
USING MITRION-C TO IMPLEMENT FLOATING-POINT ARITHMETIC ON A CRAY XD1
SUPERCOMPUTER

Kevin K. Liu, Charles B. Cameron, Antal A. Sarkady

Department of Electrical and Computer Engineering
United States Naval Academy

105 Maryland Avenue, Stop 14B
Annapolis, Maryland 21402-5025

email: liu.kevin.k@gmail.com, cameronc@usna.edu, sarkady@usna.edu

ABSTRACT

Field-Programmable Gate Arrays (FPGAs) are of interest to

the high performance computing (HPC) computing commu-

nity because they offer lower power consumption and higher

throughput compared to traditional processors. Recently,

the implementation of floating-point operations on FPGAs

has become possible as the amount of memory available on

FGPAs has increased. Unfortunately, advances in technol-

ogy have also increased the complexity of creating hardware

designs for FPGAs. In this project we describe our experi-

ences using the Mitrion-C high-level language to implement

floating-point calculations on a Cray XD1. We report re-

source consumption, throughput, and power consumption

and conclude that Mitrion simplifies the hardware design

process while successfully harnessessing the computational

power of FPGAs at little additional cost to power consump-

tion.

1. INTRODUCTION

The scientific community is interested in using field-prog-

rammable gate arrays for scientific computations because

FPGAs can be targeted for specific applications and achieve

greater throughput at a lower power cost [1], [2], [3]. How-

ever, these gains can usually only be achieved by a user

with expert knowledge of hardware design. Therefore, de-

spite improvements in FPGA technology that have allowed

their use to become attractive for a wider range of applica-

tions, inexperience with hardware design remains a barrier

for many.

High-level languages use a variety of approaches to re-

duce the complexity of hardware design. We chose to use

Mitrion-C for this project because it was readily available at

the Naval Research Laboratory, where this work was done,

and because it is a commercial product with fast and ef-

fective support services. Mitrion-C makes hardware design

more accessible in two ways. First, algorithms are described

Mitrion IDE Xilinx ISE

FPGA

Mitrion-C

Simulation

Place and 
Route Download

Simulation

Synthesis Route

Device Constraints

Fig. 1. Hardware design flow.

in the Mitrion-C programming language, which uses “C-

like” syntax and structures, such as functions and loops.

Second, the Mitrion Integrated Development Environment

(IDE) packages together a user interface, compiler, and sim-

ulator. Fig. 1 shows the necessary steps of hardware and

highlights the steps that Mitrion IDE executes.

In hardware design using a traditional hardware descrip-

tion language (HDL) such as Very High Speed Integrated

Circuit HDL (VHDL), both simulation and synthesis are

time consuming and synthesis can often fail, requiring mod-

ification of the code. The Mitrion IDE simulates and gener-

ates VHDL in one step and also estimates whether a design

will fit, based on the target hardware’s limitations. There-

fore, as long as there are no syntax errors in the Mitrion

code, the VHDL synthesis will most likely be successful,

with the exception of cases where resource consumption ex-

ceeds the resources of the FPGA by a very small margin.

One downside of using a high-level language is that the

hardware designer loses a level of control. Although Mit-

rion-C offers explicit options for pipelining, how it achieves

its optimizations is opaque to the user. We sought, there-

fore, to not only measure the performance of designs using



yp0 (x0,y0,z0)
âN

pr

�1

�1

â0 âreflected

x

(0,0,0)

(x,y,z)
�2

pi (x1,y1,z1)

ârefracted

Conic Surface

Fig. 2. Interaction of a ray of light with an optical element.

Mitrion-C, but also to predict future performance based on

our results.

2. METHODOLOGY

The simulation of the interaction of a ray of light with an

optical element—assuming that the element is a conic sur-

face—requires several calculations. We chose to look at two

in particular: the intersection point of a ray with an element,

and the vector normal to the element’s surface at the point of

intersection. These two calculations are illustrated in Fig. 2.

