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Abstract—One of the instruments on the sun-synchronous Terra
(EOS AM) and Aqua (EOS PM) spacecraft, the Moderate Reso-
lution Spectroradiometer (MODIS), obtains calibration data once
during every orbit. Observations of the sun permit corrections to
observations of the earth during the ensuing orbit. Although the in-
strument was designed to receive uniform sunlight over the entire
surface of its detector, the sunlight was in fact not uniform. While
this did not adversely affect the calibration, it nonetheless implied a
lack of understanding of how the optical system really functioned.
To learn what was wrong, NASA used an optical ray-tracing pro-
gram on a DEC Alpha computer. The results correlated well with
the observations made by the instrument itself, but it took nearly
two weeks to complete the computer simulation, a discouragingly
long time. This paper describes the algorithm and its implementa-
tion in a system with multiple digital signal processor (DSP) chips
operating in parallel. Timing data show a highly linear relationship
between the number of DSPs present and the speed of the compu-
tation. Administrative overhead is negligible compared to the time
taken to compute ray trajectories. This implies that many more
than just four DSPs could be harnessed before administrative over-
head would begin to be significant.

Index Terms—Digital signal processor (DSP), optical ray tracing,
optics, parallel processing, reconfigurable computer (RC), recon-
figurable computing.

I. INTRODUCTION

I N ORDER to speed up optical ray tracing simulations, the
authors investigated the implementation of ray-tracing algo-

rithms in a PC-based system with multiple digital signal pro-
cessor (DSP) microprocessors within. Doing these computa-
tions took about two weeks on a particular uniprocessor system.
This paper:

1) explains the mathematics associated with optical ray
tracing;

2) explores the use of multiple coordinate systems to sim-
plify such mathematics;

3) discusses how we divided the work up into tasks which
can be executed in parallel on multiple processors; and

4) presents measurements showing how speed of processing
increases nearly linearly with an increase in the number
of processors available.

Rather than simply use a supercomputer, we investigated the
use of low-cost, reconfigurable computer (RC) architectures and
digital signal processors.
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Fig. 1. Spherical Lens.

Notes on the mathematical notation used appear in the Ap-
pendix.

II. OPTICS

Ray tracing is one of the principle tools for an optical system
designer [1]. Computer-based ray tracing has a history going
back for more than 40 years. An early paper presenting a uni-
fied ray-tracing procedure that is applicable to optical systems
with very general kinds of surfaces is Spencer and Murty [2].
Their procedures rely on matrix methods offering a compact no-
tation. While some other authors also use matrix-based methods
[3], others avoid them [4], [5]. Of those using matrix-based
methods, some use two-dimensional (2–D) matrix methods [6]
while others use three-dimensional (3–D) matrix methods [7].
In this section, we summarize the 3-D matrix-based equations
for optical reflection and refraction of rays impinging on various
simple geometric surfaces as developed in [7]. The notation is
somewhat simplified here for greater clarity.

A. Optical Surfaces

While in principle, lenses can be made with any arbitrary sur-
face, for simplicity, we usually consider only simple geometric
shapes: planes and conicoids (spheres, paraboloids, ellipsoids,
and hyperboloids).1

1) A Spherical Lens: Fig. 1 shows a crosssection of a sphere.
Not shown are the - and -axes, orthogonal to the -axis and to
each other. This sphere may be regarded as a lens whose vertex
is at point and which is centered around the positive

-axis. For such a spherical lens of radius

(1)

If we define

(2)

1Paraboloids, ellipsoids, and hyperboloids are the surfaces described by
parabolas, ellipses, and hyperbolas rotated about an axis of symmetry. In the
case of hyperbolas, the axis is usually considered to be the longitudinal or
semimajor axis. In the case of ellipses, either axis may be considered.
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Fig. 2. Prolate Ellipsoid. The semimajor axis is a, the semiminor axis is b, and
the eccentricity is e.

and let the curvature , then it can be shown that for a
sufficiently small value of

(3)

In other words, the surface of a sphere can be approximated by
a parabolic surface. This approximation is only reasonable if

, which is the case for a typical spherical lens.
2) Prolate Ellipsoid Lens and Other Conicoid Lenses: Fig. 2

shows a cross section of a prolate ellipsoid2 with eccentricity ,
semi-major axis , and semi-minor axis . Variable is given
by as in (2).

