(©2008 TIEEE. Personal use of this material is permitted. However, per-
mission to reprint /republish this material for advertising or promotional pur-
poses or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in other works
must be obtained from the IEEE.

228 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 57, NO. 2, FEBRUARY 2008

Parallel Ray Tracing Using the
Message Passing Interface

Charles B. Cameron, Senior Member, IEEE

Abstract—Ray-tracing software is available for lens design and
for general optical systems modeling. It tends to be designed
to run on a single processor and can be very time consuming if the
number of rays traced is large. Previously, multiple digital signal
processors (DSPs) have been used to perform such simulations.
This approach is attractive because DSPs are inexpensive, and
the time saved through parallel processing can be significant. In
this paper, we report a nearly linear relationship between the
number of processors, n, and the rate of ray tracing with as many
as 839 processors operating in parallel on the Naval Research
Laboratory’s Cray XD-1 computer with the Message Passing
Interface (MPI). In going from 1 to 839 processors, we achieved
an efficiency of 97.9% and a normalized ray-tracing rate of
6.95 X 10% rays - surfaces/ (s - processor) in a system with
22 planar surfaces, two paraboloid reflectors, and one hyperboloid
refractor. The need for a load-balancing software was obviated by
the use of a prime number of processors.

Index Terms—Load balancing, Message Passing Interface
(MPI), Moderate Resolution Imaging Spectroradiometer
(MODIS), National Aeronautics and Space Administration
(NASA), optical ray tracing, parallel computing, parallel pro-
cessing, prime numbers, ray tracing, reconfigurable computing,
Terra.

I. BACKGROUND
A. History of Ray Tracing

S EARLY as 1604, the German astronomer Johannes

Kepler published Astronomia pars Optica, which is a
book on astronomy that contained the important principle
that light rays travel from an object to an eye and not the
other way around. In 1841, Karl Friedrich Gauss published
Dioptrische Untersuchungen with an analysis of the path light
takes through a system of lenses [1]. With the assistance of
tables of logarithms, slide rules, calculators, and refinements
to handle lens aberrations, the methods that Gauss developed
were applied for more than a century after he published them.
Lens system designers performed these calculations to predict
lens performance prior to the expensive and often uncorrectable
step of actually grinding a lens.

Manuscript received September 19, 2006; revised September 13, 2007. This
work was supported in part by the National Aeronautics and Space Adminis-
tration, by the United States Naval Academy, and by a grant of computer time
from the DoD High Performance Computer Program at the Naval Research
Laboratory.

The author is with the United States Naval Academy, Annapolis, MD 21402
USA, and also with Johns Hopkins University, Baltimore, MD 21218 USA.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIM.2007.909957

Since it was sufficiently painful and time consuming to per-
form such computations without the aid of modern high-speed
computers, it was normal to trace only a very small number of
rays. However, with the advent of high-speed electronic com-
puters in the 1940s, it became feasible to perform ray tracing
more swiftly [2]. As a consequence, it also became feasible to
trace more rays to produce superior lens designs. Furthermore,
it became feasible to perform ray-tracing simulations repeat-
edly, i.e., iterating until a satisfactory design had been achieved.
Spencer and Murtry presented the equations needed to perform
ray tracing by a computer in [3]. These equations also appear in
vector notation in [4] and are summarized in [5]. An interest
in tracing large numbers of rays in a small amount of time
has resulted in programs that are able to trace rays on multiple
processors at once [6].

Today, there are numerous commercially available ray-
tracing computer programs, including ASAP, CODE V,
SYNOPSYS, OSLO, and Zemax. All these programs are tai-
lored to the design of imaging lens systems. Some of them can
also handle more general illumination problems for nonimaging
systems.

B. Ray Tracing for Computer-Generated Images

In the 1960s, a new application of computer-based ray trac-
ing arose in making computer-generated graphical images. In
fact, a large body of the literature that pertains to ray tracing
concerns this application. This interest is driven by commercial
demands from the entertainment industry and a widespread in-
terest in visualizing complex phenomena that cannot otherwise
be seen.

As with ray tracing for lens system design, tracing large
numbers of rays in a short time permits the rapid rendering
of very complex images. This has led various researchers to
apply multiple computer processors operating in parallel to this
important application [7].

