either a
power meter or an oscilloscope. By adjusting the posi-
tion of both ends of the fiber to be fused, we can maxi-
mize the received power. We found that alternating
between adjusting lateral position and vertical position
enabled us to find the optimum position fairly quickly, if
the optimum position could be reached at all by the
adjustment controls on the fusion splicer. After fusion
occurs, there should be more power received than be-
fore the fusion (by 0.5 to 1.0 dB). If this is not the case,
then the fusion splice was poor. The fiber should be
broken, the buffer should be stripped again, the ends
should be cleaved once more, and the fusion splice
should be repeated.

To make Mach-Zender interferometer with legs
properly matched in length requires considerable care.
Suppose enough fiber has been attached to the input
coupler to form the two legs of the interferometer. One
of the two legs can be spliced to an input leg of the
output coupler without too much trouble if we monitor
the power transmitted through the leg both before and
after splicing it to the output coupler. The connection of
the remaining leg to the output coupler is considerably
more difficult. Light passing through it also passes
through the already-completed leg, since they are effec-
tively connected together at the input coupler. When
we bring the remaining leg close to the output coupler
in order to splice it to the coupler, two coherent beams
recombine, producing interference. No longer is there a
constant power level from the coupler. This compli-
cates the task of finding the optimal position of the
remaining fiber prior to completing the second fusion
splice. However, one can still search for the placement
of the fibers which generates the maximal fringe depth.

A bigger problem occurs if the second fusion splice
fails. In this case, the second leg will be shorter than the
first. It generally is necessary to break the first leg again
in order to ensure the lengths are equal (or nearly so).
We recommend acquiring some practice and skill in
performing fusion splices before tackling this tedious
task.

Upon the completion of the construction of our inter-
ferometer, we placed the three output fibers of the ter-
minating [3 %3] optical fiber coupler into three slotted
cylinders. Each of these was in turn inserted into a
mounting barrel with a photodiode within it. We had
two CLD42163 photodiodes and one CLD41461 photo-
diode available, and so we used them. Without calibrat-
ing the UDT Model 550 Fiber Optics Power Meter for
operation at 830 nm, we measured the responsivity of
these photodiodes as 370 ma/W for the two identical
photodiodes and 362 ma/W for the odd one. Since we
did not perform a calibration, these results are not likely
to be accurate, but accuracy here was not crucial to our
development of the demodulators. Our purpose was to
develop an understanding of the factors which affected
performance, not to optimize the performance. For fine
tuning of the performance, however, the responsivity of
the photodiodes is an important parameter of operation
because it determines the amount of current delivered
to the receiver stage.
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Our interferometer produces a very highly linear
optical phase shift for an applied voltage. We used an
HP6824A DC Power Amplifier to boost the output of
an HP3314A Function Generator from an amplitude of
10 V maximum to an amplitude of 60 V maximum. For
convenience, we adjusted the gain of the power ampli-
fier to approximately 10. This amplified signal was then
applied in opposite polarities to each of the piezoelec-
tric cylinders in the interferometer.

The elliptical Lissajous figure on an oscilloscope
which results from two of these outputs closes on itself,
retracing the same elliptical pattern, if an optical phase
shift amplitude in excess of 7 radians is generated by the
interferometer; otherwise it is open. We found that after
closure had occurred, it was easy to see the ends of the
traces and so count the number of closures as the ap-
plied voltage was increased. We noted the voltage for
each such closure, which represented an additional 7
radians of optical phase shift.

If we apply a linear least-squares fit to these data, we
find the relationship between nominal voltage displayed
on the front panel of the HP3314A and the optical phase
shift delivered by the interferometric sensor is given by
the following equation:

139)
dour = | 3429 = 0022 |ypy + (~0.64 = 0.08 mrad).
vV

We shall make extensive use of this highly linear rela-
tionship later in order to infer the output optical phase
shift from a selected nominal input voltage.

The method of fringe-rate demodulation was dis-
cussed at some length in Crooker and Crooker et al.
[Crooker et al, “Fringe Rate Demodulator for Fiber
Optic Interferometric Sensors”, SPIE Vol. 838, Fiber
Optics and Laser Sensors V (1987), pp. 329-331] The
fundamental idea is to take two of the outputs of an
optical fiber interferometric sensor terminated by a
[3< 3] optical fiber coupler, convert them to two square
waves, and measure the frequency of the modulation of
the optical wave with a frequency-to-voltage con-
verter. By integrating this result over time, we can
recover the signal. An ambiguity results from the use of
this scheme. A limitation inherent to the technique is
that phase amplitudes of less than one half fringe (7
rad) cannot be recovered successfully.

When the signal of interest is strong, it induces a large
peak phase shift in the light. At the moment that the
signal peaks, however, the instantaneous frequency of
the output is zero. Conversely, when the signal is zero,
the output is changing most rapidly. This corresponds
to a large instantaneous peak frequency of the interfero-
metric output.

To see this, the mathematical form of the interfero-
metric output x(t) for a single input tone of frequency f.
That is if £(t) represents a signal of interest

£()=A sin (w?)+4 sin Q7f7), (140)

then we may use Eqn (5) to obtain °

x(f)=D+E cos [A sin 2nf)+¢]. Qarn)
In this expression, the phase ¢ includes the phase terms
due to choosing a particular output of the interferome-
ter as well as all the extraneous influences on phase
mentioned previously. Recall that D is the central value
around which the output waveform varies, E is the peak
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departure of the interferometric output from D, A is the
phase amplitude of the input, f is the frequency of the
signal of interest, and t is the time. The instantaneous
frequency of the output in hertz is defined as the deriva-
tive of the argument of the cosine function with respect
to time, divided by 27r.

1 _DE®

(142)
SINSTANTANEOUS = 557~ 37

= Afcos(2wft).

Here, we assume that the derivative of the phase term
¢ is small and can be neglected. Whenever the extrane-
ous contributions to the phase shift are of a quasi-static
nature, this is a reasonable assumption. The instanta-
neous frequency is maximal when the cosine in the
derivative given by Eqn (142) reaches a peak, that is,
when

2mft=nm (143)
where n is an integer. This occurs when the sine in the
interferometric output of Eqn (141) is zero, since

sin (n7r)=0, (144)
that is, when the signal of interest passes through zero.

If we can convert the instantaneous frequency to a
voltage, then we need only integrate it over time to
recover the signal &(t), in effect, reversing Eqn (142).
The chief difficulty in this scheme is not the conversion
of frequency to voltage, since integrated circuits to
perform this function are readily available. Rather, it is
the fact that a high instantaneous frequency occurs both
when £(t) is rising and when it is falling. Yet frequency-
to-voltage converters do not give different outputs for
these two situations.

We would like our converter to give, say, a rising
output when the instantaneous frequency is high and
when &(t) is rising. With this choice, we would also like
it to give a falling output when £(¢t) is falling. Suc-
cinctly, we need to distinguish between two distinct
situations, both of which give rise to high voltages from
a frequency-to-voltage converter. If the voltage from
the frequency-to-voltage converter can range from 0 V
to, say, Va4y, then we would like to invert this range
on alternate cycles to 0 V to —Vjax. Crooker’s
method calls for the use of an optional inverter to do
this range on alternate cycles to to do this.

The use of a [3X3] coupler at the interferometer’s
output provides enough information to make it possible
to distinguish between a high instantaneous frequency
due to a rising signal of interest and a high instantaneous
frequency due to a falling signal of interest. In its sim-
plest form, the method uses two of the three available
outputs and determines which one leads and which one
lags the other. From Eqgn (5), the [3:X 3] coupler gener-
ates three outputs of the form

145)
xKd) =D + Ecos[g(z) — - 1)%17]

where £(t) is the signal of interest and k is a index which
can be 1,2, or 3. Here, we are ignoring the additional
phase shifts due to extraneous influences such as pres-
sure and temperature.
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FIG. 11is a block diagram of a Fringe Rate Demodu-
lator. Without any loss of generality, we can arbitrarily
select two of the three outputs of the interferometer, say
x1(t) and x2(t), as two channels of input to the Fringe
Rate Demodulator. With this choice, Eqn (145) implies
that when £(t) is increasing, x1(t) leads xa(t) by 120°. But
when £(t) is decreasing, x2(t) leads x;(t) by 120°. A
comparable situation obtains no matter which pair of
outputs we select.