An equation of this ellipsoid is

(4)

We can define the eccentricity of the ellipse implicitly by

(5)

and if we define

(6)

and

(7)

then it can be shown that the least positive position (leftmost
in Fig. 2) at which the surface of the ellipsoid is a radius from
the -axis is given by

(8)

If we define the conic constant

(9)

then we can rewrite (8) as

(10)

It can be shown (see [7]) that this equation is applicable not just
for prolate ellipsoids but for all conicoids. It can be expanded in
a power series using a Taylor series about , giving the same
result given earlier in (3) for a spherical surface. In other words,
a parabolic surface can approximate both a spherical surface
and a prolate ellipsoidal surface. The table provided in [7] and

2Prolate with respect to the optical axis z.

TABLE I
PARAMETERS OF THE CONICOIDS

Fig. 3. Intersection of a line with a plane.

reproduced here as Table I shows how to pick the conic constant
for various conicoids.

B. Ray Intersections

To trace a ray’s path requires the following two steps.

1) Find the point where a ray intersects an optical surface.
2) Find the direction the ray takes after striking the surface.

In this section, we consider the first of these problems for var-
ious shapes of optical surfaces.

1) Intersection of a Line With a Plane: Consider Fig. 3. It
shows a ray departing initial point P with direction vector .
Unless it is parallel to (or pointing away from) the plane de-
picted, it will strike the plane at point P, whose coordinates we
wish to determine. The plane can be defined by its unit-length
normal and a particular point P in the plane. It can be shown
that

(11)

If P is already in the plane, then and
obviously in this case . If the ray is parallel to the
plane, then , resulting in division by zero if (12)
is applied. A computer program must check for this condition
before applying the equation.

In the special case where we choose our coordinate system so
that P , we can write (11) as

(12)

It should be noted that even if the ray is pointing away from
the plane, (11) and (12) will find the intersection of the line
(collinear with the ray) and the plane. A computer program must
check to see if this is the case.



CAMERON et al.: OPTICAL RAY TRACING USING PARALLEL PROCESSORS 89

Fig. 4. Intersection of a line with a conic surface.

2) Intersection of a Line With a Conic Surface: From (2) and
(10), a general conic surface, a conicoid, can be described by an
equation of the form

(13)

Such a surface and a line originating at point P and intersecting
the surface are shown in Fig. 4. The direction of the line is given
by the unit vector .

We can follow an iterative procedure as indicated in the figure
to discover the point where the line intersects the surface. We do
this by finding a series of points of intersection between the line
and surfaces tangent to the conic surface.

Although Fig. 4 implies that the -axis does not intersect the
conic, we are free to define any coordinate system we like. It is
often convenient to choose the -plane as being tangent to the
vertex of the conic surface. If we do this, then the point P

becomes a known point in the first plane considered.
This plane has normal . Using (11), we can find the
point P where the line intersects this plane.

(14)

In particular, we can find the values of and of the point
of intersection. (In the figure, , but in general, it could be
anything.)

Next, we find a point P with the same values of and
but lying on the conic surface. This point satisfies the equation

, so it has the coordinates

P (15)

After this, we find the plane tangent to the conic surface at
point P . This requires finding the partial derivatives of and
evaluating them at point P . If we define

(16)

(17)

and

(18)

then it can be shown that the direction cosines of the normal to
the tangent plane are

(19)

(20)

(21)

and the unit-length normal to the tangent plane at point P is
given by

(22)

This procedure can be repeated: from the intersection of the
extended ray with a plane tangent to the conic, we can determine
a nearby point on the conic, and from this we can determine a
new tangent plane. The entire procedure is repeated until succes-
sive points are close enough together to be regarded as equiva-
lent.

Fig. 5 summarizes the steps in finding the intersection be-
tween a line and a conic surface.

