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Abstract:  The reconstruction of periodic acoustical signals with time domain periodic 
averaging requires a reliable estimate of the fundamental frequency (fl) of the signal. The 
reconstruction task is particularly difficult when the signal is “hidden” in additive noise 
and the signal-to-noise ratio is poor.  This is usually the case in most passive SONAR 
problems when early detection and characterization of targets is required.  Statistically 
reliable estimates of the fundamental frequency of a noisy periodic signal can be 
computed in the frequency domain using Bartlett’s smoothing procedure.  In this 
procedure, a long, noisy signal is segmented into M mutually exclusive time segments 
and a power spectral estimate for each segment is computed.  Spectral estimates are 
ensemble-averaged to enhance the signal power and reduce the residual spectral variance 
of the additive noise. In Bartlett’s smoothing procedure the spectral line detection 

efficiency improves with M  when M > 50. 
  

The Bartlett’s smoothing procedure merely provides a range of values for the 
fundamental frequency within a range of four times the standard deviation of the 
embedded periodic signal.  In the reconstruction phase, the recorded noisy signal is 
reused to obtain one or more cycles of the “clean”  signal.  In the reconstruction 
procedure, the noisy signal is segmented into J  mutually exclusive time segments, each 
exactly T seconds in length.  Ensemble averaging in the time domain of these segments 

recovers the required “clean”  signal with an enhancement efficiency of J  when N >50 
and when the proper value of T is used.  Because in most problems the correct value of T 
is not known, the enhancement procedure is iterated over a range of four times the 
standard deviation and that iteration which provides the maximum signal-to-noise ratio is 
declared the winner. For proper enhancement, an integer number of sample points must 
occur in T,  for each choice of T. This requires a new sampling rate be used on the 
original time sequence for each choice of T. The resampling is efficiently achieved using 
an FFT interpolation technique. The algorithms are optimized for the SHARC ADSP-
21060 DSP hardware and can be used in real time applications. 
 
Key Words: Bartlett’s smoothing; downsampling; DSP program; MEX; PC program; 
sister points; time domain periodic averaging; virtual resampling. 



Introduction:  In order for a submarine to detect another submarine submerged beneath 
the ocean, it must ordinarily clearly identify the presence of a distinctive periodic 
acoustic signal in the water, originating from the enemy submarine.  The ocean, however, 
is an extremely noisy environment. Ambient acoustic noise from animal life, ships, 
weather, and other sources can drown out the oftentimes-faint periodic acoustic 
signatures of submarines.  These periodic signatures can come from machinery in the 
target submarine rotating or operating in some other periodic fashion.  For example, the 
shaft which turns the screws of the vessel in order to propel it through the water may 
provide such an acoustic signature.   
 
 
Target Detection with Bartlett’ s Smoothing:  The noisy acoustical voltage or current 
waveform, ( )v t , observed at a remote listening sight can always be modeled in the time 
domain as the superposition of two events: 
 
                                                             ( ) ( ) ( )v t s t n t= +                                                    (1) 
 
where ( ) s t is the signal arriving from a distant source and ( )n t  is the ambient ocean 
noise.  When these two events are mutually orthogonal (i.e. the cross-correlation [11, 10, 
1] of ( )s t and ( )n t is zero), then the power spectrum of the noisy waveform, ( )vP ω , is: 
 
                                                     ( ) ( ) ( )                                                v s nP P Pω ω ω= + (2) 

 
where ( )sP ω and ( ) nP ω are the power spectra of the clean signal and the noise, 
respectively [8, 10].  In most sonar problems, the assumption of orthogonality has been 
found to be valid [10]. A similar statement can be made for the magnitude spectra of 
these events. 
 
                                                      ( ) ( ) ( )v s nA A Aω ω ω= +                                               (3) 
 
The detection of a distant target must be based on statistically reliable spectral estimates. 
A reliable estimate is one that is not unduly subject to random variations.  The statistical 
reliability of spectral estimates (power or magnitude) can be improved by a procedure 
called Bartlett’s smoothing.  The signal enhancement is assured by the central limit 
theorem [9, 8, 10] and provides improvement in the signal-to-noise ratio.  
 