The objective in computer graphics is to find out which
objects generate light rays that reach the viewing screen. The
objective in lens system design is to find out which light rays
strike the focal plane, which is where the image is formed. It
is therefore common in computer graphics ray tracing to start
at the viewing screen and trace the light toward the source. It
is more usual in lens system design to trace the rays in the
direction they actually travel, that is, from source to image
plane. Both of these are functionally equivalent.

While ray tracing in computer graphics applications is very
similar to ray tracing in lens design, it can be regarded as a
distinct application and is not the principal subject of this paper.

0018-9456/$25.00 © 2008 IEEE

CAMERON: PARALLEL RAY TRACING USING THE MESSAGE PASSING INTERFACE 229

Attenuator

Rays
from Sun

Detector

Rotating
Mirror

Fig. 1. Schematic showing the MODIS optical system.

C. Ray Tracing in Lens Design

The design of lens systems remains an important application
of ray-tracing simulations. Although large parallel computers
are widespread today, they are still quite expensive. Their virtue
in performing ray-tracing simulations very swiftly is offset by
their high cost, and for this reason they are not much used in
commercial ray-tracing software.

As an alternative to using supercomputers, Cameron et al.
investigated the use of multiple digital signal processors (DSPs)
to achieve ray tracing in parallel on a more modest budget
[6]. The particular telescopic lens system they considered is
part of the Moderate Resolution Imaging Spectroradiometer
(MODIS).! Fig. 1 shows that MODIS includes a solar attenua-
tor consisting of an array of small pinholes. Calibration of the
instrument requires taking an image of the sun. The attenuator
reduces the intensity of the sun’s radiation during calibration.

Fig. 1 also shows the presence of a nearly Lambertian
diffusing surface.? This surface is placed in the path of the light
when the instrument looks at the sun and it is swung aside when
the instrument takes images of the earth.

Waluschka et al. reported on anomalies in the performance of
this telescope [8]. In their research, they performed ray-tracing
simulations on a single Digital Equipment Corporation (DEC)
Alpha 3000 series model 800 computer. They achieved a rate
of ray tracing of roughly 5160 rays/s, as reported in [6]. Each
simulation run took about two weeks to complete; most of the
rays traced in the system they studied traversed just 25 of the
28 optical surfaces the instrument contained. Many of them
were lost as they passed through various apertures within the
system. Cameron et al. calculated that about 80.4% as many
rays could have traversed the system in the same amount of
time had they been chosen in such a manner as to guarantee that
none were lost.> In effect, the rate of ray tracing quoted above
should be reduced by multiplying it by 80.4%. Thus, it is fairer
to say that the achieved rate of ray tracing was approximately
4130 rays/s.

Since the number of surfaces varies from one lens system
to another, it is easier to compare one ray-tracing simulator to
another if this difference is eliminated through normalization.
This can be done by multiplying the quoted rate by the number

I'MODIS is now operating in two similar spacecrafts, i.e., Aqua and Terra.

2A Lambertian surface scatters light evenly in all directions.

3 Although it would be preferable to be able to select only rays that will reach
the image plane, in general, there is no way to anticipate whether a given ray
will do so or not.

of surfaces in the system studied. The result of this adjustment
is to say that the DEC Alpha computer achieved a normalized
rate of ray tracing of about 103 000 rays - surfaces/s.*

With up to eight DSPs, Cameron et al. reported a ray-tracing
rate for the same optical system of more than 122000 rays -
surfaces - (s - processor) L. (This figure already takes into ac-
count the 80.4% reduction mentioned above.) However, a sys-
tematic error in their analysis caused this ray-tracing rate to be
excessive by a ratio of 441/400 due to misstating the number
of rays leaving each pinhole in the solar attenuator. Adjusting
for this error, the eight DSPs achieved a rate of 111000 rays -
surfaces - (s - processor) 1. This is comparable to the rate
achieved on the DEC Alpha, but eight processors instead of one
achieved the same job in a little less than one eighth of the time.
Most of the processing time entailed number crunching; very
little entailed communication between the parallel processors.
There was a nearly completely linear relationship between the
number of processors used and the speed of the simulations.
The two weeks needed on a single DEC Alpha fell to 35.5 h
when eight DSPs performed the same simulation.

II. USING A SUPERCOMPUTER

The use of DSPs avoids the expense of a supercomputer.
However, even 35.5 h is longer than the time span one would
like to associate with interactive design.