3) Intersection of a Ray and a Spherical Surface: A sphere
is a special case of a conic, of course, but there is a simpler
method of obtaining the point of intersection of a ray and a
spherical surface, one that avoids the iteration shown above.
Fig. 6 shows a ray departing initial point P with direction
vector and striking point P. It can be shown that the steps
in Fig. 7 let us find the coordinates of point P and the sphere’s
centrally directed normal at this point.

C. Reflections

Now that we know how to discover the point on a plane or a
conic surface where a ray strikes it, we can turn our attention
to what happens to the ray next. In a typical optical system,
part of the ray is reflected and part is refracted, but this is a
complication which we shall neglect. For a reflective surface, we
shall disregard the refracted portion, and for a refractive surface,
we shall disregard the reflected portion.3

1) Reflection: Fig. 8 shows a unit-length ray origi-
nating at initial point P and incident on a surface at point O.
Its reflection, unit-length ray , terminates at point P . The

3Including these contributions would greatly increase the number of rays
traced but would increase the accuracy of the model.
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Fig. 5. Summary: Finding the intersection of a ray and a conic surface.

Fig. 6. Ray tracing for a spherical lens.

Fig. 7. Summary: Steps to find the where a ray strikes a spherical surface and
the normal at that point.

Fig. 8. Reflection of a ray at a surface.

Fig. 9. Vector form of Snell’s Law.

angle of incidence and the angle of reflection both are . Given
the centrally directed unit-length normal to the surface, it
can be shown that

(30)

2) Refraction: Fig. 9 shows a light ray traveling through
a medium with index of refraction . The ray passes through a
surface into a different medium with index of refraction with
angle of incidence . The ray emerges as from the surface
at a different angle, , which we desire to calculate from ,
and .

Unit vector gives the direction of the normal to the sur-
face, coplanar with and , and pointing into the new
medium; and is a unit vector tangent to the surface such that

(31)

(32)

With these definitions, it can be shown that

(33)

3) Efficient Computation: We would like to be able to com-
pute from (33) efficiently if we are going to compute it
repeatedly. Calculating any trigonometric function is time-con-
suming so we would prefer to avoid it, if possible.
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It can be shown that if we let , then

(34)

(35)

Therefore, it suffices to compute

(36)

with given by (34) and given by (35). Although
we still must compute a square root, this ordinarily requires
considerably less time than computing trigonometric functions.
This is especially true with our hardware setup because the
AD21160 contains special instructions to reduce the time to
compute square roots.

Should we choose the positive or the negative square root?
We should pick it so the arithmetic sign of is the same
as that of . Commonly, and , so both
trigonometric functions are positive.

III. CONVERTING BETWEEN DIFFERENT COORDINATE SYSTEMS

Ray tracing with respect to a particular surface is simplified
if all computations are performed in a local coordinate system.
In coordinate system associated with surface , point P is
represented by vector , point P is represented by vector

, and the ray departing point A is . In a system with
surfaces, the procedure for each surface is as
follows.

1) Find the point P on surface struck by the ray orig-
inating at point P . If the ray does not strike the surface, it
can be discarded. This is tantamount to disregarding other
forms of internal ray propagation, such as scattering.

2) Find the ray resulting from the interaction of the ray
and the surface, whether due to reflection or to refraction.

3) Convert vectors and from the coordinate system
of optical medium (applicable before interaction with
surface ) to the equivalent vectors and of
optical medium (applicable after interaction with
surface ).

To carry out these steps requires knowing how to do the coordi-
nate conversions.

Suppose the origin of local frame is located in frame 0
(the global frame) at point T , represented by a vector

. To convert vectors expressed in local
frame to equivalent vectors in the global reference frame,
frame 0, requires first rotating them through angle around the

-axis, through angle around the -axis, and last, through
angle around the -axis; and then translating them to re-
flect the fact that the two frames do not share the same origin.4

A general point P can be represented in local frame by a
vector . The same point can be

4A positive angle is that required, say, to rotate ûuu to align with ûuu in a right-
handed system. The conventional sequence of rotations described above is not
followed universally. It is used in the treatment by Kidger [7] summarized here
and is also used in the commercial ray-tracing program CODE V from Optical
Research Associates. It is essential to be clear about the convention in use before
the mathematics will make any sense at all.