For our purposes, the two calculations can be reduced to

a system of arithmetic operations, as described by Spencer

and Murty [4]. For the ray-intersection problem, they are:

g = N − c
(
x0L + y0M + (k + 1.0)z0N

)
(1a)

h = c
(
x2

0 + y2
0 + (k + 1.0)z2

0

)− 2z0 (1b)

f = c(1 + kN2) (1c)

u =
h

g +
√

g2 − fh
(1d)

x1 = uL + x0 (1e)

y1 = uM + y0 (1f)

z1 = uN + z0 (1g)

The ray-intersection calculation requires 11 floating-point

additions, 3 subtractions, 19 multiplications, 1 division, and

1 square root.

The system of equations for the normal-vector calcula-

tion is presented next.

v = u(x2 + y2) (2a)

a =
√

1− v (2b)

p = 1 + a (2c)

q = ap (2d)

r = pq (2e)

s = 2q (2f)

w = c/r (2g)

b = w(s + v) (2h)

∂q

∂x
= bx (2i)

∂q

∂y
= by (2j)

e =

√(
∂q

∂x

)2

+
(

∂q

∂y

)2

+ 1 (2k)

f = 1/e (2l)

âN =
(

∂q

∂x
,
∂q

∂y
, f

)
(2m)

In this calculation, the term u is defined as u = (1 +
k)c2. The normal-vector calculation requires 5 additions,

1 subtraction, 13 multiplications, 2 divisions, and 2 square

roots. The result is given as the three components of the

normal vector, âN , as shown in Fig. 2.

One might observe that in the ray-intersection calcula-

tion, the term k + 1.0 is used twice—once in equation 1a

and again in equation 1b. It would be expected, then, that

Mitrion would simply use the same result twice rather than

perform two identical calculations. However, the number of

floating-point units reported reflects the output of the Mit-

rion simulator. We also wrote a separate program to iso-

late this issue and found that separate additions were in fact

implemented. Therefore, the count of 11 additions for the

ray-intersection calculation is accurate.

3. IMPLEMENTATION

We used Mitrion-C version 1.4 to implement the two cal-

culations. Fig. 3 shows the data flow between the Mitrion-

C and host programs. Each of the Quad-Data Rate (QDR)

memories directly available to the Virtex-II Pro contains 4 MB

of space for input/output, for a total of 16 MB of input and

output. Since many scientific applications require more than

16 MB of input and output, a host program is needed to mar-

shall data between the FPGA’s memory and host memory

present on the same compute node.

We wrote the host program using the American National

Standards Institute’s standard for C (ANSI-C) and ran it

on one of the Advanced Micro Devices (AMD) Opteron



ANSI-C Host Program Mitrion-C Program

Prepare Inputs Read Inputs

Inputs Inputs

Run FPGA
(Loop)

Floating-Point
Calculations

0 1

2 3

FPGA Memories
(QDR SRAMs)

Display Outputs

Time 
Measurement Write OutputsOutputs

(QDR SRAMs)

Outputsp

Host SDRAM

Fig. 3. Data flow between host and FPGA programs.

275 processors on the same compute node as the FPGA.

The Cray XD1 uses an interconnect system that allows data

transfer between the FPGA and host RAM at a rate of 3.2

GB/s [5]. Mitrion-C uses the full bandwidth provided by

Cray.

In the host program, each of the FPGA’s QDR memories

is treated as an array. The host program loads values into

the arrays, sends the FPGA a start signal using a function

provided by Mitrionics, and reads the results after it receives

a done signal back from the FPGA.

The Mitrion-C program was split into three functions

that (1) read the inputs from QDR memory, (2) performed

floating-point calculations, and (3) wrote the results to a dif-

ferent QDR memory. We stored our data in a list data

structure and ran the program in a foreach loop. This

combination explicitly instructs the Mitrion compiler to au-

tomatically pipeline the design, as stated in the Mitrion-C

documentation [6].

4. RESULTS

As a benchmark we compared the performance of the Mit-

rion-C implementations of the ray-intersection calculation

and normal-vector calculation to ANSI-C programs. The

power and throughput measurements isolated the calcula-

tion-intensive portions of each of the programs.

4.1. Throughput

Each of the 4 MB memories available to the the Virtex-II Pro

has a bit-width of 64 bits. We implemented our calculations

using the 32-bit width IEEE single-precision floating-point

representation. This means that each memory can hold 220

or 1 048 576 floating-point numbers. We initially used two

QDR memories for input and two for output. In the case of

the normal-vector calculation, which requires four inputs,

Table 1. Throughput measurements.