In the rest of this paper, we report on the application of a
supercomputer to parallel ray tracing. Simulating ray tracing in
the same optical system as before, we used the Naval Research
Laboratory’s (NRL) Cray XD-1 supercomputer to perform this
study.

The NRL’s Cray XD-1 has two salient characteristics: 1) It
has a large number of high-speed processors (users have access
to 420 dual-core AMD Opteron 275 processors operating at
2.2 GHz). 2) It has a large number of field-programmable
gate arrays (FPGA), which permit application programs to
take advantage of custom hardware designs downloaded into
the FPGAs to make the applications execute faster. We are
currently researching the use of FPGAs to accelerate the ray-
tracing application. In the rest of this paper, we solely focus
on the use of multiple sequential processors executing the ray-
tracing application in parallel.

As pointed out above, the relationship between the speed s
of ray tracing and the number n of processors cooperating in
solving the problem was reported by Cameron et al. to be highly
linear. Kumar et al. point out that in general one should not
expect such a linear relationship to hold for an indefinitely large
number of processors [9]. This idea can be made precise.

Suppose we let 7, be the speed of ray tracing with p proces-
sors, and let 7, be the speed of ray tracing with np processors.

4A still more useful comparison could be made if this figure were individ-
ually specified for each type of optical surface—planar, spherical, paraboloid,
hyperboloid, aspheric—and whether it applies for reflection or refraction. The
system studied by Waluschka et al., Cameron et al., and in this paper has
28 planar surfaces. Surfaces 1 and 2 are planar transmissive surfaces. Surface 3
is a roughly Lambertian solar diffuser and gives rise to the vast majority of
traced rays. Almost all the ray tracing therefore entails surfaces 4-28. These
25 surfaces include 22 planes, two paraboloid reflecting surfaces, and one
hyperboloid refracting surface.

230 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 57, NO. 2, FEBRUARY 2008

For p processors, the speed per processor is given by the ratio
rp/p. Similarly, the speed per processor with np processors
is given by the ratio 7,,/(np). The efficiency of a parallel
application is defined by Kumar et al. as

E = Tnp/(np)
Tp/P
E=1m (1)
nryp

This definition gives an efficiency £ = 100% if increasing
the number of processors p by a factor of n also increases
the speed by the same factor, that is, if 7, = nr,. When the
efficiency is 100%, there is a linear relationship between n
and 7).

If the efficiency can be held to near 100%, then intuitively
we feel we are getting a good return for the extra cost of the
extra processors. To the extent that the efficiency declines from
100%, we feel that we are paying for more processors but we
are not getting a proportionate increase in speed.

Any assessment of a parallel application should in-
clude a calculation of the extent to which the efficiency
approaches 100%.

III. DESIGN CHANGES

In [6], two Bittware Hammerhead 66-MHz peripheral com-
ponent interconnect boards (each with four Analog Devices
21160 DSPs operating at 80 MHz) ran under the control of
an IBM-compatible personal computer (PC) based on an In-
tel Xeon central processing unit. The PC downloaded to the
DSPs the ray-tracing program that ran in them. Apart from
this, the PC itself served only to schedule tasks on the DSPs,
which filled the role of workhorse processors. The PC passed
information about the tasks to the DSPs using shared memory
and received information about the results from them by the
same means.

This required that the PC set aside shared data areas for each
DSP. When the PC wanted to communicate with one of them,
it wrote data into that section’s shared memory area. To receive
messages back from each DSP, it periodically inspected that
DSP’s shared memory area.

A much less cumbersome interface between multiple proces-
sors working on the same task is the Message Passing Interface
(MPI), which is described in detail in a two-volume reference
manual in [10] and [11]. The book by Pacheco [12] provides
an excellent introduction to MPI. Under MPI, all processors
execute the same program. The system assigns each processor
a unique rank number, i.e., an integer in the range of 0 to
n — 1, where n is the number of processors participating in a
parallel computation. The processors can discover what their
rank number is by making a specific system function call. As a
result, it is easy for each processor to determine for itself which
part of the overall problem it should tackle.

In adapting the ray-tracing program to use MPI, we aban-
doned the idea of giving to one processor the sole role of a task
manager. Instead, the processor with rank 0 bore responsibility

TABLE 1
SCHEME FOR ASSIGNING RAY BUNDLES TO PROCESSORS

Processor Bundle numbers

0 n,2n,3n,. ..