represented in frame 0 (the global frame) by a vector
where matrix is given by

Now consider another frame of reference, frame ,
located in frame 0 at point T , represented by a vector

. To convert vectors
expressed in the global reference frame, frame 0, to equivalent
vectors in local frame requires first translating them to
the origin and then rotating them through angle around
the -axis, through angle around the -axis, and finally
through angle around the -axis

(37)

where

(38)

(39)

and

(40)

Using (37), we can calculate the vector representation of
point P in frame if we know its vector representation
in frame . Since all rotation angles are fixed in a given lens
system, the matrices and the vectors can be com-
puted in advance—they need not be recomputed on the fly each
time. This means that ray tracing amounts to a sequence of ma-
trix multiplications, vector additions, and calculations of inter-
section points as well as reflections or refractions.

IV. RAY TRACING IN THE MODIS INSTRUMENT

This section explains why standard ray-tracing algorithms
and software products are not appropriate for NASA’s purposes.

A. MODIS Optical Subsystem

Fig. 10 shows how light reaches the optical detector in the
MODIS instrument. Rays of light from the disk of the sun first
strike an attenuator. The purpose of the attenuator is to reduce
the optical power of the sun’s rays from 25 W to about 8.5% of
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Fig. 10. MODIS optical system on the Terra and Aqua spacecraft.

Fig. 11. Direction cosines of a unit-length ray from the sun to MODIS.

this, or around 2 W, in order to perform instrument calibration
without damaging the detector.

Fig. 11 shows a unit-length ray from the sun arriving at
the MODIS instrument. The ray makes a zenith angle with
the -axis of the MODIS instrument. The projection of the ray
onto the -plane makes an azimuth angle with the -axis.
In Fig. 11, the ray’s projections on the -, -, and -axes all are
shown. The ray can be decomposed in the frame of reference of
the MODIS instrument

(41)

where , and are unit vectors in the -, -, and -direc-
tions, respectively. The quantities , and are the direc-
tion cosines of the ray. At the time a calibration is performed,
we take the zenith angle and the azimuth angle

. These are the correct values as Terra passes
over the north pole once each orbit in its sun-synchronous orbit.

The ray then passes through the numerous pinholes of the
attenuator, a perforated metal screen, as described by Waluschka
et al. [8]. These pinholes each have a radius of 1 mm and their
edges are tapered to reduce the effects of the thickness of the
screen. The pinholes are arranged in a grid of scalene triangles
in order to provide even illumination through the surfaces which
follow the rotating mirror.

To be more precise, a cone of rays passes through each pin-
hole, due to the fact that the sun is not a point source but has a
disk of apparent half-angle [9].5 Despite the fact that
each pinhole has a sizable diameter, we shall treat it as a point
source of a conical fan of rays. We shall also neglect the fact
that the intensity of the incident light is diminished by its being
spread, since all pinholes result in a comparable diminution of
intensity.

As described in [8], each cone of light from a pinhole in the
screen strikes the diffusing surface. Each ray within each cone,

5A more accurate value is � = (1919 in=2) = 0:2665

then, gives rise to another cone of rays from the diffusing sur-
face. We shall treat this diffusing surface as a Lambertian sur-
face, meaning that its radiance is independent of direction. Each
diffusely reflected ray can, therefore, be regarded as having the
same radiance. Consequently, we need not keep track of the ra-
diance associated with each ray.

After departing the diffusing surface, the rays enter an optical
system. It consists of an initial reflecting plane mirror which can
be rotated out of the way when images of earth are taken. Fol-
lowing it are a series of reflecting and refracting surfaces. All
told, there are 29 surfaces preceding and following the mirror.
They are numbered where . Surface 1 spec-
ifies a 177.8 mm eye pupil diameter. The attenuating screen is
surface 2, the diffuser is surface 3, and the mirror is surface 4.
Associated with surface is the index of refraction of the
medium leading up to the surface. For simplicity, we regard the
surfaces as producing no scattering, absorption, or reflection.