We shall put both of these signals through compara-
tors 60, 62 so that the result is either a logical 0 (0 volts)
or a logical 1 (5 volts). One of these logical signals we
now label I (for in-phase) and the other Q (for quadra-
ture). This terminology is somewhat anachronistic,
since the term “quadrature” generally refers to 90°, not
120°. Crooker discovered that fringe-rate demodulation
is largely insensitive to this fairly large difference in
phase angles. So although the fringe-rate method origi-
nally was conceived of as operating when a 90° phase
difference were present, phase differences of 120° work
perfectly adequately.

We now develop the Boolean logic which permits the
determination of whether I leads Q, or vice versa. The
resultant logic is different from that given in Crooker
and Crooker et al. Our purpose in altering her equations
is to facilitate the programming of a programmable
logic array (PLA) to contain all the logic, rather than
using discrete logic integrated circuits. We made use of
an Altera EP310 Erasable Programmable Logic Device
(EPLD) 64, 2 form of PLA which can be erased under
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ultraviolet light and reprogrammed. This characteristic -

is useful in the design of prototype systems.

We also modified Crooker’s approach from one using
synchronous, clocked logic to one using asynchronous
logic. This permitted more rapid transitions of the out-
puts to new states, which reduces the lag in recognizing
that the signal which was leading before is now lagging,
and vice versa.

We assume that I and Q cannot both make a transition
simultaneously. That this is true is implied by Eqn (145),
for there is no angle ¢ such that

cos ($p)=cos (¢-+§m)=0. (146)
The goal of the circuit is to produce a lead-lag decision
signal LL which will take on the value 1 when I leads
Q and the value 0 otherwise. The PLA will store the
most recently computed value of LL in an internal
flip-flop, present it as an output to the circuit, and use it
to determine the next value of LL.

In addition to computing LL, the circuit must store
the most recent values of I and Q internally, since these
have a bearing on the detérmination of the next value of
LL. These values we shall call Iorp and Qorp. Like
LL, they will be stored in flip-flops internal to the PLA.
The EP310 64 requires that all computed values be
presented as outputs to the circuit, so LL, Iorp, and
QoLp will be available as outputs. Of course, we want
LL as an output in any case so that it can provide the
lead-lag decision to the optional inverter. The fre-
quency output from the EPLD is passed to a frequency
to voltage convertor 66. The voltage from the fre-
quency to voltage convertor is fed to an optional inver-
tor 68 together with the lead(H)/lag(l) signal to pro-
duce the derivative of the signal of interest. This deriva-
tive is fed to an integrator 70 to produce the signal of
interest.

If we were using synchronous logic, LL, IoLp and
QoLpwould only change when the clock signal permit-
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ted them to do so. Because we are using asynchronous
logic, however, this is not the case. Instead, they swiftly
take on new values in response to changes in the inputs.
For the brief interval during which the old and new
values differ, transistions must be taking place. There-
fore we must take care that transistions in the outputs
never give wrong results, even momentarily. In this
case, there are two desired outputs. One is the signal LL
(for lead-lag) which will be 1if I leads Q and which will
be 0 is Q leads I. The second output is a pulse train
whose state changes whenever I or Q changes state.
This pulse train provides the frequency input to a fre-
quency-to-voltage converter. Since one cycle of I cor-
responds to the passing of one fringe (27 radians), and
likewise for Q, we can generate two cycles of output for
each fringe in this manner. This has the advantage of
permitting slightly smaller phase shifts to be resolved by
the fringe-rate demodulator. Theoretically, one can
accept an interferometric output with as little as £ m/2
radians of phase shift with this method. If the third
output of the interferometer were incorporated in the
logic, a more rapid pulse train could be generated, and
this would lead to a minimum resolution of ==7/3 radi-
ans of phase shift. In practice, these minima are not
sufficient: one needs a number of fringes before reason-
able fidelity in the reconstructed wave can be achieved.

FIG. 12 contains a Karnaugh map of the digital logic
necessary to generate LL. Iozp is the value of the in-
phase channel which was observed most recently.
QoLpis the value of the quadrature channel which was
observed most recently. I is the current (incoming)
value of the in-phase channel. Q is the current (incom-
ing) value of the quadrature channel. LLozp s the last
computed value of the lead-lag signal, which the circuit
generated. The new value of the lead-lag signal, LL, is
determined by looking up in the Karnaugh map that
value which corresponds to the five inputs: LLoLp
IoLp, QoLp: 1, and Q.

For example, suppose that the circuit’s most recent
output for LL was O, which means that at the time
when LL last was determined, the in-phase channe] was
lagging the quadrature channel. If it so happened that
Iop=0 and Qorp=1, then, since the in-phase channel
was lagging before, we expect it to follow the quadra-
ture channel to I very soon. If this happens, then I=1
and Q-1 after the transistion occurs. This implies that
the in-phase channel still lags the quadrature channel, so
the new output LL should remain 0. But suppose, in-
stead, that Q reverts to O without I ever having gone to
1. This means that the quadrature channel is now lag-
ging the in-phase channel. Since the new values of the
channels are I=0 and Q=0, the Karnaugh map shows
that the next value of LL should be 1.

All other entries in the Karnaugh map were filled out
in a similar manner. The symbol X shows transitions
which we do not expect ever to occur The underlying
supposition is that the in-phase and quadrature channels
cannot both change at the same time, an assumption we
have already discussed. The four logical equations of
the EPLD are as follows.
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- = 4 — DR - 15
LL = (IAIowiQ)V(IA;LLAD‘OLD) 47 2: s I;R: Vit = 2+ ; = =50 mV. asn
VIAQ AQoLD)VIALL AQoLp)
V@A IorpAQ) AloLpALL AQ) 5 We shall select Vi+=+15 V. Solving for a we find
V{ITA IoLpALL AQYVTADA QoLp),
(@ = IXI5V) = — (@ + 1)50mV (158)
Jour=I®0. (148) a(l5V + 50mV) = 15V — 50mV
Iorp=1I, Qa9 10 @ =133 — 0993,
and If we choose R1=10.0 kQ+66.5 Q (a series combina-
_ 150 tion) and Ry=100 kQ then we find Vrgrs
QoLo=C. (59§ sHoLD=—49.7 mV, which is reasonably close to the

The symbol A means logical AND; the symbol V
means logical OR; and the symbol @ means logical
EXCLUSIVE-OR.

We shall defer until later the specifics of the design of
a receiver to convert the interferometric outputs into
voltage signals. For the time being, suffice it to say that
these signals will be in the form of Eqn (145), and that
the units of D and E will be volts. The receiver will
deliver signals in the range D=XE, with D=0 V and
E=10V.

FIG. 13 is a schematic of a comparator which we use
to convert this bipolar signal to a unipolar (binary)
signal. The LF311 comparator is made by National
Semiconductor. [National Semiconductor Corporation,
Special Purpose Linear Devices, Santa Clara, Calif.,
1989, hereinafter SPLD] The data book uses the symbol
for the open-collector output shown in FIG. 13. The
design equations derived there are given hereafter. Pro-
vided that the conditions

Vim=—V¥s+, (151

Ri<R3, (152)
R2<R3, (153)

and
R4<R3. (154)

are met, then the lower switching threshold of the com-
parator is given by

Ry — Ry
Ry + R

(155)

VIHRESHOLD = Vst
and the upper threshold is higher than this be

R1|| Ry
R3

(156)

VINCREMENTAL = V.

How much hysteresis we want is dependent on the
amount of noise we expect to see. For our purposes, we
chose to set Vraresaorp= —50 mV and VNcrREMEN.-
TAL= +100 Mv. This means that switching of the out-
put from high to low will only take place when the
input goes below —50 Mv, and switching from low to
high will only take place when the input goes above
+50 Mv. We picked R4=1.00 k. Suppose that
Rz=aR| for some number a. Then from Eqn (155) we
have :
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desired value, 50 mV.