1 Ln+1,2n+1,3n+1,...

2 2n+2,2n+2,3n+2,...

k k,n+k2n+k,3n+k, ...
n—1 n—12n—1,3n—1,4n—1,...

for reading inputs, sending copies of them to all the other
processors, and receiving their outputs; in all other respects, it
did the same kinds of work as all the other processors.

As described in [6], the ray-tracing simulation for MODIS
consisted of tracing the paths of 29161 rays, each com-
prising 1 out of 485 pinholes x 400 ray bundles/pinhole =
194400 ray bundles. Under MPI, each processor traced one
bundle of rays at a time using its own rank number to select the
next bundle to trace. The simple scheme we used was to assign
to processor ¢ all the bundles whose index number k satisfied
the relationship ¢ = k mod n. Table I shows how this worked.
The bundles were numbered from 1 to 194 400.

IV. OBSERVATIONS

We collected measurements of the time each assigned
processor devoted to tracing its subset of ray bundles. The
initial results were instructive. Plots of the results are shown
on the left-hand side of Fig. 2.°> These results give the average
time each processor spent tracing rays. The number n of
processors working in each of these three cases was 100, 200,
and 400, respectively. The plots show considerable variation
in the time each processor spent on its share of the overall
computation. The first two of these showed unusually low times
for processors 21,41,61, ..., and the third also shows similar
cases. Inspection of the program showed that the initial rays lay
in a 20 x 20 arrangement, which suggests that one processor
was repeatedly tracing rays from the same column of this
arrangement. Apparently, these rays did not require too much
computation before they were discarded. In other words, the
processor loads were very unbalanced.

A. Need for Load Balancing

Such an asymmetry often arises when multiple computers
operate in parallel to solve a single problem: some processors
are more heavily burdened than others. As a result, some
processors may have no work left to do while others are still
hard at work on the problem. Various means of load balancing
to alleviate this problem have been studied. Lee and Lim [13],
for example, present a study of load balancing they call farming
in a system that generates photorealistic renderings of images.
It is generally impossible to predict which subsets of rays will

SThroughout this paper, when we specify quantities in the form z + o, o
represents one standard deviation in the measured quantity.

CAMERON: PARALLEL RAY TRACING USING THE MESSAGE PASSING INTERFACE

+ 100 Processors
300
. g T IR, SO Sod R Raad
w» 250 - * -
; 200 b . o850 050
E PP Y ™Y T
=
- 150
[
3
8 100
w
50
> > |® >
0
0 20 40 60 80 100
Processor #
(a)
+ 200 Processors
160
140
I P ™ . ot .
@ RO
§ 100
s
- 80
@
% 60
o 40
20 * * * * » * * * *
0
0 50 100 150 200
Processor #
(©)
¢ 400 Processors
80
N ;2 kY .{..,Jai A —r, e
g 50
=
- 40
@
g 30
© — | W D > o * * * * * * > » ©¢ o o e
I 20
10
0
0 50 100 150 200 250 300 350 400
Processor #
(e)

_0 251 Processors
100 | |
90
P B s i -V e R o
® 70
£ 0
g 50
g 40
& 30
w2
10
0
0 50 100 150 200 250
Processor #
(b)
® 457 Processors
60
0 SOW@MW
o 40
£
=
- 30
Q
3 20
8
T
0
0 100 200 300 400
Processor #
(d)
+ 839 Processors
35
"]]
0 WAL AL gl g Lt i
g 25
= 20
B 15
a
®© 10
w
5
0
0 100 200 300 400 500 600 700 800
Processor #

Fig. 2. Elapsed time for each processor for various numbers of processors. The figures on the left-hand side have a nonprime number of processors.
Those on the right-hand side have a prime number of processors. The average elapsed time and its standard deviation are given in each case as 7'. The
percentage to the right of the average shown below for each of the graphs is the ratio of standard deviation to average. With a prime number of processors, a
reasonable load balancing is achieved without the use of extra software. The fact that the variations are so great with a nonprime number of processors is an
indication that load balancing is necessary in the general case. (a) 100 processors: T' = (232 4+ 52) s (22%). (b) 251 processors: T' = (83.9 + 1.4) s (1.7%).
(¢) 200 processors: T' = (123 & 25) s (20%). (d) 457 processors: T' = (48.6 &= 1.3) s (2.7%). () 400 processors: T' = (58 £ 17) s (29%). (f) 839 processors:

T = (26.56 £ 0.82) s (3.1%).

take the longest to trace, which makes it difficult to avoid a load
imbalance problem.