The task of tracing the rays through this series can be subdi-
vided into the following repeated tasks, stated with reference to
a unit-length ray in medium departing from point A and
heading for the surface which separates medium from
medium . Assume point A has coordinates
in the frame of reference of surface . We can represent this
point by the vector . Assume
also that the unit-length ray can be decomposed using known
direction cosines into .
(The notation refers to a unit vector in the direction of the

-axis in the coordinate system of surface ).

1) Find the position of point A in a new coordinate
system, that of surface . In the new coordinate
system, at the vertex of surface . Point
A has coordinates in the new
coordinate system and can be represented by vector

.
2) Find the direction cosines of unit-length ray in the

new coordinate system. The ray can be expressed as
,

where is the direction cosine with respect to the
-axis in the coordinate system of surface .

3) Consider the plane passing through the vertex of
the surface . Find the point A in plane eventu-
ally reached by ray . This point has coordinates

and can be represented by vector
.

4) Find the point B on surface struck by ray .
This point has coordinates . The
reason for finding the point A in plane is to permit
deciding whether or not the ray gets through an aperture
associated with the surface. The aperture is regarded as
lying in the -plane. Rays which fail to pass through the
aperture successfully are discarded.

5) Find the new ray
by using (30) if this is a reflecting surface

or Snell’s law (32) if it is a refracting surface.

The point B with coordinates and new
ray in the coordinate system of surface together
represent the starting position and direction of a ray which now
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Fig. 12. Hole separation in the MODIS attenuator.

heads off toward surface . The steps are repeated as many
times as necessary to bring the ray to its final destination in the
focal plane.

B. Hole Separation in the Attenuator

The pattern of hole separation on the MODIS instrument’s at-
tenuator is shown in Fig. 12. The attenuator is a rectangle whose
half-width is and whose half-height is . The coordinates
of the center of the attenuator are in its (local) coor-
dinate system. There is a hole at the center and the horizontal
spacing between holes is 6.0210 mm. The vertical spacing be-
tween holes is 6.1385 mm. Each row of holes is offset in the

-direction by m as increases.
This pattern can be used to calculate the locations of all the

holes on the attenuator by offsetting it vertically and horizon-
tally throughout the extent of the attenuator. Triangles in the next
row up will be offset by m.

Regarding the 0th row as the one in which the base of the
triangles is on , the horizontal offset in any row is

, but since triangles shifted left or right by the hori-
zontal spacing mm are indistinguishable, we can
take the offset modulo this amount: .

We can calculate the position of the most negative hole in row
by

(42)

The number of holes which will fit in row is given by

(43)

So the th hole in row (where ) is at horizontal
position

(44)

and that same hole is at vertical position

(45)

V. OPTICAL SYSTEM DESCRIPTION FILE

In our implementation of ray tracing, we created an ASCII
file to describe the optical system in the MODIS instrument.
The format of this file was based loosely on the input format
of the commercial ray-tracing program CODE V from Optical

Research Associates. In this section, we list the elements in that
file which describe the optical system.

A. General Items

Elements applicable to the entire system are as follows.

• Entrance pupil diameter: the diameter of the initial ele-
ment of the optical system. Light rays falling outside this
diameter do not enter the system.

• Wavelength: are the several wavelengths of
light for which individual indices of refraction may be pro-
vided for successive lens elements.

B. Optical Surfaces in MODIS

Elements applicable to individual optical surfaces in the
system are as follows.

• Curvature of the lens element. If the curvature ,
then the surface is a plane; otherwise, it is treated as a conic
surface.

• An indication showing whether the surface is a reflecting
or a refracting surface.

• The indices of refraction for the surface, one
for each wavelength specified for the system as a whole.

• Decentering specifications , and . These are
the -, -, and -displacements from the origin of the
global coordinate system to the origin of the local coor-
dinate system of the optical surface.

• Rotation specifications , and . These are the
angles in degrees by which the local coordinate system
would need to be rotated in order to cause it to align with
the global coordinate system. The rotations are specified
as about the -axis, about the -axis, and
about the -axis.

• Rectangular aperture dimensions and (if the sur-
face has a rectangular aperture). These are the half-width
of the aperture in the -direction and the half-height of
the aperture in the -direction. The aperture is regarded as
lying in the -plane of the local coordinate system.