The mathematical algorithm known as Bartlett’s smoothing (see fig. 4) [8] is used to 
average out the noise component of the waveform so that only the signal is left.  In this 
procedure, a long, noisy signal is segmented into M mutually exclusive time segments 
and a magnitude spectral estimate for each segment is computed. A typical segment of 
unpadded, noisy data made up of a 0.1 V peak, 100 Hz sine wave hidden in 1.0 V RMS 
noise with even distribution is shown in figure 1. Each sample data segment (element of 
the time domain ensemble) is zero padded in the time domain (at the end), extending its 
length from 1,028 samples to 16,384 samples before performing the  



                      Figure 1: 0.1 Vpeak, 100 Hz sinusoid hidden in 1.0 Vrms noise. 
 
 
complex, radix-2 fast Fourier transform (FFT). Zero padding in the time domain 
(increasing the data length by a factor of 16), reduces the picket-fence effect [2] in the 
frequency domain and improves the frequency resolution by a factor of 16 [1, 3, 4, 5].  In 
Bartlett’s smoothing procedure, ensemble averaging produces spectral line enhancement, 
while reducing spectral variance due to additive noise. In this procedure, spectral-line 
detection efficiency improves as M  when 50 M > (whereM is the number of elements 
in the ensemble). A spectral-estimate based on 10M = is shown in figure 2.  Note that the 
100 Hz spectral line just barely emerges from the noise with a signal-to-noise voltage 
ratio (S/Nv) of  4.3662. In taking this ratio the signal is expressed in peak voltage, 
whereas the noise is expressed in RMS voltage. Compare this to the spectral-estimate 
based on a 40M = (shown in fig. 3) where the signal-to-noise ratio is 6.4896 and the 100 
Hz spectral line more clearly rises out of the noise floor. A higher signal-to-noise ratio 
yields a greater target detection confidence. The S/Nv of 6.4896 gives approximately 
98% detection confidence and only a 2% chance that the spectral line is due to a 
statistical anomaly [8, 6, 7].  
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Figure 2 (top): Results of Bartlett’s smoothing, 10M = , S/Nv = 4.3662 
Figure 3 (bottom): Results of Bartlett’s smoothing, 40M = , S/Nv = 6.4896 
 



The exact frequency of the signal must be known in order to identify the source of the 
signal.  The question now arises: how can the frequency analysis be refined in order to 
pinpoint the signal’s frequency with a sufficient degree of accuracy?  There is another 
frequency analysis process called time domain periodic averaging which can test a 
waveform for the presence of a periodic signal with a specific fundamental frequency. 
What, then, was the utility of Bartlett’s smoothing? Why did we not just perform time 
domain periodic averaging in the first place?  The answer is that periodic time averaging 
only tests for one specific frequency, revealing the strength of that frequency alone.  The 
overall frequency range in which a contact's frequency might fall is too large to simply 
test all possible frequencies.  That would be inefficient and would consume more 
processing time than can be afforded for the proposed real-time application.  Instead, 
Bartlett’s smoothing procedure is used as a first and continuously running method of 
detection of a contact, as well as a way to narrow the range of possible frequencies to a 
practical size once that contact is detected.   
  
A good analogy for the interaction of Bartlett Smoothing and time domain periodic 
averaging is that of a lookout on a ship.  That lookout has two tools available to him for 
detecting and identifying a contact at sea: his naked eyes and his binoculars.  First, he 
uses his naked eyes, which cannot see a contact as clearly as with the binoculars, to scan 
the entire angular range for which he is responsible.  He keeps scanning with the naked 
eye until he detects that a contact is present, at which time he uses his binoculars to scan 
only that small region where the contact was seen.  His binoculars will allow him to 
examine a small area in detail and to accurately identify the contact.  Bartlett’s smoothing 
corresponds to the naked eye in this analogy, and time domain periodic averaging 
corresponds to the set of binoculars. If the lookout constantly scanned only small areas 
with his binoculars, he might not detect a contact until it was too late to avoid a collision 
or maybe until the contact left the visual identification area. Just as the lookout is 
constrained by the time it would take him to scan the entire horizon bit by bit with 
binoculars, we are constrained by processing speeds in the digital signal processor which 
are the centerpiece of this research. 
 