Badouel et al. [7] discuss two broad classifications of load
balancing in the context of ray tracing for graphical rendering,
i.e., data-oriented parallelization and control-oriented
parallelization.

In data-oriented parallelization, the data are subdivided into
distinct subdomains, each of which is assigned to a distinct
processor. For example, in a graphics rendering system, each
processor might be responsible for handling the rays that lie
within a subregion of the 3-D space. As a ray passes from one
region to another, the processor handling it then passes it off
to a new processor to trace while it is in the new region. This
approach requires that different processors exchange messages
whenever a ray leaves one region and enters another.

In control-oriented parallelization, each processor has its
own local copy of the description of the system and performs
the same tasks as any other processor but on a different subset
of the data. For example, in a ray-tracing simulation of a lens
system, each processor might handle its own subset of rays
and independently trace them. This approach requires that the
system description be passed to all processors at the outset.
If the system changes over time, this will require repeated
computation. (With the exception of zoom lenses, lens shapes
do not vary with time. However, the set of objects in a scene-
generation system may vary with time.)

The above example of a data-oriented parallelization ap-
proach can lead to load imbalances if one region contains no
objects at all, which makes the job of its processor very simple,
while another region contains many objects with complicated

232 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 57, NO. 2, FEBRUARY 2008

shapes, which makes its processor’s job very much more
involved.

The above example of a control-oriented parallelization
approach can likewise lead to load imbalances if one processor
is assigned rays that leave the system quickly, which makes its
computational burden very light, while another is assigned a
large number of rays that have to be traced all the way to the
image plane.

Adding software to even out the load is a general solution to
the problem. Such software entails having processors commu-
nicate with each other, sharing information about their current
loads, and actively working to balance the work.

Rather than designing a load-balancing software, we simply
avoided the problem by insisting that the number n of proces-
sors be a prime number.® This ensured that a processor would
never repeat a trace from the same column of the pyramid of
rays until it had first performed a trace from every other column.

To understand why this approach is successful, consider a
program in which every kth task is particularly simple but other
tasks are of comparable and greater complexity. We could say
that in this case the periodicity of simple tasks is k. If the
simpler tasks are assigned only to a subset of all the processors,
then these processors will be underburdened and will have more
idle time than the other busier processors will. This situation
constitutes an unbalanced load.

To avoid the possibility of this occurring, we can apply some
results from abstract algebra as presented by Fraleigh [14].

Theorem 1 (Fraleigh’s Theorem 6.3): The set {0,1,2,...,
n—1} is a cyclic group Z, of n elements under addition
modulo n.

The numbers 0, 1,2, ..., n — 1 can be regarded as identifiers
of individual processors; they constitute a cyclic group. The
members of this cyclic group can be generated by the member
a = 1. This entails starting with any member in the group
(a itself is an obvious candidate), adding a to it modulo n to
get the next member in the group, and repeating the process
until all n members of the group have been found.

Theorem 2 (Fraleigh’s Theorem 6.4): Let G be a cyclic
group with n elements and generated by a. Let b € G and
b = sa. Then, b generates a cyclic subgroup H of G containing
n/d elements, where d is the greatest common divisor of n and
s and is abbreviated as ged(n, s).”

This theorem implies that if the greatest common divisor of
the number n of processors and the periodicity & of simple
tasks is not equal to 1, then the group member b = ka = k1 =
k generates a cyclic subgroup with fewer than n members.
Again regarding the numbers 0,1,2,...,n — 1 as processor
identifiers and supposing that the first simple task is assigned to
processor k, we can generate the subgroup H of all processors
that are assigned an easy task by taking 2k, 3k, 4k, . . ., and this
subgroup will have fewer than n members. As a result, some of
the n processors available will not be assigned their fair share
of these simple tasks.

SExcept in the case where n. = 1, which is not considered to be prime.

7Fraleigh used multiplicative notation with b = a°. We use additive notation
here with b = sa, because the specific group we are using entails addition
modulo n.