• Circular Aperture (if the surface has a circular aper-
ture). This is the radius of the circular aperture. The aper-
ture is regarded as lying in the -plane of the local coor-
dinate system.

• Conic Constant . The meaning of the possible values of
is given in Table I.

C. Image Plane

An element applicable to the image plane alone is as follows.

• Image plane curvature . For MODIS, because
the image plane is flat.

VI. IMPLEMENTATION

We implemented the system on a Dell Precision WorkStation
530 MT based on an Intel Xeon CPU operating at a frequency
of 1.70 GHz. This system used a 400-MHz system bus, an 8-kB
L1 cache, and a 256-MB L2 cache. It also employed a Bittware
Hammerhead 66-MHz PCI board containing four Analog De-
vices 21160 DSPs operating at 80 MHz. Our approach was to
use the PC to direct the operation of the DSPs. All ray tracing
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was performed using the mathematical models presented in Sec-
tions II and III. The the following are two main parts to the ray
tracing program, one performed by the PC and the other per-
formed by the DSPs.

PC Task) Trace rows columns rays from
each of 485 pinholes in the attenuating screen to
the point where they strike the diffuser. There are
213 885 such points.

DSP Task) Trace rows columns rays
from each of these diffuser locations to where
the rays strike the focal plane, if they do indeed
do so. (If they do not pass through all apertures,
then they fail to reach it.)

For the PC to dispatch DSP Tasks, we used C-language library
routines provided by Bittware. These permit a C program run-
ning on a PC to download programs to each DSP individu-
ally. They also permit the PC program to modify and read the
memory associated with each DSP.

To synchronize the DSPs with the PC, we implemented a full
handshaking scheme. In this scheme, each DSP’s memory con-
tained two flags, and . The sequence
was as follows.

1) After a DSP finished a DSP Task, it needed to pass its
results to the PC and obtain a new assignment. To do
so it would set and idle while

remained .
2) When the PC discovered this (by polling), it would set

. At this point, it was free to re-
trieve the results of the last DSP Task (if any) and store
parameters in the DSP’s memory describing the next task.
These parameters amounted to a point on the diffuser sur-
face from which to start tracing rays.

3) Meanwhile, the DSP set and
idled as long as was .

4) On finishing its work, the PC would set
. When the DSP noticed this, it was free to start its

next task and the PC would continue scanning for DSPs
ready for new work assignments.

We put identical ray-tracing programs in all four DSPs on the
Hammerhead board and performed tests using one, two, three,
and all four of these.

Having determined a starting location for a DSP Task, the PC
looked for an idle DSP. Upon finding one, it would retrieve the
results from that DSP’s last task and dispatch a new task to it.
The image plane of the optical system was divided up into a
rectangular grid of cells. The result of one DSP Task was a 2-D
histogram showing the number of times a given cell was struck
by all the rays in that task. The PC would accumulate the sum
of all such histograms, yielding a composite indication of the
number of rays striking any cell. It would then resume scanning
of the available DSPs.

The overall ray-tracing scheme has not yet been fully com-
pleted. We have programmed the PC to assign tasks to the DSPs
and the DSPs perform their tasks correctly. We consequently
have been able to measure the time it takes to trace rays through
the optical system. From this, we have been able to determine

TABLE II
TIME TO TRACE 349 932 RAYS ON VARYING NUMBERS OF DSPs

the increase of speed obtained by adding additional DSPs, as de-
scribed below. However, the PC Task to determine all 213 885
rays striking the diffuser surface remains to be completed.

VII. PERFORMANCE

A. Baseline Performance

The algorithms described in this paper were implemented
several years ago in FORTRAN and executed on a DEC Alpha
computer. The program described in [8] performed ray tracing
for 485 pinholes with roughly 441 rays emanating from each
pinhole. Each of these rays generated a bundle of 29 161 rays
reflected from the diffuser, for a grand total of roughly 6.24 G
rays. It took the program around 14 days to complete the cal-
culations, an average rate of 5.16 k raytraces/s, equivalent to
roughly 194 s/raytrace.