Bartlett’s smoothing will run continuously until it finds something conclusive.  After 
averaging a specified number of segments together, the algorithm finds the maximum 
point of the ensemble.  If the difference between the noise floor and the maximum is not 
at least thirty-six times the standard deviation of the noise floor of the ensemble, 
Bartlett’s smoothing repeats the process, continuing to average new segments into the 
ensemble. If this test is eventually passed, the signal-to-noise ratio is great enough to 
determine with confidence that a periodic signal is present in the noise.  The reason for 
the number thirty-six is that it is the square of six, the signal-to-noise ratio which 
indicates the presence of a target with greater than 90% confidence.  We process the 
results of Bartlett’s smoothing in terms of power (vice magnitude), because the square 
root operation required to compute magnitude is too costly in terms of processing time 
(see fig. 4.)  The orthogonality of signal and noise makes this possible (see Eqs. (2) and 
(3).) Let the frequency corresponding to the maximum magnitude of the ensemble be 

maxf .  The question now becomes how to determine the frequency range around maxf to 
be tested by the time domain periodic averaging.  Let the beginning and end of the 



frequency range to be tested by the time domain periodic averaging be 1f and 2f  
respectively (see fig. 4.) 
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 Figure 4. Bartlett’s Smoothing Procedure 



 
Suppose that after recording waveforms of acoustic noise in the ocean for a while, 
Bartlett’s smoothing procedure tells us that there is a contact out there somewhere 
because a periodic signal within the range of 99-101 Hz has been detected.  Now, we 
must take that waveform and perform the periodic time averaging operation on it for 
specific frequencies between 99 and 101 Hz, for example 99.0, 99.5, 100.0, 100.5, and 
101.0 Hz.  The periodic time averaging procedure allows us to test the waveform for the 
strength of one particular frequency, so we must perform it over and over for each 
distinct frequency we wish to test for.   
 
 
Target Identification with Time Domain Periodic Averaging:  Now that a target has 
been detected with a high degree of confidence, we can proceed with the target 
characterization and identification phase.  Our method of target characterization is to 
reconstruct one cycle of the periodic signal using time domain periodic averaging. This 
process is performed using the same original time series data already used in the 
Bartlett’s smoothing procedure. The reconstructed cycle will be used as a template for 
target identification.  In order to reconstruct the signal, its fundamental frequency must be 
known beforehand; this information is obtained from Bartlett’s smoothing procedure.  
The first step in the time domain periodic averaging procedure [9, 10, 11] (see fig. 6) is to 
take one of the frequencies, lf , from the list of possible frequencies provided by 
Bartlett’s smoothing and then segment the original waveform into segments with length 
equal to the corresponding period, 1/l lT f= . The corresponding time index and periodic 

index aren and 5N , respectively (see fig.6.)  The original waveform is then  

 
Figure 5: Results of Time Domain Periodic Averaging 
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segmented (in the time domain) into equal segments of length 5N . At this point, the 
averaging begins. We average the value of the waveform at time index n , which is 
within the first segment of data, with the values at time indices 5n N+ , 52n N+ , 53n N+ , 

...and ( ) 5-1n J N+ , where J  is the number of segments into which the waveform was 

originally divided. Thus we take the value at a point in the first segment and average it 

Figure 6: Time Domain 
Periodic Averaging 
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with all the values at its sister points in each of the other segments.  (Sister points are 
points separated by an integral number of periods.)  This operation is performed for each 
point within the segment. The result of this will be an ensemble composed of the average 
of the segments (see fig. 5).  
 
Like Bartlett’s smoothing, this process takes advantage of the fact that noise is random, 
and therefore the average of the noise will be close to zero.  The average of the periodic 
signal within the waveform will become firm in its value when averaged with its sister 
points on other cycles of the signal.  This is how the periodic time averaging improves 
the signal-to-noise ratio.  It is evident that the whole procedure begins with and hinges 
upon the selection of the frequency to be tested, since that is what determines the period 
which will constitute the segment length and which will cause the signal-to-noise ratio to 
increase when averaging when averaging the sister points of the.  A very exact estimate 
of the signal frequency is required in order to yield useful results. There is another 
extremely important, practical issue concerning implementation of these algorithms 
which has not been considered yet. 
 