As an example, suppose we have n = 6 processors numbered
0,1,...,5, and that every fourth task is particularly easy, that is,
k = 4. The greatest common denominator is d = ged(6,4) =
2, and the theorem claims that the subgroup H will only contain
n/d = 6/2 = 3 members. If we assign the first easy task to
processor 4, easy tasks will be assigned to the processors as
follows:

First easy task: 4 mod 6 = 4;
Second easy task: 4+ 4 mod 6 = 2;
Third easy task: 2+ 4 mod 6 = 0;

Fourth easy task: 0+ 4 mod 6 = 4;
and so on. It should be clear that the pattern will repeat
indefinitely, and only the three processors 0, 2, and 4 are ever
assigned the easy tasks. Of the six processors available, only
half get the easy tasks, and the other half only get the hard ones,
as the theorem predicts. This constitutes an unbalanced load.

The theorem tells us that we can eliminate the imbalance
and ensure that simple tasks are assigned to every processor
if the number n of processors and the number k expressing the
periodicity of simple tasks have greatest common divisor equal
to 1. This will certainly be true if we choose n to be prime
and if £ < n. Otherwise, we must ensure that n and £ have no
common factors apart from the number 1. To do this, we must
know both n and k.

Knowing n is easy, as it is the number of processors we
choose to assign to a problem. Knowing k is not so easy, as
it depends on the internal details of the algorithm used to tackle
the problem.

Continuing the above example, where every fourth task is
easy and the first easy task is assigned to processor 4, but with
the number n of processors now equal to the prime number 7,
the processors are assigned as follows:

First easy task: 4 mod 7 = 4;

Second easy task: 44+ 4 mod 7 =1;

Third easy task: 1+4mod7=5;
Fourth easy task: 5+4mod7=2;
Fifth easy task: 2+4mod 7 = 6;
Sixth easy task: 6+4mod7=3;
Seventh easy task: 3 4+ 4 mod 7 = 0;

Eighth easy task: 0+4mod7=4;
and so on. It is apparent that the easy tasks are assigned to all
the processors in turn. Every processor gets a more or less even
distribution of the easy tasks.

In this paper, k appeared to depend on the number of columns
in a certain array used by the algorithm. The need to pin down
the value of k through a close analysis of an algorithm can be
avoided by simply choosing n to be prime, for then, the greatest
common divisor is guaranteed to be 1, no matter what k is,
provided that £ < n.

If £ > n, then it is possible that £ = an for some positive
integer a. In this case, easy tasks would always be assigned
to processor 0, although that processor would also be assigned
more complicated tasks if @ > 1. This situation can be detected
by comparing the times consumed by each processor in a small
test run. Finding that one of them is substantially smaller than
all the others is evidence of this problem. Once the situation has
been discovered, it is possible to avoid it by picking a different
prime number for n.

CAMERON: PARALLEL RAY TRACING USING THE MESSAGE PASSING INTERFACE 233

TABLE II
EXPERIMENTAL OBSERVATIONS WHEN TRACING RAYS ON
VARYING NUMBERS OF PARALLEL PROCESSORS ON
NRL’S CRAY XD-1 SUPERCOMPUTER

of Speed / Time / StdDev of Fractional %
Processors (10° rays/s) s Time /s Error in Time
1 028 20113.93 — —
2 0.57 10200.94 — —
5 1.34 4287.16 55.28 1.29
11 3.14 1874.67 63.40 3.38
19 5.10 1113.51 3.65 0.33
51 13.33 424.46 0.26 0.06
79 20.75 272.74 0.42 0.15
101 28.39 206.90 4.02 1.94
197 56.20 106.70 3.05 2.86
251 69.53 83.92 1.38 1.64
457 131.17 48.58 1.33 2.73
839 230.44 26.56 0.82 3.08
250.00
B LA
200.00 af
E 150.00 — o
2 4
3 10000 T
a | Lt
@ 5000 5%
ral
V,
0.00
0 100 200 300 400 500 600 700 800 900
—&— Measured Speed # of Processors
—— Linear Least Squares Fit

Fig. 3. Measured speeds s of ray tracing with various numbers n of proces-
sors. The least number of processors assigned to the task was 1. All the other
choices are prime numbers that are chosen to avoid the need for a load-
balancing software. The numbers are 1, 2, 5, 11, 19, 51, 79, 101, 197, 251,
457, and 839.