B. Performance on Parallel Processors

Table II gives performance measurements of the ray tracing
algorithm when distributed to multiple DSPs executing in par-
allel. The results in the table were determined by repeatedly
tracing the same ray 349 932 times. The ray selected was one
which traversed all 28 surfaces of the MODIS optical system
without missing any internal aperture. The number of times this
ray was traced matched the number of rays in 12 complete bun-
dles of rays leaving the same point of the solar diffuser, as ex-
plained in Section VI. In practice, numerous rays would miss
some aperture, cutting short the time to trace such a ray, and so
increasing the number of rays traced per unit time. The results
shown here, therefore, are conservative. The time which would
be required to complete all 6.24 G rays is shown in the rightmost
column. Times were measured using the function in the
C runtime library and yielded times to the nearest millisecond.

Fig. 13 graphs the number of rays traced per second as a func-
tion of the number of processors used. A linear curve fit shows
that within the range of one to four processors, the number of
rays processed per second is related to the number of proces-
sors by

(46)

where the error bounds are standard deviation.
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Fig. 13. Preliminary results of ray tracing on the DSP.

There are several additional pertinent observations to be
made.

• It is apparent that there is a strongly linear relationship
between the number of rays which can be traced in one
second and the number of DSPs available to do the work.
What is not so clear is how many processors could be han-
dled in parallel before the host PC gets so busy processing
results that it cannot keep up. Our measurements failed to
show any delay for administrative tasks, although the time
taken to trace a ray bundle of 29 161 rays on the DSPs,
about 10 s per bundle, was easily measured. The negli-
gible amount of overhead is reflected in the fact that the
additive constant in (46) is very much smaller
than the coefficient of .

Since the routine can measure time to the
nearest millisecond and the time for a single DSP to
execute a bundle of work is around 10 000 ms, the ratio
of productive time to administrative overhead appears to
be at least 10 000:1. The implication is that the host PC
could service up to 10 000 subordinate DSPs and still
achieve a linearly increasing number of rays traced per
unit time. With only four DSPs on each Hammerhead PCI
board, that would represent 2 500 such boards, more than
would ever fit on a PCI bus. Furthermore, it is likely that
if more DSPs were in service, they would have to wait

occasionally to get more work, whereas waiting time was
minimal with just four DSPs. However, the very strong
linear relationship between the number of DSPs used and
the number of rays traced per second does demonstrate
the significant performance improvement achievable by
using parallel processors, implying that this approach is
highly scalable.

• Even with four processors, the time it takes to complete
the ray tracing exceeds that of the original uniprocessor
solution. Using (46), we can see it would take proces-
sors to match the baseline rate of 194 s/raytrace.

• Table III shows extrapolations relating the number of
DSPs applied and the cost of the necessary number of
PCI boards (currently at $5595 each) to the number of
rays which could be traced in each second, along with the
corresponding amount of time for tracing each ray.

These estimates represent an upper limit. Many rays
will not reach the detector and so tracing them will ter-
minate early. Thus, the speeds achieved can be expected
to exceed these estimates. These extrapolated estimates
must of course be presumed to be ever less accurate as
the number of DSPs rise.

It would take two Hammerhead PCI boards, therefore,
to exceed the performance of the original baseline pro-
gram. At nearly $12 000 for such a system, not counting
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TABLE III
PROJECTION OF RAY TRACING SPEEDS WITH ADDITIONAL DSPs

the PC containing it, this is an expensive approach. How-
ever, a combination of optimizing the code and obtaining
even faster results by just adding more DSPs makes it
worth exploring further. Also, the baseline performance
includes numerous rays which never reach the focal plane,
whereas the experimental results reported here include
only rays which do make the entire journey.

• The use of the AD21160 for this application is not op-
timal. This DSP has been optimized for typical signal
processing applications in which multiplications and ad-
ditions are prevalent. In contrast, our ray tracing algo-
rithm also requires repeated computation of reciprocals
and square roots. The AD21160 does not provide hard-
ware reciprocal or square root computations. It does have
instructions which give an initial “guess” at reciprocals
and square roots but additional software instructions are
required to refine these guesses. Two alternative means
which could be used to speed up the processing are ei-
ther to choose a different kind of subordinate processor
with more powerful floating-point capabilities or offload
those computations from the DSP to a field programmable
gate-array device. Of course, there are some offsetting ad-
vantages to the use of DSPs: they do not dissipate as much
heat as processors such as the Intel Pentium IV, and har-
nessing them to work in parallel is quite easy.