Next we can apply Eqn (156) to the desired amount
of hysteresis, which is the difference between the upper
and lower threshold levels, or 100 mV. The value of
Vgis +5 V in our digital logic circuitry. So

Ry |l R2
R3

159
Vg = 100 mV %)

Ril|R; (160)

mv © V)

5.017 kQ
100 mV 6GW)

251 kQ.

R3

As it happens, standard 1% resistors do not come in
values of 251 k{); the nearest value is 249 kQ for Ra.
Using the chosen resistor values, we except to see lower
and upper switch threshold levels of —48.7 mV and
49.6 mV, both of which are close enough to the desired
values. To get smaller values would be difficult with
1% resistors without carefully choosing them for accu-
racy. Note that the 66.5 Q) resistor (which, with 10.0kQ,
makes up Rj) is less than 1% of the 10.0 kQ) resistor as
it is. This means that a resistor which has a nominal
resistance of 10.0 k() might actually have as little as 9.9
kQ and as much as 10.1 kQ. Adding 66.5 Q to this does
not guarantee that we get 10.0665 Q. In the laboratory,
we did not need to pick the 10.0 kQ specially, as it
happened, but it could easily have been necessary. This
is an unattractive feature of the design of this compara-
tor which really arises because we want such a small
level of hysteresis. If we relaxed this need, the inaccura-
cies of 1% components would cease to be a constraint.

Two of these comparators are used, one for each of
the two interferometric outputs we choose to use in the
Fringe Rate Demodulator. In FIG. 15 we show the
schematic of the rest of the Fringe Rate Demodulator.
The unipolar outputs of the two comparators become
the inputs to the I and Q inputs of the EP310 Erasable
Programmable Logic Device (EPLD) described ear-
lier.

The LL output of the EP310 causes the LF13333
Quad SPST JFET Analog Switch to alternate between
connecting its D4 input at pin 15 to the ground at the
pin 14 and leaving D4 open. When D4 is grounded, the
non-inverting input to the optional inverter built around
the LF356 Monolithic JFET-Input Operational Ampli-
fier is grounded. This causes the LF356 to function as
an inverting amplifier of gain 1. When D4 is left open,
the voltage at the input to the LF356 is the same as that
from the output of the LM2917N Frequency-to-Volt-
age Converter. Because an operational amplifier with
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negative feedback tries to keep both its inputs at the
same voltage level, there will be no current flowing
through the feedback network, and so the output will
not be inverted when D4 is left open.

The EP310 generates a frequency signal at its pin 16 5
which serves as the input to the LM2917N, which is
often loosely referred to as a tachometer chip. This
signal is formed from the exclusive-or of its two inputs,
so the output frequency is roughly twice that of the
input frequency. We cannot say it is precisely double,
since the instantaneous frequency of a phase-modulated
signal is not a constant. The voltage level provided to
pin 11 of the LM2917N by a resistive divider compris-
ing resistors Rj and R is around 2 V.

Our design differs in another respect from that in
Crooker. She used a high-pass filter at the input to the
frequency-to-voltage converter and a comparator
threshold of zero. We used no filter, just a threshold
about midway between the upper and lower voltage
levels generated by the EP310. An advantage to avoid-
ing the use of the filter is that, potentially, the absence of
a capacitor could provide the ability to handle higher
frequencies. Since the frequency input can be either 0 V
or 5V, the input comparator of the LM2917N will not
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signal of interest, T/4, there are A/2m cycles of the
interferometric output. So the frequency is roughly

@164

However, the EP310 has logic which roughly doubles
the frequency delivered to the LM2917N, so the actual
frequency is therefore estimated as

. % 165)

JiN==F

Therefore we expect the EP310 to see a peak frequency
of

4(100 radﬂgZOO Hp _ 25.5 KH (166)

‘ JiN=

Now from the specifications for the LM2917N [SPLD],
a restriction on the input frequency is

change unless the frequency input changes. Because this 25
signal is derived from the interferometric outputs, its
frequency is high when the phase in the interferometer PN asn
is shifting most rapidly, and it is low when the phase €1 Vee
shift reaches an extreme. . . . X
From the data sheet for the LM2917 [SPLD], an 30 In this expression, I is the current delivered to the
equation describing the output voltage of the frequen.  timing capacitor Cy, fiy is the frequency delivered to
cy-to-voltage converter is » the input of the LM2917N, and V. is the supply voit-
age. We can use this expression to determine the value
Vour=VcoiNCIR3K. (161) of Cj because I is specified in the databook. We have
35 chosen V=15 V, and we have just found that
R3 and Cj are the external components attached to the frn=25.5 Khz at most.
- (168)
140 pA -
o= L m=367pl=forthemxmmum Iy = 140 pA
Ve -(-2-“;—:;;3;-\7)— = 630 pF for the maximum J; = 240 pA
Unfortunately, the databook recommends keeping
charge pump within the converter. Ve is 15 V, the 45 C1>500 pF for accuracy. Whether or not we can han-
voltage supplied to the output transistor within the dle the maximum frequency for this choice of C; de-
converter. K is the gain of the converter; it is roughly 1. pends on the current I, and this is dependent on the
The zener diode in the LM2917N limits the voltage characteristics of the particular device we end up using.
from the operational amplifier which controls the tran- We can calculate the peak frequency we can handle,
sistor at its output to 7.56 V at most. We could include 0 however. We have
some gain in its feedback loop, but it is just as easy to ,
apply the gain in the following stage, which is what we n (169)
chose to do. We would like Voyrto reach this maxi- /INZFp =
mum when the maximum input frequency occurs. What
is this frequency? 35 140 wA
For a signal of interest of the form -W)(!LTS_—V)—_ = 18.7kHzif I; = 140 pA
E()=A sin @mfi). a6 mf:?,x-—";“w = 20KHzIfL, = 240 pA
. - . m
recall that the interferometric output is of the form In the worst case, I;=140 pA and fv=18.7 Khz. If
x(@)=D+E cos [A sin @uf). 163) f=200 Hz, then we must have
We shall design the circuit to handle the case where i 18.7 kHz (170)
A=100 rad and f=200 Hz. The peak instantaneous 65 A S =0 Hyy = 3l

frequency in the interferometric output is roughly equal
to the number of compete cycles in interferometric
output in one second. In a quarter of a period of the

If we lower Cj slightly to 470 Pf, we can raise this to
78.0 rad. Although the accuracy of the output will
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suffer a little, we only need one capacitor to achieve this
value, whereas it would take two to obtain 500 Pf. The
elimination of one component with a consequent in-
crease in the permissible phase amplitude A is a satisfac-
tory compensation for the sacrifice in accuracy. 5

By using the optional inverter, we create a bipolar
output which is negative when I lags Q and positive
otherwise. However, this signal is proportional to the
derivative £(t) of the signal of interest, £(t) in Eqn (140).
We must integrate this to recover £(t) itself.

The LF444 Quad Low Power JFET Input Opera-
tional Amplifier performs the integration function. The
output of our integrator circuit can be shown to be

10

_Your ___1 am 13
L RiC;  j2af

provided that the input frequency f is much greater than
the pole frequency f,. There are actually two poles in
this circuit. A design goal is to set them equal to each
other. We can show that

(172)

e 1
=fh= 27RCy 25

1
=4 =R
We want to choose f; so that the error in the phase is
small in the frequency range of interest to us. We would
like to have reasonable accuracy in both phase and gain
when £>20 Hz (a design choice). The error can be
shown to be

€ = —2tan (-f%)

If we choose fp=0.5 Hz, then this error will be only 3°
for f=20 Hz; it will fall to 0.3° for =200 Hz. The error
€y in the gain can be shown to be

30

173)

35

40
1 . 174)

So for this same choice of f; the error in magnitude will 4
be less than 0.06%, and it will be even less significant at
higher frequencies,

Our choice of fp=0.5 Hz determines the two prod-
ucts Ri1Cy and R2Co. 50

RiCy = RGy = E;:E = 318 ms. 175)

We also have to select the desired gain factor, 1/R1Cs. 55
For an input to the interferometer of 3-100 rad at f=200
Hz the output of the frequency-to-voltage converter is
measured as 3.8 V. To get an amplitude of 7.56 V out of
the integrator under these conditions the gain must be

7.56 V/3.8 V, or 2.0. So. 0

1 1

—_ L 176)
RCG 2af

=20

RiCG = = 398 ps

1
27 (200 Hz)(2.0) 65

In the end, we increased the gain to about 3 by lowering
R;Cz to around 265 pus.