B. Results With Balanced Loads

The results from three of the runs we performed after ap-
plying Theorem 2 are shown on the right-hand side of Fig. 2.
These runs were made with 251, 457, and 839 processors,
respectively (all prime numbers). While there is still some
variation in the measured times, it is dramatically reduced from
between 20% and 30% to around 3% or less.

We then performed a more complete set of simulations and
chose n to be prime numbers logarithmically distributed more
or less from 1 to 840.% The average times a processor spent on
simulation and the standard deviation of each of these times are
shown in Table II.

To assess the linearity of these data, we performed a linear
regression. Fig. 3 shows the results.

The linear equation describing the best least-squares fit for
the data gives the speed s as a function of the number n of

8The selection of n = 251 was made so that a comparison with another
system that only had 256 processors might be made.

1000.00

100.00

10.00 -

Speed / (106 rays/s)

1.00 -

0.10

—&—Speed
== Predicted Speed

of Processors

Fig. 4. Predicted speeds s compared to actual speeds for various numbers n
of processors when a linear regression is performed using log n and log s.

assigned processors

s = ((277.3 £ 2.0) x 10° rays/(s - processor)) n
+ (164 4 598) x 10% rays/s) (2)

with a correlation coefficient of 0.9997. The large s-intercept is
significant for a small n only and may be high because of the
use of a logarithmic spread for n. It indicates that this linear
equation does not accurately predict speed for low values of n.
However, it does show a very strongly linear relationship.

As an alternative to this straightforward linear regression, we
instead sought a linear relationship between log n and log s. A
linear regression yielded

logyo s = (0.9891 + 0.0030) log o n + (5.4440 = 0.0055)
3

which can be rewritten as

s = 10(5.44401:0.0055)n(0.9891i0.0030). (4)

Using the upper and lower error bounds for the power of 10, we
can approximate this expression as

s = (278000 = 3500)n 9891, 6)

The exponent of n is very close to unity, which again reflects
the nearly linear relationship between speed and the number of
processors. The slope in (5) can be seen to be close to that in
(2), as should be expected. The absence of a constant coefficient
is intuitively satisfying: with zero processors, we expect zero
speed. Furthermore, the error bounds in (3) are tighter than
those in (2) (0.3% compared to 0.7%), which suggests a better
fit. Finally, the regression coefficient is even closer to 1. It is
0.99995 for (3) compared to 0.9997 for (2), which is another
indication that this method of prediction is more accurate.

The data predicted using (3) are plotted along with the
observed values in Fig. 4. A comparison with a similar plot
in Fig. 3, which is based on the predictions in (2), shows the

234 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 57, NO. 2, FEBRUARY 2008

closer fit of (3). The gap between observed and predicted values
for n = 457 in Fig. 3 is not present in Fig. 4. The principle
difference applies for a very small n, and this is hard to discern
by mere visual inspection of the figures.

As mentioned earlier, only a fraction of the rays traced struck
the image plane. Reducing the speed shown here to 80.4%
of the calculated value compensates for what amounts to a
poor choice of rays to trace. Using only the linear propor-
tionality coefficient of (5), we can estimate our ray-tracing
speed as

278.0 x 103 rays/(s - processor).

Because there are 25 surfaces for the vast majority of rays,
multiplying by this factor gives the normalized ray-tracing
speed

6.95 x 106 rays - surfaces/ (s - processor).

A single Opteron 275 processor traced 5657234000 rays
at a rate of 280 x 10 rays/s. With 839 of these processors,
the rate increased to 230 x 10° rays/s. The efficiency in using
839 processors can be calculated using (1) as

Tn
E="12
'n/f'p

230 x 10° rays/s
839 x 280 x 103 rays/s

=97.9%.

This is quite close to 100%, which is yet another indication
that the ray-tracing application is highly linear in the number of
processors brought to bear on the problem.

V. CONCLUSION

The change from Analog Devices AD21160 DSPs clocked
at 80 MHz to AMD Opteron 275 processors clocked at
2.2 GHz represented an increase in clock frequency of 2650%.°
It resulted in increasing the speed of ray tracing from 111 x
103 to 6.95 x 105 rays - surfaces/(s - processor), which is an
increase of over 6100%. The switch also permitted an increase
in the maximum number of processors available from 8 to 839.
As a result, the simulation time fell from 284.4 h on a single
AD21160 to under 27 s on 839 Opteron 275 processors, which
is a reduction by a factor of 38 000. The efficiency achieved
using 839 processors was 97.9%, which indicates that every
doubling of the number of processors nearly doubles the speed.
The highly linear relationship between processors and speed
is a well-known characteristic of ray-tracing applications. This
paper has shown that the relationship persists even when the
number of processors reaches over 800.