• There has been very little effort expended so far on op-
timizing the algorithm executed in the DSPs. Doing so
would have the effect of reducing the execution time. For
example, it might be possible to reduce the use of the op-
erations of division and square-root extraction (which are
lengthy on the AD21160 DSPs). For example, the square
root operation entailed in (15) is avoided if we use the ap-
proximation in (3). We are now exploring a mesh solution
to obtain the intersection of a ray with a conicoid more ef-
ficiently.

• The problem of tracing rays in a system such as MODIS
is dominated by computations as opposed to input/output
operations.) This implies that the computation could be
distributed to PCs connected to the Internet because the
demands of communications would be low compared to

the amount of calculation required. This is the method
being used in the Great Mersenne Prime Search,6 where
numerous volunteers around the world permit idle time
on their computers to be used to search for the elusive
Mersenne primes (only 41 have ever been discovered.)
On the one hand, PCs doing other work simultaneously
would have an adverse effect on the overall completion
rate. On the other hand, devoting PCs solely to the ray-
tracing task would be a rather expensive approach since
PCs are general-purpose computers and special-purpose
computers are adequate to the task.

VIII. CONCLUSION

Standard commercial ray-tracing systems are not well suited
to use with an optical system like that in MODIS because of its
employment of an attenuator consisting of a grid of pinholes,
each of which acts like a separate light source. Achieving a full
understanding of the combined effect of such an attenuator can
be achieved by the use of a computer simulation to trace in-
dividual light rays to their destination in the focal plane, if in-
deed they actually do reach it. We implemented such a simulator
using a small array of Analog Devices AD21160 digital signal
processing microprocessors programmed in C. They were under
the control of a program also written in C and executing on a
Dell PC using the Windows 2000 operating system.

We divided the ray tracing task into two parts. The first of
these, performed by the PC, entailed locating the spots on the
diffuser plane reached by individual rays from the sun. Subse-
quently, the cone of rays departing each such spot was traced
by an assigned DSP. A 2-D histogram representing the number
of rays striking each location in the focal plane can be accumu-
lated by the PC program, permitting determination of the overall
illumination pattern on the screen without actually building an
instrument. This, in turn, permits the exploration of different
configurations of holes on an attenuator screen in an attempt to
create a more uniform distribution of light intensities in the focal
plane.

Preliminary experiments show a very highly linear relation-
ship between the speed of such processing and the number of
processors in the system. Tradeoffs between cost and speed can
now be considered. Further work entails the following nonex-
haustive list of tasks:

• completing the program so that all parts of the simulation
can be performed;

• improving the efficiency of the ray tracing algorithms by
optimizing loops and by minimizing the use of division
and square root operations;

• considering the use of alternate processors with more
efficient floating point capabilities (for example, the
600-MHz ADSP-TS201S TigerSHARC);

• exploring the use of processors distributed widely across
a network;

• investigating the limitations of expansion using the PCI
bus; and

6Mersenne Prime Search (2003). http://www.mersenne.org/prime.htm
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• measuring the speed of execution of the algorithm on PCs
of various kinds.

APPENDIX

NOTATION

A scalar value is represented using italic font.
A point P is represented in sans-serif font.
A unit-length vector is represented in bold italic with a cir-

cumflex above. The unit vectors parallel to the -, -, and -axes
are , and , respectively.

A vector is represented in bold italic.
We frequently treat a point P as if it were equivalent to its vector
representation .

The dot product of two vectors is a scalar quantity defined by
, where is the angle separating the two

vectors.
The cross product of two vectors is a vector whose magni-

tude is given by , where is the angle
separating the two vectors. The direction of the cross product is
determined by the right-hand rule. In Cartesian coordinates the
cross product can be computed as the determinant

(47)

We represent the direction of a ray by a unit-vector parallel
to it. For example,

. , and are the direction cosines of
the ray and .
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