4

By trial and error, we find combinations of R;, Ra,
C1, and C; which meet these conditions and which are
available or are easily produced from available compo-
nents. A viable solution is

Ry =392k, R; =475MQ, am

C1 = 800 oF, €, = 680 pF.

The above discussion explains how the component val-
ues in the integrator were chosen. To get the large
resistance Rj in the feedback network, we used a Tee-
network. The form of the network illustrated there is
repeated here in FIG. 14.

The effective resistance of our Tee is given by

R1aR 2 178
- RuRi _ 10K0? _ 4oovo a7®)

REFF==g= ="550

which is just the value of R which we sought for the
integrator.

There are two subsystems in the Fringe Rate Demod-
ulator which could be modified to change its operating
regime. The frequency-to-voltage converter is config-
ured by the choice of R3 and Cj to achieve its peak
output voltage for a specified peak input frequency.
This frequency is dependent on both the amplitude and
the frequency of the signal of interest, and therefore
changes in these two components could be made to
accommodate a different set of signal parameters. The
integrator is the other subsystem which would need to
be modified to accommodate such changes.

FIG. 15 is a block diagram showing how symmetric
demodulation is accomplished.

The symmetric demodulator portion of this invention
consists of a optoelectronic converter 301 which is a
means for converting the optical intensity into an elec-
trical signal (either analog or digital), a modulation
stripper 303 which is a means for selecting the compo-
nent of the intensity signal which is being modulated by
an optical phase shift, a derivative cross multiplier 305
which is 2 means for generating a signal proportional to
the time derivative of the optical phase shift, a modula-
tion depth compensator 307 which is a means for re-
moving the modulation power dependence from the
output of the derivative cross multiplier 309, and an
integrating circuit 446 which is a means for generating
an optical phase shift signal from its time derivative.

The three optical signals from the interferometer
enter the demodulator where they are converted into
electrical signals, by photodiodes 401, 402, 403, these
signals are labeled a, b, ¢, proportional to the optical
intensity at each input. The photodiode amplifiers at
405, 406, 407 can each have separately trimmable gains
to compensate for imbalances in the three arms of the
interferometer or the photodiodes. One third of the sum
of the signals a, b, and c, their average, is taken at sum-
ming and scaling circuit 410 and subtracted from a, b,
and c at difference amplifiers 412, 413, 414 giving three
signals labeled u, v, and w, with the result that

(179)
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-continued
w=—La—-l-b+Lc.
3 3 3

The time derivatives of u, v, and w, are taken at
differentiating circuits 416, 417, 418. Various differ-
ences of the derivatives are taken at difference amplifi-
ers 420, 421, 423, which are cross multiplied with u, v,
and w in multiplying circuits 426, 427, 428 and summed
together in summing circuit 430, giving the combination
u(W—v)+v(i—w)+w(v—u), where the dot signifies
the time derivative. When implementing the technique
in analog form, it may be convenient to select a multi-
plier integrated circuit (IC) with differential inputs so
that the functions of summing and multiplying can be
combined in a single IC for each of the three arms.

The signals u, v, and w are squared at in squaring
circuits 432, 433, 434, and the sum of these squares is
generated in summing circuit 436. At division circuit
440, the output of summing circuit 430 is divided by the
output of summing circuit 436. This result is then inte-
grated in time in integrating circuit 446 and multiplied
by the constant %. To some extent, the value of the
multiplicative constant is arbitrary; it can be set to give
a desired scaling factor or to compensate for the gains of
previous stages. The value % is appropriate if the gains
of the earlier stages are unity and the desired scaling
factor is 1 Volt per radian. The end result, at the output
is the optical phase shift ¢, which is given as

(180)

_2 cuw =Nt Wi — W)+ Wl — &)
e=3 2k "

Eqn. 5 gives the power from output k of the [3X3]
coupler which terminates the optical fiber interferomet-
ric sensor, where k can be 1,2, or 3. For the moment, we
shall neglect the “static™ phase shift ¢(t), regarding it as
part of the signal of interest £(t), for example. The form
of the three equations was given graphically in FIG. 6.
To make this plot, we used a sinusoidal stimulus

£(t)=A sin (0i)=>57 sin Quf). as1)
All three interferometric outputs look similar, but they
are shifted by 120° from each other. In the plot, the
three outputs also are separated from each other verti-
cally so that they can be seen individually, and the
sinusoidal stimulus is superimposed on the plot (to a
different scale) so that the relationship between the
stimulus and the interferometric outputs can be readily
seen.

Before going on to explain how to recover the signal
of interest, we shall digress at this point to explain a
technique of measuring the actual phase difference be-
tween two outputs of the interferometer, using the Lis-
sajous figure. At present, [3X3] optical fiber couplers
are made by monitoring the ratio of power in each of
the three outputs during fabrication to ensure the de-
sired amount of power in each. This method is entirely
suitable in the communications industry, but for inter-
ferometric applications, it would be preferable to moni-
tor the phase difference between adjacent outputs and
adjust it to be 120°.

In our technique of measuring the actual phase differ-
ence, we use a digital oscilloscope such as the Tektronix
- TEK2430. The plots were displayed on and printed by
a TEK2430. This oscilloscope has the useful feature of
permitting measurements of the Lissajous figure’s di-
mensions on the screen. Two separate measurements of
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the Lissajous figure permit us to compute the phase
angle between any two interferometric outputs. We can
show this by first considering the two waveforms. For
generality, we need not assume that both waveforms
have equal amplitudes, and so they take on the form

u1(1)=E) cos (£(2)) and uz()=E; cos (§()+¢). (182)
In these equations, the amplitudes are E;j and E, &(t) is
the signal of interest, and ¢ is the phase angle between
the two outputs. We first measure uj(t) at some time to
when uy(t)=0. We can readily solve for the phase angle
of uy(t) at this instant:

(183)
&) = =% cos™! (-’%)—)+ n2ar,

where n is an arbitrary integer. Knowing that uy(t)=0
and that its phase must contain the same phase compo-
nent £(t), we can find the phase difference ¢:

)+ ¢ =T +mm (189
¢ =T + mm - £0)
¢=-72r—+m1r—n21r$cos—-l(—2—ll—),

where m, like n, is an arbitrary integer.

Thus we only require two measurements to obtain the
phase angle ¢. We need the peak amplitude E; of the
signal uj(t) and we need its amplitude at a time when the
second signal uy(t) is zero. From their ratio and simple
trigonometry, the phase angle can be obtained.

The oscilloscope we used makes it very easy to mea-
sure E;. Actually, it is easier to measure 2E;, which is
the greatest width of the elliptical Lissajous figure. We
then measure the amplitude of the same signal along the
axis where the second signal is zero. Actually, it is easier
to measure the entire breadth of the Lissajous figure
along this axis, which gives 2ui(t) at time t=to. The
ratio (2u;(to)/(2E)) is, of course, the same as ui(to)/Ei.

As an example of how to use this technique, we mea-
sured 2E1=93.2 mV and 2uj(tg)=74.0 mV. For these
values, the phase difference is

185)

2:
é = 90° + cos=1 i-)= 127°.

