
COMPARING THROUGHPUT AND POWER CONSUMPTION IN BOTH SEQUENTIAL AND
RECONFIGURABLE PROCESSORS

Kevin K. Liu, Charles B. Cameron, Antal A. Sarkady

Department of Electrical and Computer Engineering
United States Naval Academy

105 Maryland Avenue, Stop 14B
Annapolis, Maryland 21402-5025

email: liu.kevin.k@gmail.com, cameronc@usna.edu, sarkady@usna.edu

ABSTRACT

Recent improvements in the memory capacity of Field

Programmable Gate Arrays (FPGAs) have spurred interest

in using the devices for arithmetic floating-point operations.

However, adapting a program designed to run on a sequen-

tial processor to be run instead on an FPGA can be time-

consuming and difficult for anyone lacking significant expe-

rience in hardware design. In this paper we use a high-level

language (HLL)—Mitrion-C 1.4—to reduce some of this

effort. Using this language we implemented on an FPGA

two computations taken from a ray-tracing simulation. They

were functionally identical to programs we implemented on

a sequential processor. We measured throughput and power

consumption for both implementations of each computation

on a Cray-XD1 system. In the worst case, we achieved a

10× speedup using FPGAs over sequential processors at a

cost of 1.3× the power.

1. INTRODUCTION

High performance computing (HPC) describes the use of

processors or computing nodes connected in parallel to per-

form calculations. Typically, calculation speed is measured

in FLOPS, which refers to Floating-point Operations Per

Second. In traditional HPC a given application is split be-

tween large numbers of commercially-available sequential

processors running in parallel. This approach permits high

throughput at relatively low expense. However, conventional

processors are usually designed to be used for sequential op-

erations. When heavily parallel problems are implemented

on them, these processors often cannot reach full utilization

and so operate less efficiently. Field-Programmable Gate

Arrays (FPGAs) are semiconductor devices that can be re-

configured for specific applications. Previously, the large

bit-width of floating- point numbers (32 bits for single-pre-

cision and 64 for double-precision) had made it unfeasible

to implement operations of any significance on FPGAs [1].

However, current FPGAs make use of denser memory, al-

lowing floating-point numbers to be used more readily. Re-

cent work has predicted that floating-point operations on

FPGAs will achieve an order-of-magnitude performance in-

crease over conventional processors by 2009 [2]. Unfortu-

nately, customizing an FPGA for a specific application is

generally regarded as a time-consuming and technically dif-

ficult process [3]. In this paper, we report measurements that

reveal the benefit of using FPGAs in place of sequential pro-

cessors in a practical application. We discuss the implemen-

tation of portions of a ray-tracing simulation of the Moderate

Resolution Imaging Spectroradiometer (MODIS), an instru-

ment installed on NASA’s Terra and Aqua satellites [4]. We

make comparisons of throughput and power consumption on

both an AMD Opteron 275 processor and a Xilinx Virtex-II

Pro FPGA.

2. THE OPTICAL SYSTEM

To simulate the passage of light rays through the MODIS

telescope, each interaction of a ray of light with an optical

element must be simulated. This interaction entails several

important calculations, of which two are of interest here:

first, finding the point at which a ray intersects an optical

surface, and second, finding the direction of the ray’s travel

after interacting with that surface [5]. These steps can be

simplified into a system of floating-point equations with a

constant number of inputs and outputs. We did not address

the other calculations required by the simulation in the work

described in this paper.

A part of tracing rays in the MODIS simulation entails

calculating the point where a ray strikes an optical surface

and determining its interaction with the surface. This can be

done using just the origin and direction cosines of a given

optical ray. The output of this calculation is an intersection

point and a new direction of propagation. Once the intersec-

tion point has been determined, then the interaction of the

ray with the surface may be calculated by first finding the



ANSI-C Host Program Mitrion-C Program

Prepare Inputs Read Inputs

Inputs Inputs

Run FPGA
(Loop)

Floating-Point
Calculations

0 1

2 3

FPGA Memories
(QDR SRAMs)

Display Outputs

Time 
Measurement Write OutputsOutputs

(QDR SRAMs)

Outputsp

Host SDRAM

Fig. 1. Data flow between host and FPGA programs.

unit vector normal to the surface at that point. With this in-

formation, the result of a reflection may be determined and

with the indices of refraction of the two materials at the in-

terface, the result of refraction may also be determined. Fur-

ther details about the MODIS simulation can be found in [4].