Opteron 275 Virtex-II Pro

Rays Traced 1 073 741 824

Ray-intersection calculation

Time (s) 219.54 21.49

Throughput (rays/s) 4.891× 106 4.996× 107

Ray-intersection, using 4 inputs

Time (s) — 10.75

Throughput (rays/s) — 9.988× 107

Normal-vector calculation

Time (s) 114.79 10.75

Throughput (rays/s) 9.354× 106 9.988× 107

one set of four inputs could be read each clock cycle. How-

ever, in the case of ray-intersection calculation, using only

two memories for input required two clock cycles to read

each set of eight inputs. Therefore, we wrote a second ver-

sion of the ray-intersection calculation that used four mem-

ories for input and observed a doubling in throughput, as

shown in Table 1.

Although all four of the FPGA’s memories were used

for input, two of the memories had to be used for output

as well. Mitrion-C provides memory synchronization com-

mands that enable bidirectional use of the FPGA’s memories

with no effect on throughput. We also checked a representa-

tive set of data to ensure no data corruption or overlapping

had occurred.

4.2. Resource Consumption

The resource consumption reported in Table 2 was taken

from the report generated by the Xilinx Integrated Synthe-

sis Environment (ISE) after the place-and-route step. The

amount of resources consumed by each design gives insight

into how much additional optimization is possible.

In the case of the normal-vector calculation, the mea-

sured throughput was 99.88×106 rays/s , which corresponds

to approximately one ray calculated for every clock cycle,

given a 100MHz clock. Since the QDR memories had a bit-

width of 64 bits, or 8 bytes, the throughput of each memory

was about 8 bytes/ray
memory

× (99.88 × 106) rays
s

= 799.04 MB/s

memory
.

This result indicates that the memory was used at very near

its maximum theoretical bandwidth of 3.2 GB/s, or 800 MB/s

per memory. Therefore, the only way to improve throughput

would have been to use additional QDR memories as both

inputs and outputs.

The normal-vector calculation consumed over 70% of

slices, the term Xilinx uses to refer to the basic reconfig-

urable logic unit within an FPGA. Had we used additional



Table 2. Resource consumption comparison.

Resource (total) Implemented (Percent)

Ray-intersection calculation

Slices (23 616) 19 044 (81 %)

Flip Flops (47 232) 26 508 (56 %)

4-input LUTs (47 232) 26 250 (56 %)

Block RAMs (232) 25 (11 %)

Multipliers (232 18x18) 72 (31 %)

Ray-intersection using four inputs

Slices (23 616) 20 593 (87 %)

Flip Flops (47 232) 26 688 (56 %)

4-input LUTs (47 232) 26 579 (56 %)

Block RAMs (232) 25 (11 %)

Multipliers (232 18x18) 72 (31 %)

Normal-vector calculation

Slices (23 616) 16 571 (70 %)

Flip Flops (47 232) 21 670 (46 %)

4-input LUTs (47 232) 20 466 (43 %)

Block RAMs (232) 23 (10 %)

Multipliers (232 18x18) 48 (21 %)

QDR memories, requiring additional floating-point logic,

we would likely have exceeded the resources of the FPGA.

Low-level customization beyond the capabilities of Mitrion-

C would have been required to implement more floating-

point calculations without making the design too large.

In contrast, the floating-point logic implemented in the

ray-intersection calculation was capable of producing one

calculation per clock cycle because it was implemented with-

in a foreach loop and so throughput was only limited by

the fact that the input memories could provide one set of in-

puts every two clock cycles. Using four memories for input

instead of two did not affect the resources needed to im-

plement the floating-point logic, but removed the bottelneck

imposed by the input memories. Table 2 shows that using

four memories for input instead of two cost a small amount

of resources and did not exceed the resources of the FPGA.

4.3. Power Consumption

We measured power with Cray’s Hardware Supervisory Sub-

system (HSS), software that runs on the management pro-

cessor of each chassis within the Cray XD1 and monitors the

health of the system. Table 3 reports our results. Our mea-

surements showed that a node with an FPGA will consume
130.94−102.65

102.65 = 27.56% more power than a node without an

FPGA consumes while idling. However, we also found that

in the case of a node with an FPGA present, using the FPGA

Table 3. Power measurements.
Node Type Implementation Total Power (watts)

No FPGA Idle 102.65

FPGA Idle 130.94

Ray-intersection calculation

No FPGA Sequential Only 110.87

FPGA Sequential Only 139.57

FPGA FPGA 141.13

Normal-vector calculation

No FPGA Sequential Only 111.84

FPGA Sequential Only 139.84

FPGA FPGA 143.66

for processing requires at most 143.66−139.84
139.84 = 2.73% more

power than implementing an equivalent calculation on the

Opteron 275 processor alone.