2E,

Notice that we have neglected the arbitrary integers m
and n in this expression. This calculation gives a phase
difference which is 7° away from the 120° which we
would have preferred the couplers to deliver. On the
other hand, this difference is good empirical evidence
for the robustness of the technique which we shall now
describe, for we still managed to recover signals with
excellent fidelity from this imperfect {3 X 3] coupler.
Our first goal in the processing of the three interfero-
metric output signals is to eliminate the constant D from
the three outputs by subtraction. An easy way to com-
pute D in a circuit is to add up all three signals and
divide by 3. A typical implementation of an adder has
some gain factor K; associated with it. We will arrange
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matters so that kj= —3. If we add up the three signals,
we get

186)

ki, E ik 2 3 {D+Ecos|:§—(k-l)-§-qrj}

it

S

3
3D + ME 2 cos [g — k- 1)% n].
=

By mathematical manipulation it can be shown that

N=1 jo- k%—] (87
k2o ©

N=-1 27 27

I CRER N

The real part of this expression can only be zero if

27 )= 0.

This is geometrically obvious since vectors comprising
the sides of an equilateral, regular polygon must sum to
zero because the polygon is closed. Applying this to
Eqn (206), we see that

 N—1 (188)
2 cos| 0 — k——
k=0

$1=3kiD=D. (189)

Because we have a way of computing D (or, rather,
its negative), we can subtract it from the interferometric
outputs. This is akin to removing a constant offset from
a signal by the use of lowpass filtering, except that using
such a filter would preclude the correct processing of
low frequency components in the signal of interest.
What is worse, however, is that signals of interest with
very small amplitude produce signals xx which do not
vary much. This does not mean that they are always
close to D, however: it only means that

cos[g-(k- 1)-%—«]

is nearly constant. However, this constant multiplies E
to produce different levels of signal in each of the three
signal paths. Putting these signals through lowpass fil-
ters merely changes the constant offset, rather than
eliminating it totally.

In FIG. 15, three adders are used to perform the
subtraction. Let their outputs be called x1, 21, and x31.
Because these adders have some gain, kg1, we have

xa=kgiE cos [§—(k—1)in]. (150)

The next step is to differentiate each of the xi;. The
differentiators, too, have their own gain, kp. The out-
puts of the three differentiators are

xia=kpi1=~kpka EE sin [E—(k—Din). s

The three derivatives were simulated for the same
case as in FIG. 6. Again, the sinusoidal stimulus is
shown for reference, although still not to the same verti-
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cal scale as the derivatives. In the plots, we have
dropped the second subscript, as if D were zero in x.

We can obtain the sine and cosine of the signal of
interest from a set of three interferometric outputs, each
120° out of phase from the other. From the sine and
cosine we can obtain the derivative of each. It is an easy
matter to cross-multiply, subtract, and integrate the
result to obtain a scaled replica of the signal of interest.
How can we extend this idea so that all three signals
might be used? Phasors are a tool which only apply to
linear systems: processing which entails multiplication
is non-linear. One can add two phasors together and get
another phasor. One cannot multiply two phasors to-
gether at all. When two sinusoids are multiplied to-
gether the result consists of the sum of two sinusoids.
One of these has a frequency which is the sum of the
input frequencies; the other has a frequency which is the
difference between the input frequencies. If the two
inputs have the same frequency, which is the case for
two signals represented by two phasors, their product
contains a term at twice the input frequency and a con-
stant term. In what follows, we shall ignore the constant
term and focus our attention on the sinusoidal term at
twice the input frequency. The output at twice the input
frequency could be represented as a phasor, too, but it
would normally not be shown on the same phasor dia-
gram because of the fact that its frequency is different.

We shall take the liberty of breaking the rule that
phasors at different frequencies never be discussed in
the same sentence or drawn on the same diagram. How-
ever, the “phasor” representing the output signal at
twice the frequency of the input signal is not a phasor in
the conventional sense. Although in the figures which
follow we show this output signal as an arrow in the
complex plane, superimposed on a phasor diagram, the
reader must be mindful that its frequency is different
from that of the phasors in the diagram and the phase
relationships between the various phasors and the out-
put “phasor” are not constant. We shall be careful to use
quotation marks around the word phasor whenever this
output signal is being referred to. If the reader rebels at
the heresy of using phasor techniques in non-linear
signal processing, he may be somewhat mollified to
know that without this highly unorthodox approach we
would never have discovered the algorithm which we
explain here.

In FIG. 16 we show the phasor approach applied to
asymmetric demodulation. The small, black arrows
show the two signals, sine and cosine, that the symmet-
ric method uses. The cosine leads the sine, so it is the
arrow labelled jJE; the sine is labelled E. The derivatives
are the intermediate-sized arrows with the white interi-
ors. The derivative of the E is the joE phasor. The
derivative of the JE phasor is the —E phasor. The
large, diagonally-striped arrows show the cross-
product “phasors” which the asymmetric method pro-
duces. Both cross-products are the same. The product
of E and the derivative of JE is —wE2 The product of
JE and the derivative of E also is equal to oE2

At this point, the phasor approach collapses, for ac-
cording to the asymmetric demodulation technique, the
difference between these two cross-products is the de-
rivative of the signal of interest. But the difference be-
tween these two “phasors” is zero. Only their sum
would yield a non-zero result. The problem evaporates
if we stick to a trigonometric description of the signal
processing. It only occurs because we have used the
wrong tool, the phasor tool. Yet the geometric interpre-
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tation provided by the phasor methods made the dis- Next we combine signal x2; with the derivatives of x31
covery of the method a reality. The insight was to apply and xij,
the method to the symmetric modulation idea despite
the obvious error in doing so.

FIG. 17 uses phasors to depict the idea behind sym- S
metric demodulation. The small, black arrows represent
the outputs of the interferometer. There are three, each
separated by 120° from the other. (We use the notation Kk q1Ecos (g - -.E;- ) )
M.eto denote the complex number of magnitude M and
phase angle 6.) The derivatives of these three signals are 10
shown in the intermediate-sized, white arrows. In dot-
ted outlines, we show the negatives of these three deriv- This simplifies to
atives, too. Note how the derivative of one signal and . :
the negative of the derivative of a second signal bracket kama1(¥31— %11)= kagk a1 kpE? cos (§—1 m)[~sin
the third signal in a symmetric manner. By taking the 15 €+ m)+sin )] s
difference of the two derivatives, a phasor parallel to . .
the third signal is formed. If we rewrite this as

In symmetric demodulation, the product “phasors”
line up along the 0°, 120°, and —120° axes, but because kaxai(k3) — X11) = (198)
they contain E?, their sum is not zero, as it would be if 20
phasor addition of multiplied phasors were strictly cor- ([ 2

—sin| | &€~ 57 ]

kmx21(%31 — *11) = (196)

—kpka\Efsin (e +4q )
+kph 1 Eésin(®)

rect, but the real constant 1.5. In fact, in general, one :

can divide 360° evenly into N pieces and add the kagk k pE¥Ecos (g — .';’_ -

squares of either the sines or the cosines to arrive at a . 2

total of N/2. 25 +sin ([5 -3
Now that we have arrived through graphical ideas at '

the basic method of combining derivatives and signals

in the method of symmetric demodulation, we can show then we can apply the same trigonometric identity to

get -

( (199)
kapaiGisy — &11) = kaghy kpE*cos kg - —g— - )[Zoos (g - -g— P )sin (%— - )]

= 3 kpetd kpEPécos? (g +& )

in mathematical terms what is going on. 0 Finally we combine signal x31 with the derivatives of
We start by combining signal x1; with the derivatives ~ *11 and x21.
of x2; and x3y, . ’
ka31(i1) — %21) = (200)
192) 45 .
. 2 —kpk 431 EEsin(€)
—k i -7 .
pkaiEgsin (E 3 ) KagkayEfcos (g +3 7 ) s )
kax11(F21 — #31) = kpkg1Ecos(E) +kpk43Etsin (g -5 17)

+kpkAlEésin [& + "§- T ) 50

This simplifies to
This simplifies to . )
kp3i(in1 —%a1)=karka?kpE?E cos (E—§ m)[—sin
kape11(%21 —331)=kpsk 412k pE*E cos (E)[—sin €)—sin (§—§ 7). (201)
(E—3m)-+sin (E+§m)). a93) 35
If we rewrite this as
We can apply to this the trigonometric identity

. ka3t — %21) = : (202)
sin (4 + B)—sin (4—B)=2 cos (4) sin (B) (194)

to obtain - _sin([g.*_—g—,r]_—%—ﬂ)

(195) kngiy k pEPEcos (é +% ) 2 2
kg kpEEcos(£) [Zcos(z)sin (—_3;— T )] 6 +sin ([g I ]+ i, )

N3 kpekdy kpEcos(®) then we can once again apply the same trigonometric
identity to get

kaxyi(x21 — %31)

]
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kamxsy Gent = %21) = kagky kpEPécos (g + %- P )[m (g + % - )sin (% . )]

= 3 ki kpE2cos? (g +Za )

Visualizing a plot corresponding to the manipulations
which have been described here without using a com-
puter is no easy feat. In fact, a plot of the difference
between two derivatives is very similar to the plots of
the derivatives themselves.