Since a digital signal processor will be used to perform the mathematical algorithms 
which have been described, the waveform must be discrete, that is to say that the 
continuous waveform recorded by the hydrophones must be sampled by an analog to 
digital converter in order to be processed by the digital signal processor.  This means we 
will run into a problem when we try to perform time domain periodic averaging. The time 
domain periodic averaging was explained as if a continuous waveform was being 
processed.  A discrete waveform, however, only has value at particular, evenly spaced 
points, and has no value whatsoever between those sample points. The distance between 
points (the sampling period) in the sampled waveform is 1s sT f= , where sf  is the 

sampling frequency used to capture the waveform. It will be impossible to average the 
sister points of the different segments unless tT  (the segment length) is an integral 

multiple of sT . tT  is determined by tf , the frequency for which we wish to test, so we 

must engineer sT  to divide tT  evenly, or in other words, ( ) mod 0t sT T = . This presents 

another problem. Waveforms are sampled by the ADC in real time and all continuous 
data in the waveform are forever lost.  It is impossible to physically resample the original 
waveform, since that waveform represents a sound wave that existed only at the 
particular moment in time that it was sensed by the hydrophones. One possible solution 
to this problem would be to use analog recording techniques such as magnetic tape to 
record the waveform for resampling at a later time.  This would mean the original 
waveform would need to be physically resampled in order to make sT divide tT  evenly 

for each frequency to be tested using periodic time averaging. The amount of processor 
memory and increased time this would require rules it out as a solution. 
  
 
Virtual Resampling: Since it is out of the question to physically resample the waveform 
for every run of the time domain periodic averaging, a method called virtual resampling 
is used. Virtual resampling is the process of effectively multiplying the sampling period, 



sT , by some factor (possibly non-integral) so that ( ) mod 0t sT aT =  where a is the 

multiplication factor and sT  is the original, physical sampling period with which the 

waveform was captured. This method consists of two steps: upsampling and 
downsampling. Upsampling multiplies sT by an integral factor, n , and downsampling 

divides sT  by an integral factor, k . Therefore, a n k= .  

  
Upsampling is accomplished by zero padding in the frequency domain. The original, 
sampled waveform is converted to the frequency domain using the radix-2 fast Fourier 
transform.  The resulting magnitude of the FFT is an array of N discrete values.  The 
array length is multiplied by a factor of n by placing an array of ( -1)n N× zeros in the 
middle of the array, separating the first half and second half. This discrete, frequency 
domain representation of the waveform is simply an array of values, except that after the 
zero padding the series of values is no longer associated with specific points on the 
frequency axis. To the DSP, the series of values in the frequency domain is just an array.  
The inverse FFT (IFFT) is then performed on this zero-padded array, and since the length 
of the array in the frequency domain is equal to the length of the array produced by the 
IFFT in the time domain, the number of sample points in the time domain has been 
multiplied by a factor of n  as well.  The length of the time domain signal in units of time, 
however, remains the same as that of the original waveform.  So now there are n  times 
the number of sample points per unit of time there were before upsampling.  Practically 
speaking, the resolution of the waveform has been improved by a factor of n  by reducing 
the amount of time between samples.  What has been achieved is interpolation in the time 
domain.  The only limit on how finely we can interpolate is the amount of memory 
available to us to store the array after we have enlarged it.             
 
Downsampling is extremely simple.  It consists of decimation of the upsampled 
waveform in the time domain by an appropriate factor, k .  This means that the upsampled 
array is sampled at every k th value.  By upsampling an array and then downsampling the 
resultant array, the original sampling rate has been effectively multiplied by the rational 
factor /n k , thus virtually resampling the original waveform.  As indicated earlier, this 
virtual resampling must be done for every possible, specific frequency that is to be tested 
from the narrow range of possible frequencies given by the results of Bartlett’s 
smoothing. 
 
 
Implementation:  The FFT code used in our algorithm was written in assembly language 
by Analog Devices, the maker of the ADSP-21060 SHARC DSP, and is freely available 
on their website [15]. It is a most efficient, complex, radix-2 FFT implementation on the 
SHARC DSP.  This program was altered in only minor ways to make it callable from 
another program which also runs on the DSP and is written in the C programming 
language.  This program generates the sine and cosine factors used in the calculation of 
the FFT and is under the control of another program which runs on the PC.  The PC 
program and the DSP program interact through a two-way handshake scheme. The DSP 
program also pads the real and imaginary input arrays with zeros for increased resolution 
in the output (virtual resampling).   