We only measured the power consumed when running

the version of the ray-intersection calculation that used two

memories for input. However, the version that used four

memories is unlikely to draw significantly more power, judg-

ing by the similarity in resources consumed.

5. DISCUSSION

As mentioned before, the maximum bandwidth of the inter-

connect between the FPGA’s QDR memories and the host

memories is 3.2 GB/s. This means that each of the four

QDR memories makes up 800 MB/s of that total. Since

each FPGA memory can read or write 64 bits (8 bytes) ev-

ery clock cycle, the 100 MHz clock used by Mitrion makes

use of the maximum 800 MB/s bandwidth of the memories.

Our measurements confirmed that a throughput very near

the limit of the memories—799.04MB/s in the case of the

normal-vector calculation—could be maintained over a large

sample of data. We conclude that Mitrion-C is a straightfor-

ward way to achieve the maximum throughput allowed by

the memory bandwidth, given that the intended design fits

on the target FPGA.

6. CONCLUSION

In this paper, we explored the ability of the high-level lan-

guage Mitrion-C to simplify the implementation of floating-

point operations on FPGAs. We found that Mitrion-C was

different enough from ANSI-C to require a significant in-

vestment of time to be able to use it effectively, but that

Mitrion-C significantly reduces the time spent in the hard-

ware design cycle. In terms of throughput, we found that

Mitrion-C could achieve the maximum theoretical through-



put allowed by memory bandwidth in cases where the de-

sign easily fit on the FPGA and memory operations could

be completed in one clock cycle. However, we observed

that low-level programming would still be needed to make

small tradeoffs between throughput and resource consump-

tion. Finally, we found that maintaining FPGAs requires

roughly a constant 30% increase in power consumption, but

that in cases where FPGAs are present on a compute node,

using them for processing requires roughly only 3% addi-

tional power over using a sequential processor alone. We

recommend Mitrion-C as a tool to exploit the processing

power of FPGAs, given that the intended application does

not exceed the resource limits of the target hardware.

7. ACKNOWLEDGMENTS

This work was supported in part by a grant of computer time

from the DOD High Performance Computing Moderniza-

tion Program at the Naval Research Laboratory. It was also

supported by Kenneth Sarkady, Head of the Infrared Coun-

termeasures Systems Section. In addition, the authors would

like to thank the many scientists including Jeanie Osburn,

Wendell Anderson, Rick Hurd, and Ray Yee at NRL who

willingly shared their time and expertise.

8. REFERENCES

[1] J. Koo, A. Evans, and W. Gross, “Accelerating a medical 3D

brain MRI analysis algorithm using a high-performance recon-

figurable computer,” Field Programmable Logic and Applica-
tions, 2007. FPL 2007. International Conference on, pp. 11–

16, 27-29 Aug. 2007.

[2] V. V. Kindratenko, R. J. Brunner, and A. D. Myers, “Mitrion-

C Application Development on SGI Altix 350/RC100,” Field-
Programmable Custom Computing Machines, 2007. FCCM
2007. 15th Annual IEEE Symposium on, pp. 239–250, 23-25

April 2007.

[3] Mitrionics AB, “Accelerate your applications—unleash the

massive performance of FPGAs.” [Online]. Available:

http://www.mitrion.com/press/Mitrion product brief.pdf

[4] G. H. Spencer and M. V. R. K. Murtry, “General ray-tracing

procedure,” J. Opt Soc. Ameri., vol. 52, no. 6, pp. 652–678,

June 1962.

[5] Cray, Inc., “Cray XD1 datasheet,” Cray Inc.,

Tech. Rep., June 2005. [Online]. Available:

http://www.cray.com/downloads/Cray XD1 Datasheet.pdf

[6] S. Mohl, “The Mitrion-C programming language,” Mitrionics
Inc., 2006. [Online]. Available: http://www.mitrionics.com/