When we sum the three expressions of Eqgns (218),
(222), and (226), using the gain constant k43, we obtain

(204)
3 kaskari®y kpE2E [cos2(§) + cos? (; -Za )+

cos? (g +d )]= 2 N3 kaskarigkpté,

Consider the three formulas summed in Eqn (204).
Once again, we include the sinusoidal stimulus in order
to make clear the relation of the complicated expres-
sions of Eqn (204) to the stimulus. The envelope of the
three signals is itself now sinusoidal. How do we extract
just the envelope?

If we wanted to, we could simply integrate the ex-
pressions in Eqn (204) and get a fair replica of the origi-
nal signal of interest. £ (t). However, there is a factor of
E2in the expressions, which implies that the derivatives
still depend on the contrast between the dark and light
extrema of the interference pattern. Since this is a num-
ber which wanders due to changes in laser intensity
(which itself depends on the temperature) and due to
changes in the polarization angle of the light within the
optical fiber interferometric sensor, it would be useful
to eliminate this factor.

We can do this by squaring each of the signals xx; and
adding them up. The squaring operation can be per-
formed with another multiplier of gain kasand the addi-
tion can be performed with another adder of gain k.
That is

2
3
kAzkilkM(k,nEcos[g - k- 1)%:;]} =

2 kaghasiy B2

(205)

In FIG. 18 we illustrate the result of the summation
for the example we have been using in which the ampli-
tude of the stimulus is A =57 radians. It should be clear
from the figure that the sum of products is indeed pro-
portional to the derivative of the sinusoid displayed
with it. In the figure, the amplitudes of each waveform
have been scaled for convenience, and so they are not
labelled.

Both Eqgns (204) and (205) include the factor E2. We
can eliminate this factor by dividing Eqn (228) into Eqn
(227). Any practical divider has a gain which we shall
call kg (not to be confused with kp, the gain of the
differentiators discussed above). Division yields
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(203)

@06)
2 N5 kakasykpl? | N3 gk ;

ka kay

2 kppkaddy B2

We can integrate this with an integrator of gain k; to get

07)
N3 kygkpha
&dt

N3 kykaskpky
= ;

ki kaz

kap

By the processing algorithm developed here, we have
the ability to recover a scalar multiple of the signal of
interest, £(t). It is important to recognize that neither D
nor E appear in this final expression. This means that
the scale factor of the demodulator is independent of the
average power in the laser, and it is also independent of
the fringe depth.

The scalar multiple consists of factors which we can
control in implementing the algorithm. They include
the gains of two adders, the gain of three identical dif-
ferentiators, and the gain of the final integrator. These
factors can be chosen within certain constraints to pro-
vide &(t) scaled to whatever level is desired. In an ana-
log implementation of this scheme, clipping of signals
constrains the selection of these parameters at the high-
frequency limit, and the noise of the circuit constrains
their selection at the low-frequency limit.

We now turn to a detailed discussion of each of the
several stages in the Symmetric Analog Demodulator.

The receivers comprise the three photodetectors
CR1, CR2, and CR3 together with the three tran-
simpedance amplifiers built around operational amplifi-
ers Ul, U2, and U3. These three amplifiers are Burr-
Brown OPA111s. They feature very low bias currents
of, at most, 2 pA, which contribute only 130 nV to the
output offset voltage when passed through the 64.9 kQ
feedback resistors R1, R2, and R3. The input voltage
offset is less than 500 uV. This offset voltage appears
with gain 1 at the output of the transimpedance ampli-
fier. The maximum drift in input offset current is S
pV/K: over 50 K. of temperature drift, this amounts to
no more than a 250 pV drift in the 500 pV figure previ-
ously mentioned for a total of no more than 750 pV.
Although this amount is far larger than that due to the
bias current, it is nonetheless very small. The unity gain
bandwidth of the OPA111 is 2 MHz.

The OPA111 also provides very low voltage noise,
no more than 40 nV/VHZ at a frequency of 100 Hz,
and typically only 15 nV/VHz. Since this is the input
stage of the entire circuit, we wish to minimize the
contribution of the receiver to the overall noise, so the
OPA111 makes a good choice.

When the laser’s monitor current was 58.2 pA (indi-
cating that the laser diode was emitting 7.1 mW optical
power), the three photodiodes produced measured volt-
ages D=26.3 mV, 25.9 mV, and 29.0 mV across tran-
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simpedance amplifiers with 500 Q in the feedback path.
The fluctuation in these voltages was E=9mV, 10 mV,
and 10 mV. We increased the resistances to 64.9 kQ in
order to raise the peak voltages to around 5 V under
these conditions. The value 5 V was about half-way
through the range in which we desired to work. ~10V
to +10 V. This allowed room for fluctuations of the
laser power to higher levels without saturating the tran-
simpedance amplifiers. These changes altered the volt-

ages from the transimpedance amplifiers to
(208)
D = (150 p) (370-’%"'}—)(64.9 Q)
= 36V.
and
(209)
E = (55u®) (370%—)(54.9 )

= 13V,

In the laboratory, we used fairly lengthy (=~ 1 m long)
coaxial leads to transmit the currents from the photodi-
odes to the transimpedance amplifiers. The capacitance
presented by these leads was sufficient to act as a differ-
entiator of the interferometric signals, enhancing their
high frequencies. We compensated for this empirically
" by placing 10 pF capacitors C1, C2, and C3 across the
feedback. We believe these could be reduced or elimi-
nated if more attention were paid to lead capacitances
by placing the photodiodes in close proximity to the
amplifiers.

The choice of operational amplifiers throughout the
rest of the circuit was not as critical. We selected Ana-
log Devices AD712 dual precision operational amplifi-
ers. These have a higher unity-gain bandwidth than the
OPA111s, 4 MHz. Their voltage noise is typically 45
nV/VHz at 100 Hz, higher than the typical value of 15
nV/VHz for the OPA111, but still respectably small.
Their input offset voltage is at most 3 mV. Their input
bias current has a maximum of 75 pA. These are good,
general-purpose operational amplifiers.

Eqn (189) implied that the averaging circuit imple-
mented around operational amplifier U4A needs to
have gain k;= —4. We can achieve this by picking 102
k() input resistors R4, R5, and R6 and a 34.0 kQ feed-
back resistor R7. The design of summing amplifiers is
explained in numerous books on operational amplifiers
(for example, see Sedra et al, Microcircuit Electronics,
Holt, Rinehart and Winston, 1982) and so will not be
further discussed here, except to say that we also added
a 1 pF feedback capacitor C18 in parallel with the 34.0
kQ resistor R7 to eliminate the ripple in the output. The
ripple was due to the fact that although each interfero-
metric output is assumed to have equal central values D
and peak deviations E from this value, in fact these
values are not all equal to one another. Furthermore,
the phase differences between different legs are not
exactly 120°. As a result, the sum is not a constant. The
capacitor masks the variation in the result. Although it
only produces an approximation of the theoretical con-
stant D, we found that the amount of constant offset left
after the subsequent addition stage in USA, U6A, and
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symmetric demodulation useless.
The summing circuits USA, U6A, and U7A are de-
signed to provide the summing gain k4; of Eqn (212).