 
The PC program, also written in C, controls the operation of the DSP through the 
Blacktip PCI (rev. 3) board on which it is mounted. It uses a series of pre-defined 
functions provided by Bittware, the maker of the Blacktip PCI board. These functions 
allow the PC to write and read data to and from any register in the DSP’s memory, as 
well as give the DSP many other commands. The PC program simply downloads the real 
and imaginary arguments of the FFT and the length of the FFT to the specific locations in 
memory where the DSP will look for them and then calls the DSP program which 
performs the FFT. 
 
The PC program is itself called by a MATLAB m-file which uses a convenient feature of 
MATLAB called MEX to call a C program as if it were a MATLAB function. The 
MATLAB m-file passes the input arguments (real and imaginary input arrays and the 
length of the FFT) to the PC program [12, 13, 14].  
 
The PC program was written in C using Microsoft Visual C++ 6.0, and the DSP program 
(written in both C and assembly language) was created using the Analog Devices 
VisualDSP Software Development Tools version 2.2. VisualDSP produces an executable 
program file that can be downloaded to and run by the DSP.  
 
The greatest possible length of our FFT on the ADSP-21060 is 16,384 because of the size 
of the internal memory.  A greater length could be achieved if external memory were 
utilized, but the extra time those external memory accesses would take is unacceptable 
for our purposes.  The ADSP-21060 has 4 Mbits of internal memory into which the 
program code must be stored along with the real and imaginary input and output data 
arrays, and the arrays of sine and cosine factors (used for computing the FFT.) Each 
sinusoidal array is half the length of the FFT, so the total number of 16,384 element 
arrays that must be stored is effectively five. Each element of each array is a 32-bit 
number in IEEE single-precision, floating-point format. Multiplying 16384 32 5 × × yields 
a total data storage of 2.62 Mbits.  Since we are using the radix-2 FFT for the sake of 
speed, the FFT length can only be powers of two. It is apparent, then, that 16,384 is the 
greatest possible length of the FFT, because the next greatest length, 32,768, would 
require more internal memory than is available on the ADSP-21060, and as noted above, 
we elected to use only internal memory.  
 
To obtain an accurate measurement of the time required for the DSP to compute a single 
FFT (see table I), the programs were configured to compute the same FFT 1,000 times.  
This was done without the MATLAB program, and the input data were read by the PC 
program from data files.  A stopwatch was used to time the completion of these 1,000 
FFT’s with consistent results.  Because of the significant amount of time required by the 
calculation of 1,000 FFT’s, the human error induced by the use of the stopwatch was 
deemed insignificant. The stopwatch was started simultaneously with the keyboard 
command which started the calculation and was stopped by visual cue from the computer 
screen, the disappearance of the DOS window indicating that the PC program had 
finished working.  Also, because of the large number of FFT’s, the error from the other 
parts of the program besides the FFT itself was deemed to be within acceptable limits. 



Time Trials for the FFT   
Length (N): 16,384   
Processor: ADSP-21060 SHARC DSP 
Number of FFT's: 1,000   

  Time/s 

Trial 1 40.7 
Trial 2 40.7 
Trial 3 40.6 
Trial 4 40.8 
Trial 5 40.7 
Average of Trials 40.7 
Average Time per FFT 0.0407 
 
Conclusion:  The most challenging problem in the signal reconstruction algorithm is to 
perform it in real time without introducing gaps in the acquired data.  The question is, can 
the signals be processed as fast as they are recorded? Thanks to the relatively recent 
advances in DSP technology, the answer is “yes.”  Modeling the ocean as a 4 kHz 
bandwidth limited acoustic channel requires data to be sampled at 8 kHz in order to avoid 
aliasing, according to Nyquist theorem [10].  Using this 8 kHz sampling rate, the time 
required to gather 1024 samples of acoustic data is 1,024/8,000 s, or 128 ms. Each set of 
1,024 samples is zero-padded to a length of 16,384. Since each 16,384-point FFT takes 
approximately 41 ms of computation time, 87 ms are left each cycle to complete the 
remainder of the algorithm. This is ample, so the algorithm can indeed be performed in 
real time. 
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