In this project, we implemented both the ray-intersection

and normal-vector calculations. For our purposes, these two

calculations can be reduced to a system of arithmetic opera-

tions.

The numbers of floating-point units implemented were

observed from the output of the simulator packaged with

Mitrion-C. The simulator showed that the ray-intersection

problem requires 11 floating-point additions, 3 subtractions,

19 multiplications, 1 division, and 1 square root, while the

normal-vector problem requires 5 additions, 1 subtraction,

13 multiplications, 2 divisions, and 2 square roots.

3. IMPLEMENTATION

We implemented the ray-intersection program and normal-

vector programs on a Virtex-II Pro FPGA on board a Cray

XD1 supercomputer. These FPGAs only have 16 MB of

external memory available for input and output. Therefore,

we elected to use a sequential Opteron processor to contin-

uously generate and deliver new inputs to the FPGA and to

read its outputs.

Fig. 1 illustrates the interaction between sequential pro-

cessor, memory, and FPGA. The programs implemented for

the ray-intersection and normal-vector calculations used sim-

ilar logic so we discuss the logic in general here.

3.1. ANSI-C

ANSI-C is the standard specified by the American National

Standards Institute (ANSI) for the C programming language.

We used it for this project. The ANSI-C program gener-

ates floating-point inputs that typify what might be expected

from a real system. It stores these inputs into arrays which

are then combined and associated with the FPGA memories.

The program then sends the FPGA a start signal and waits

for a done signal. This process is repeated to collect multiple

measurements.

3.2. Mitrion-C

We implemented the FPGA logic using the Mitrion Inte-

grated Development Environment (IDE). Mitrion-C, the pro-

gramming language associated with the Mitrion IDE, is a

“C-like” language in that it uses syntax similar to that of

ANSI-C. The high-level language gives the designer the abil-

ity to focus on the logic of an algorithm rather than hard-

ware specifics. Parallelism is explictly expressed using data

structures and loop constructs. The Mitrion IDE converts

Mitrion-C programs into Very High Speed Integrated Circuit

Hardware Description Language (VHDL) which can then

be synthesized and placed-and-routed using the Xilinx Inte-

grated Software Environment (ISE) [6].

The Mitrion-C program we implemented uses three func-

tions. The first function accesses the inputs that have been

loaded into the Quad Data Rate (QDR) memories by the

sequential program. The next function performs arithmetic

computations on these inputs. The final function writes the

outputs to two other memories. These memories are associ-

ated with arrays in the sequential program. Once the FPGA

program has looped the set number of times, the sequential

program displays the contents of the output arrays.

Four memories were available to the Virtex-II Pro we

used. Each memory could contain 524 288 64-bit values.

Since we used 32-bit single-precision floating-point num-

bers, we were able to store two floating-point numbers per

memory index. We chose to use separate memories for in-

put and output. We also used the Mitrion block expression

foreach, with list data structures. This combination in-

structs the Mitrion-C compiler to automatically pipeline the

logic within the loop. Using the simulator provided with

the Mitrion IDE, we concluded that the program completed

one full calculation every clock cycle after an initial delay

needed to fill the pipeline.

For the sequential programs, we replaced the logic that

started the FPGA with functionally identical arithmetic writ-

ten in ANSI-C. The sequential program was compiled using

the arguments -O and -funroll-all-loops to exploit the capac-

ity for parallelism in the sequential processor as much as

possible.

4. EXPERIMENTAL DESIGN AND RESULTS

Current marketing language describes FPGA acceleration as

offering advantages over traditional HPC in both speed and



power consumption. This project sought to quantitatively

assess the merits of these claims as applied to a representa-

tive application. We chose to use an HLL rather than to gen-

erate an FPGA design by hand in order to produce results

that could easily be achieved by the average scientific user

of High Performance Reconfigurable Computing (HPRC).

We also chose not to use advanced sequential processor op-

timization techniques for the same reason.