54

Again we want to let these amplifiers have peak outputs
of 5 V to permit fluctuations in laser power without
causing saturation of the amplifiers. Since these sum-
mers remove D from the signal, the amplitudes coming
out of them is dependent on E and the gain of the sum-
mers. From Eqgn (230) we know that E=1.3 V. So we
should pick the gain to be

5V
13V

(210)

ka1 = = 3.8
We can achieve roughly this level of gain (precision is
not important here because the signal levels are so
highly variable) by selecting 13.7 kQ input resistors and
51.1 kQ feedback resistors. For this choice, we actually
achieve

SL1kQ

_SL1kQ @1
ko = 3770

= 3.73.

The next step in the demodulation technique is to
differentiate the outputs of the summing amplifiers
USA, U6A, and U7A. Operational amplifiers USB,
U6B, and U7B are configured to do this. The transfer
function G(f) of the differentiating circuit if the two
pole frequencies are equal to one another and if the
operating frequency is well below this is

Your (212)

Vin

G(H = = ~RoC\2mf = kp.

The relative error in the magnitude of the gain, which
depends on how far away from the pole frequency fp
we elect to operate is

1 ) 213)

The error in the phase of the gain, which, likewise,
depends on how far away from the pole frequency we
elect to operate is

Q14)
& = —2tan~! -fép-)

We designed the circuit to handle peak phase shifts of
100 radians when the signal of interest had a frequency
of 200 Hz. The time for the signal of interest to change
from zero to its peak amplitude is a quarter of a cycle, or
7r/2 radians. So if the peak phase shift is A, there are

)

cycles of the interferometric output in a quarter cycle of
the signal of interest. The period of a cycle is T, so a
rough approximation of the peak frequency present in
the signal of interest is

15)
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— 24 (216)
(£) -

Thus we expect frequencies up to

2(100 mdﬂxzoo H2) _ _ 157 kHz @1

We can use this value, along with out desire to keep the
phase error less than 2° at this peak frequency, to
choose the pole frequency.

€@ = —2tan—! (-fE;)

2.<|__2m_, 12.7 kHz |
)

From this, we conclude that we must pick f,=728 kHz.
This means that

218)

(219)

RiC) = Ry = 71; = 219 ns.

In picking the gain of the differentiator, we have a
conflict between what we would like the gain to be and
what the AD712 can deliver. We still want a 5 V margin
between the expected peak signal and the upper limit of
10 V we want to impose. For a simple, sinusoidal signal
of interest of the form

E=A sin Q7ft), (220)
the derivative of the interferometric outputs (after pass-
ing through the summers) is

@21

e
I

kDL kg Ecosldsin@r )]
—217fkpk,41AEcos(2ﬂﬁ)sin[ASIN(27rﬁ)].

To ensure that, when f=200 Hz and A=100 rad, we
still do not get more than 5 V from the circuit, we set

5V = 2ufkpkytAE = 2mfRaCikAE (222)
SV
RaCr = TofcadE

We sought a peak output of 5 V from the adders USA,
U6A, and U7TA, so we will treat

5V (223)
kmE T sv
Hence
1 (2249
1
= T27(100 rad)(200 Hz)
= 7.96 ps
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But at high frequencies, the AD712 is not guaranteed to
sustain more than a 3 MHz gain-bandwidth product.
That is ’

Gain X Bandwidth = 3 MHz
(@mR2C1f) X Bandwidth = 3 MHz

(225)

iaa _ __3MHz
Bandwidth = ————(2" RC)

The maximum permissible bandwidth is dictated by
the maximum frequency f in this equation. Setting the
bandwidth equal to the maximum frequency, we get

_ l 3 MHz

- 27 R2Cy
oy I 3 MHz
- 21(7.96 ps)

245 kHz.

(226)

But earlier we decided we needed 728 kHz for the pole
frequency. FIG. 19 is a Bode plot of the gain of the
AD712 and of the differentiator gain characteristic we
want to achieve. As long as we demand less gain than
the operational amplifier can provide, the feedback
control loop is closed, and our desired gain is the actual
gain of the circuit. But if the gain we want gets too big,
the operational amplifier no longer has enough excess
loop gain to keep control: the amplifier’s own transfer
characteristic becomes dominant. As the figure makes
clear, we must compromise by lowering the gain of the
differentiator until its characteristic peaks at the pole
frequency, 728 Khz, where it intersects the gain charac-
teristic of the operational amplifier. The new value of
the gain is

3 MHz @

2P
3 MHz
[27 (728 kHz)%]

901 ns.

R2Cy

By trial and error, we find combinations of Ri, Rz, Cy,
and C; which correspond to available values of the
components and which meet the conditions we have
derived in Eqns (219) and (227). A suitable combination

is
R1=464Q C =470pF @28
Ry = 191 kQ C; = 100 pF.

The gain constant for the differentiator thus is
kp=—~R2C=~%0lns. 29

The multipliers U11, U12, U13, U8, U9, and U10 in
the schematic are very easy to use. Three of them are
used to compute the crossproduct of interferometric
signals with the difference in the derivatives of the
other two signals. These are the multipliers Ul1, Ul2,
and U13.

One differential pair of inputs is one interferometric
output (with D subtracted off) and ground (zero). The
other pair consists of the outputs of two differentiators.
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Their difference is computed internally to these AD534
multipliers and the product is produced at the output.

The squares of the interferometric outputs (with D
subtracted off) are computed by U8, U9, and U10. Later
on in the circuit, the denominator input to the DIV100
(U15) must be positive. To guarantee this, we con-
nected these three multipliers to produce negative
squares. So the inputs were provided to a non-inverting
terminal of one of the differential inputs and to an in-
verting terminal on the other differential input. The
remaining input terminals were connected to ground.

The ADS34 has a built-in multiplicative scale factor
of 0.1 V—1. Thus two full scale inputs (10 V is full scale)
will produce an output of (0.1 V-1)(10 V(10 V)=10V.
Since we have been assuming that peak signal levels of
5V are present at the outputs of all stages, we expect to
see (0.1 V-1 (5§ V) (5 V)=2.5 V. The small signal
bandwidth of the ADS534 is 1 MHz. Its noise spectral
density is large compared to that associated with good
operational amplifiers: 800 nV/VHz at 10 kHz; it is
larger at 100 Hz, about 900 nV/VHz..

The adder in Ul4A is very similar to that in U4A

15

20

described earlier. To compute the required gain, we

make use of Eqn (204). It gives the output of this adder
as

) 230)
2 N3 kgtask, KpE2.

We want this to peak at -5 V when A=100 rad and
f=200 Hz. So
% \E) Kaskagi kpERE =

- 3 N3 kghadd kpE2 A2 il Asin2 o)

sv> 3 N3 k01 v-H38%001 13 W22nf

25 1) @31
3\3 (.1 P=1%3.8)2901 nsX(1.3 YX(100 rad)2m(200 Hz)
7.0,

ka3

We later decided to lower this value in order to accom-
modate input phase shifts of 239 rad, more than the 100
rad used in this calculation, so our final choice for input
resistors to U14A was 14.0 k) with a 4.99 kQ feedback
resistor, giving

4.99 kO
14.0 kQ

(232)

kg3 = = 0.356.

We now turn to the summer U4B which adds to-
gether the squares of the interferometric outputs (with
D subtracted off) which are produced by U8, U9, and
U1o0.

From Eqn (205)

3 233
5 kAszkilEz =5V @33

< 25V)

kay =
27 Skpddy B
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-continued
- 25 V)
3(0.1 V1) 3.8)2(1.3 V)2

= 1.37.

We selected input resistor R26, R30, and R35 to be 10.5
kQ and the feedback resistor R37 to be 14.0 kQ, giving
an actual value of

k4p=133. (234)

The outputs of the two adders U14A and U4B form
the numerator and denominator inputs respectively to
the Burr-Brown DIV100 (U15). The DIV100 has a
small signal bandwidth of 350 kHz. The denominator
needs to be greater than 250 mV for reasonable accu-
racy, and it must be positive. As mentioned above, this
was easily arranged by causing the multipliers U8, U9,
and Ul0 to generate negative squares. Subsequently
U4B inverted the sum, so this constraint was met.