9The Analog Devices AD21160 has no hardware for performing floating-
point-division or square-root operations, whereas the Opteron 275 does.

We have introduced a novel approach to avoiding the need
to write elaborate load-balancing software. By using a prime
number of processors, we reduced the chance that one processor
would get an inordinately heavy or light share of the pro-
cessing load.

REFERENCES

[1] K. F. Gauss,
Dieterich, 1840.

[2] F. Williams and T. Kilburn, “The University of Manchester computing
machine,” in Proc. Manchester Univ. Comput. Inaugural Conf., 1951,
pp. 5-11.

[3] G. H. Spencer and M. V. R. K. Murtry, “General ray-tracing procedure,”
J. Opt. Soc. Amer., vol. 52, no. 6, pp. 652—-678, Jun. 1962.

[4] P. Mouroulis and J. Macdonald, Geometrical Optics and Optical Design.
New York: Oxford Univ. Press, 1997.

[5] C. B. Cameron, R. N. Rodriguez, N. Padgett, E. Waluschka, and
S. Kizhner, “Optical ray tracing using parallel processors,” IEEE Trans.
Instrum. Meas., vol. 54, no. 1, pp. 87-97, Feb. 2005.

[6] C. B. Cameron, R. N. Rodriguez, N. Padgett, E. Waluschka,

S. Kizhner, G. Colon, and C. Weeks, “Fast optical ray tracing using

multiple DSPs,” IEEE Trans. Instrum. Meas., vol. 55, no. 3, pp. 801-808,

Jun. 2006.

D. Badouel, K. Bouatouch, and T. Priol, “Distributing data and control

for ray tracing in parallel,” IEEE Comput. Graph. Appl., vol. 14, no. 4,

pp. 69-77, Jul. 1994.

E. Waluschka, X. Xiong, B. Guenther, W. Barnes, and V. Salomonson,

“Modeling studies of the MODIS solar diffuser attenuation screen and

comparison with on-orbit measurements,” Proc. SPIE, vol. 5542, no. 47,

pp. 342-353, 2004.

[91 V. Kumar, Introduction to Parallel Computing: Design and Analysis
of Parallel Algorithms. Redwood City, CA: Benjamin Cummings,
1994.

[10] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra,
MPI—The Complete Reference, 2nd ed, vol. 1. Cambridge, MA: MIT
Press, 2000.

[11] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg,
W. Saphire, and M. Snir, MPI—The Complete Reference, 2nd ed, vol. 2.
Cambridge, MA: MIT Press, 2000.

[12] P. S. Pacheco, Parallel Programming With MPI. San Francisco, CA:
Morgan Kaufmann, 1997.

[13] H. J. Lee and B. H. Lim, “Parallel ray tracing using processor farming
model,” in Proc. IEEE Int. Conf. Parallel Process. Workshops, 2001,
pp. 59-63.

[14] J. B. Fraleigh, A First Course in Abstract Algebra.
Addison-Wesley, 1967.

Dioptrische Untersuchungen. Gottingen, Germany:

[7

—

[8

—

Reading, MA:

Charles B. Cameron (SM’05) received the B.Sc.
degree in computer science from the University of
Toronto, Toronto, ON, Canada, in 1977 and the
M.S.E.EE. and Ph.D. degrees from the Naval Post-
graduate School, Monterey, CA, in 1989 and 1991,
respectively.

He is currently an Assistant Professor with the
United States Naval Academy, Annapolis, MD,
and a Lecturer with the Johns Hopkins University,
Baltimore, MD. As a Commander in the United
States Navy, he qualified as a Mission Commander
in E-2C Hawkeye airborne early warning aircraft in 1983. His research and
teaching interests are in massively parallel computing, computer architecture,
reconfigurable computing, and sensors. He holds a patent for an electronic
demodulator used to recover signals from interferometric fiber-optic sensors.

Dr. Cameron is a licensed Professional Engineer in the State of Maryland.