4.1. Throughput Measurement

Each of the four QDR memories available to the Virtex-

II Pros was capable of storing 4 megabytes (222 bytes) of

information. Since our calculations used 32-bit (22 bytes)

single-precision floating-point numbers, each RAM could

store 222/22 = 220, or 1 048 576 floating-point numbers in

total. For the ray-intersection calculation, we spread eight

inputs across two memories, allowing a total of 2× 1 048 576
8 ,

or 262 144 rays to be traced with each invocation of the

FPGA design. Since the normal-vector calculation only re-

quires four inputs, 524 288 rays could be traced for each

such invocation.

We used the time functions built into ANSI-C for time

measurement. The clock() function returns the system

time given in clock ticks relative to an arbitrary reference

time. We measured the time before invoking the FPGA de-

sign a number of times and again once all iterations were

complete. By subtracting the start value from the end value

and dividing by the macro CLOCKS PER SEC, which stores

the number of clock ticks per second measured by clock(),

we were able to calculate the time elapsed in seconds.

In each implementation of both the ray-intersection and

normal-vector calculations, we measured the time elapsed

to calculate 1 073 741 824 (230) rays. The results of our

measurements are presented in Table 1. The normal-vector

design achieved a throughput of about 99.88 × 106 rays/s.

Since designs created using Mitrion are limited to a clock

speed of 100 MHz in order to maintain stability, this means

that approximately one calculation was produced every clock

cycle and so the clock cycle was the limiting factor on band-

width. Since the ray-intersection calculation required two

clock cycles to read eight inputs from four memories, its

throughput was cut in half. It is likely then that the through-

put and speedup of this calculation would have been doubled

if all four memories had been used for input.

4.2. Power Measurement

We measured power using the Hardware Supervisory Sub-

system (HSS) software provided with the Cray XD1. It runs

on the management processor of each Cray XD1 chassis and

is designed to monitor the health of the system [7]. The

HSS reports the voltage supplied to the regulators of each

node and the current supplied by the regulators to individ-

Table 1. Throughput measurements.

Opteron 275 Virtex-II Pro

Rays Traced 1 073 741 824

Ray-intersection calculation

Time (s) 219.54 21.49

Throughput (rays/s) 4.891× 106 4.996× 107

Speedup — 10.21×
Normal-vector calculation

Time (s) 114.79 10.75

Throughput (rays/s) 9.354× 106 9.988× 107

Speedup — 10.67×

Table 2. Power measurements.
Node Type Implementation Total Power (watts)

No FPGA Idle 102.65

FPGA Idle 130.94

Ray-intersection calculation

No FPGA Sequential Only 110.87

FPGA Sequential Only 139.57

FPGA FPGA 141.13

Normal-vector calculation

No FPGA Sequential Only 111.84

FPGA Sequential Only 139.84

FPGA FPGA 143.66

ual components of the node, including the Opterons and FP-

GAs. Because both the Opterons and FPGAs draw power

even when idle, we were most interested in monitoring to-

tal power, which the HSS reported in watts. For this reason

we took power measurements both on nodes with an FPGA

present and on nodes without.

In all, we measured five power levels for each of the

two calculations implemented: (a) a node without an FPGA

while idle, (b) a node without an FPGA while running the

sequential implementation, (c) a node with an FPGA while

idle, (d) a node with an FPGA while running the sequential

implementation, and (e) a node with an FPGA while running

the FPGA implementation. We measured three sets of 100

samples each at 2-second intervals. By comparing the mean

values and standard deviations between sets, we found that

power was time-independent at the scale of our measure-

ments. Table 2 presents the means of our findings across all

300 samples in each case.

We sought to measure how much more power would be

required when implementing the ray-intersection and normal-

vector calculations on the Virtex-II Pro instead of the Opteron



Table 3. Resource consumption.

Resource (total) Ray-int. Normal-vector

Slices (23 616) 19 044 (81 %) 16 571 (70 %)

Flip Flops (47 232) 26 508 (56 %) 21 670 (46 %)

4-input LUTs (47 232) 26 250 (56 %) 20 466 (43 %)

Block RAMs (232) 25 (11 %) 23 (10 %)

Multipliers (232) 72 (31 %) 48 (21 %)

275. In the case of the ray-intersection calculation, the FPGA

implementation required 1.285× the power of the sequen-

tial program running on a node with no FPGA and 1.027×
the power of the sequential program running on a node with

an FPGA. For the normal-vector calculation, the FPGA im-

plementation required 1.259× and 1.011× the power of the

sequential program, respectively.