The DIV100 has a scale factor

kg=10V. (235)

In the range 10 Hz to 10 kHz, the DIV100 generates
voltage noise between 370 pV/VHz and 1 mV/VHz.
This is greater than the noise of the AD534 multipliers,
and it is vastly bigger than the noise of the operational
amplifiers we have used so far.

We use the DIV100 to remove the effects of E from
the demodulated signal. Recall that E is affected by
laser power and the fringe depth of the interference
pattern, which varies as the polarization of the light
within the interferometer wanders.

The output of the divider is given by Eqn (206) which
1S

(236)
\I? kaskpka |
£

ka2

Upon integration by U14B, Eqn (207) shows that the
demodulator’s output is

37
N3 kykaskpia
kay ¢
The final gain constant is that of the integrator:
(238)

ki = 6.89 X 1035~ 1.

S S,

Rs51Cy7
We can now substitute all the constants into Eqn (236):
(239)

—1
N3 (689 x 103 s=10.356)901 ns}10 1) _ so Y
133 rad

The symmetric demodulator of the invention has
been described in terms of the fiber optics application in
which it was reduced to practice, but it can be used in
other optical applications than fiber optics such as on an
optical bench. The symmetric demodulator can also be
used with other signal processing applications where
the input to the symmetric demodulator is three coher-
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ent signals related by approximately 120 degrees phase
difference.

The symmetric demodulator of the invention has
been described in terms of its best mode, but it is clear
that elements could be left out of the circuit which
would result in an operative but not optimal embodi-
ment. For example, the integrator could be eliminated
and the rate of change of the signal of interest used as
the output of the circuit. Similarly, other sections of the
circuit could be eliminated to obtain a less accurate but
still useful signal. For example, the modulation stripper
could be eliminated but its use permits a steadier signal
at constant phase shift. )

Furthermore, since Wu—v)+v(w—u)+0)-
(v—w) is equivalent to w(W—v)+v(a—w)+w(-
v—1), it follows that in the derivative cross multiplier it
is equivalent to take the differences between u, v and w
and multiply by the time derivatives before adding the
signals.

Another equivalent would be to replace the differen-
tiating circuits 416, 417, 418 with these integrating cir-
cuits and the integrator 446 with a differentiating cir-
cuit.

This symmetric demodulation scheme could be ex-
tended to more than three signals with obvious modifi-
cations. For example, for n signals the separation would
be approximately 360/n degrees and in the modulation
stripper the sum of all the signals would be scaled by
1/n. The modulation stripper would produce signals

n — 1 1 1
!li=+‘L—"_)—ai—'n_ai+l—“n-ai+2~~-

from the signals a; where i runs from 1 to n. The phase

shift would be of the form
@41)
2 . ufii—l = Gix1) + vip 1@ — dit2) + - .
= d
= 2 adyy o ’

This invention is not limited to the preferred embodi-
ment and alternatives heretofore described, to which
variations and improvements may be made, without
departing from the scope of protection of the present
patent and true spirit of the invention, the characteris-
tics of which are summarized in the following claims.

We claim:

1. A highly sensitive interferometer sensor compris-
ing:

a radiation source means

beam of radiation,

a first coupler means for splitting said beam into two
beams,

a differential transducer means for converting a signal
of interest into phase shift in said two beams,

a second coupler means for recombining said two
beams to produce three phase-modulated signals x,
y and z,

a radiation converter means for converting the three
phase modulated signals into a set of three electri-
cal signals, a, b, and ¢,

a symmetric demodulator circuit for converting the
set of three electrical signals a, band cinto a single
electrical signal £ which is proportional to the
signal of interest.

2. The sensor of claim 1 wherein said symmetric

demodulator circuit includes

for gemerating a coherent

—
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modulation stripper means for selecting a component
of the electrical signal proportional to the beam
intensity which is being modulated by 2 phase shift
the output signals of said modulation stripper being
u, v and w, and

circuit means for forming a phase shift signal & which
is proportional to

Iugﬁ—§)+v(x'4—»‘v)+w(i:—ﬂ_d,
w? + ¥+ W

from u, v and w.

3. The sensor of claim 1 wherein said symmetric

demodulation circuit includes

2 summing and scaling circuit means for summing the
three electrical signals a, b, and ¢ from said radia-
tion convertor and scaling the sum by one-third to
form a signal d,

three difference amplifier means for taking the differ-
ence between each of said signals a, b and ¢ and
said signal d to form signals u, v, and W, and

circuit means for forming a phase shift signal £ which
is proportional to

u( — 9) + Wi — W) 4 Wi — %)
d
J w?+ 24w -

from u, v and w.
4. The sensor of claim 1 wherein said symmetric
demodulation circuit includes
circuit means for forming the signals

u=-+8a—3b-14c
v=—4a+8b—1c
w=—}a—tb+ic

from the three signals a, b and ¢ from said radiation
convertor,

circuit means for forming a phase shift signal £ which
is proportional to

U = ¥) 4 Wi — W) + W — 4
di
I w2 4 P+ W *

from u, v and w.

5. The sensor of claim 1 wherein said symmetric

demodulator circuit includes:

a modulation stripper means for scaling and combin-
ing the three phase-modulated electrical signals a,
b, and ¢ from said radiation convertor means to
form three new signals e,f and g,

a derivative cross multiplier means for generating
three electrical signals k,1 and m which are propor-
tional to the time derivatives of the electrical sig-
nals e,f and g from said modulation stripper means
and for generating a signal proportional to the sum
of the products of the electrical signal group from
said modulation stripper means with differences
between the electrical signal of time derivatives,

a modulation depth compensator means for removing
the modulation power dependence from the output
of the signal from said derivative cross multiplier
means, and :

an integrating circuit means for generating an electri-
cal signal £ which is proportional to the signal of
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interest from the signal from said modulation depth
compensator means.
6. The sensor of claim 1 wherein said symmetric
demodulation circuit includes
a summing and scaling circuit means for summing the

5

three first phase-modulated electrical signals and -

scaling the sum by one-third,

first three difference amplifier means for taking the
difference between each of the three first electrical
signals and the output of said summing and scaling
circuit to produce three second electrical signals,

differentiating circuit means for taking three time
derivatives of said three second electrical signals
u,v, and w to produce three third electrical signals
0,v, W,

second three difference amplifier means for taking the
difference signals between all three combinations
of pairs of the three second electrical signals to
produce  three fourth electrical signals
(W ——v),(u - W),(V _u)’

multiplying circuit means for multiplying each of said
three fourth electrical signals by one of the three
third electrical signals to produce three fifth elec-
trical signals G(w —v),¥(u—w),Ww(v—u),

squaring circuit means for taking the squares of the
three second electrical signals to produce three
sixth electrical signals u2,v2,w2,

first summing circuit means for summing said three
sixth electrical signals to produce a seventh electri-
cal signal u2+v2+4w2,
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second summing circuit means for summing said
three fifth electrical signals to produce an eighth
electrical signal u(w—v)+v(u—w)+w(v—u),
division circuit means for dividing said eighth electri-
cal signal by said seventh electrical signal to pro-
duce a ninth electrical signal

qw = V) + Wu — W) + W — )
W+ 2wt

integrating circuit means for producing a tenth elec-
trical signal proportional to phase shift signal by
integrating said ninth electrical signal

PRI ES. VR RO S (8 M)
! w2 4w :

7. of claim 1 wherein said symmetric demodulator
circuit includes circuit means for forming the signals

u=+8a—tb—1c
v=—3a-+8§b—4c
w=}a—3b+%c

from the three signals a, b and ¢ from said radiation
convertor means,
circuit means for forming a phase shift signal £ which
is proportional to

fi(»v—v)+i(u—w)+)'v(V—u) a
w? + 2+ W

from u, v and w.
* * * * *x