The background power required for any system will vary

based on the particular operating system or other processes

that are running in addition to the calculation of interest. We

can compare the power consumed by a sequential program

to that consumed by a parallel hardware design implemented

within the FPGA by calculating the ratio

PFPGA − PFPGA,IDLE

PSEQ − PSEQ,IDLE

(1)

where PSEQ is the power consumed by the sequential pro-

gram in a node with no FPGA attached, PSEQ,IDLE is the

power consumed in the same node when the sequential pro-

gram is not executing (although the operating system’s in-

structions will still be executing in that node), PFPGA is the

power consumed by the parallel hardware design in an FPGA

in a node with the FPGA attached, and PFPGA,IDLE is the

power consumed by that same node when the FPGA does

not contain the parallel design, so is idling. The ratio was

1.240× for the ray-intersection calculation and 1.384× for

the normal-vector calculation.

4.3. Resource Consumption

Table 3 summarizes the resources consumed by the designs

placed within the FPGA. These figures were taken from the

output of the Xilinx ISE after its place-and-route phase. The

table shows that the calculations take up nearly all of the

space on the FPGA. Without knowing more details about

how Mitrion-C implements floating-point units, it is diffi-

cult to explain with any certainty the difference in resource

consumption between the two calculations.

5. CONCLUSION

In this paper, we described the acceleration of two portions

of a ray-tracing simulation using Virtex-II Pro FPGAs. We

used the Mitrion-C HLL to implement our design and com-

pared it to a functionally equivalent design implemented in

ANSI-C on an Opteron 275 processor. We measured both

throughput and power of all implementations on a Cray-

XD1 system. Our results showed that using FPGAs allows

about a 10× speedup, but requires 1.30× the power needed

by a sequential processor alone. However, we also showed

that making use of an FPGA that is already present only

costs 1.02× to 1.03× the power used in its idle state.

Based on these results, we have concluded that it is more

straightforward to use the Mitrion-C HLL to implement float-

ing-point computations on FPGAs than it is to use traditional

hardware design techniques, and it can provide significant

speedup with little additional power consumption.

6. ACKNOWLEDGMENTS

This work was supported in part by a grant of computer time

from the DOD High Performance Computing Moderniza-

tion Program at the Naval Research Laboratory (NRL). It

was also supported by Kenneth Sarkady, Head of the In-

frared Countermeasures Systems Section. In addition, the

authors would like to thank the many scientists including

Jeanie Osburn, Wendell Anderson, Rick Hurd, and Ray Yee

at NRL who willingly shared their time and expertise.

7. REFERENCES

[1] B. Fagin and C. Renard, “Field-programmable gate arrays and

floating-point arithmetic,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 2, no. 3, pp. 365–367,

Sept. 1994.

[2] K. Underwood, “FPGAs vs. CPUs: Trends in peak floating-

point performance,” in ACM.SIGDA Twelfth ACM Int’l Sym-
posium on Field-Programmable Gate Arrays (FPGA 2004),
2004.

[3] R. Wain, I. Bush, M. Guest, M. Deegan, I. Kozin, and

C. Kitchen, “An overview of FPGAs and FPGA programming;

initial experiences at Daresbury,” Computational Science and
Engineering Department, CCLRC Daresbury Laboratory.

[4] C. Cameron, R. Rodriguez, N. Padgett, E. Waluschka, and

S. Kizhner, “Optical ray tracing using parallel processors,”

IEEE Trans. Instrum. Meas., vol. 54, no. 1, pp. 87–97, Feb.

2005.

[5] G. H. Spencer and M. V. R. K. Murtry, “General ray-tracing

procedure,” J. Opt Soc. Ameri., vol. 52, no. 6, pp. 652–678,

June 1962.

[6] S. Mohl, “The Mitrion-C programming language,” Mitrionics
Inc., 2006. [Online]. Available: http://www.mitrionics.com/

[7] C. Inc., “Cray XD1 glossary,” Cray Inc., 2005.


