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Abstract:  The reconstruction of periodic acoustical signals with time-domain periodic 
averaging requires a reliable estimate of the fundamental frequency (fl) of the signal. The 
reconstruction task is particularly difficult when the signal is “hidden” in additive noise 
and the signal-to-noise ratio is poor.  This is usually the case in most passive SONAR 
problems when early detection and characterization of targets is required.  Statistically 
reliable estimates of the fundamental frequency of a noisy periodic signal can be 
computed in the frequency domain using Bartlett’s smoothing procedure.  In this 
procedure, a long, noisy signal is segmented into M mutually exclusive time segments 
and a power spectral estimate for each segment is computed.  Spectral estimates are 
ensemble-averaged to enhance the signal power and reduce the residual spectral variance 
of the additive noise. In Bartlett’s smoothing procedure the spectral line detection 
efficiency improves with M  when M > 50. 

  
The Bartlett’s smoothing procedure merely provides a range of values for the 
fundamental frequency within a range of four times the standard deviation of the 
embedded periodic signal.  In the reconstruction phase, the recorded noisy signal is 
reused to obtain one or more cycles of the “clean” signal.  In the reconstruction 
procedure, the noisy signal is segmented into J  mutually exclusive time segments, each 
exactly T seconds in length.  Ensemble averaging in the time domain of these segments 
recovers the required “clean” signal with an enhancement efficiency of J  when J >50 
and when the proper value of T is used.  Because in most problems the correct value of T 
is not known, the enhancement procedure is iterated over a range of four times the 
standard deviation and that iteration which provides the maximum signal-to-noise ratio is 
declared the winner. For proper enhancement, an integer number of sample points must 
occur in T, for each choice of T. This requires a new sampling rate be used on the original 
time sequence for each choice of T. The resampling is efficiently achieved using an FFT 
interpolation technique. The algorithms are optimized for the SHARC ADSP-21060 DSP 
hardware and can be used in real time applications. 
 
Key Words: Bartlett’s smoothing; downsampling; DSP program; MEX; PC program; 
sister points; time-domain periodic averaging; virtual resampling. 
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Introduction:  In order for a submarine to detect another submarine submerged beneath 
the ocean, it must ordinarily clearly identify the presence of a distinctive periodic 
acoustic signal in the water, originating from the enemy submarine.  The ocean, however, 
is an extremely noisy environment. Ambient acoustic noise from animal life, ships, 
weather, and other sources can drown out the oftentimes-faint periodic acoustic 
signatures of submarines.  These periodic signatures can come from machinery in the 
target submarine rotating or operating in some other periodic fashion.  For example, the 
shaft which turns the screws of the vessel in order to propel it through the water may 
provide such an acoustic signature.   
 
 
Target Detection with Bartlett’s Smoothing:  The noisy acoustical voltage or current 
waveform, ( )v t , observed at a remote listening sight can always be modeled in the time 
domain as the superposition of two events: 
 
                                                             ( ) ( ) ( )v t s t n t= +                                                    (1) 
 
where ( ) s t is the signal arriving from a distant source and ( )n t  is the ambient ocean 
noise.  When these two events are mutually orthogonal (i.e. the cross-correlation [1, 15, 
11] of ( )s t and ( )n t is zero), then the power spectrum of the noisy waveform, ( )vP ω , is: 
 
                                                     ( ) ( ) ( )                                                v s nP P Pω ω ω= + (2) 

 
where ( )sP ω and ( ) nP ω are the power spectra of the clean signal and the noise, 
respectively [7, 15].  In most sonar problems, the assumption of orthogonality has been 
found to be valid [15]. A similar statement can be made for the magnitude spectra of 
these events. 
 
                                                      ( ) ( ) ( )v s nA A Aω ω ω= +                                               (3) 
 
The detection of a distant target must be based on statistically reliable spectral estimates. 
A reliable estimate is one that is not unduly subject to random variations.  The statistical 
reliability of spectral estimates (power or magnitude) can be improved by a procedure 
called Bartlett’s smoothing.  The signal enhancement is assured by the central limit 
theorem [10, 7, 15] and provides improvement in the signal-to-noise ratio.  
 
The mathematical algorithm known as Bartlett’s smoothing (see fig. 4) [7] is used to 
average out the noise component of the waveform so that only the signal is left.  In this 
procedure, a long, noisy signal is segmented into M mutually exclusive time segments 
and a magnitude spectral estimate for each segment is computed. A typical segment of 
unpadded, noisy data made up of a 0.1 V peak, 100 Hz sine wave hidden in 1.0 V RMS 
noise with even distribution is shown in fig. 1. Each sample data segment (element of the 
time-domain ensemble) is zero padded in the time domain (at the end), extending its 
length from 1,028 samples to 16,384 samples before performing the  
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                      Figure 1: 0.1 Vpeak, 100 Hz sinusoid hidden in 1.0 Vrms noise. 
 
 
complex, radix-2 fast Fourier transform (FFT). Zero padding in the time domain 
(increasing the data length by a factor of 16), reduces the picket-fence effect [2] in the 
frequency domain and improves the frequency resolution by a factor of 16 [11, 9, 13, 12].  
In Bartlett’s smoothing procedure, ensemble averaging produces spectral line 
enhancement, while reducing spectral variance due to additive noise. In this procedure, 
spectral-line detection efficiency improves as M  when 50 M > (where M is the 
number of elements in the ensemble). A spectral-estimate based on 10M = is shown in 
fig. 2.  Note that the 100 Hz spectral line just barely emerges from the noise with a 
signal-to-noise voltage ratio (S/Nv) of  4.3662. In taking this ratio the signal is expressed 
in peak voltage, whereas the noise is expressed in RMS voltage. Compare this to the 
spectral-estimate based on a 40M = (shown in fig. 3) where the signal-to-noise ratio is 
6.4896 and the 100 Hz spectral line more clearly rises out of the noise floor. A higher 
signal-to-noise ratio yields a greater target detection confidence. The S/Nv of 6.4896 
gives approximately 98% detection confidence and only a 2% chance that the spectral 
line is due to a statistical anomaly [7, 8, 5].  

18 18.5 19 19.5 20 20.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time in Sec.

S
ig

+N
oi

se
 in

 V
ol

s

Time Segment or Record m = 10



 4

0 50 100 150 200 250
10

15

20

25

30

35

40

45

50

55

60

S/Nv=4.3662, M=10, Est f1=100.0671 Hz, USNA,  2003/1/9 15:19, foldf-2

Frequency in Hz.

A
v.

 M
ag

-S
pe

ct
ru

m
 

       

0 50 100 150 200 250
20

25

30

35

40

45

50

55

S/Nv=6.4896, M=40, Est f1=100.0061 Hz, USNA,  2003/1/9 15:23, foldf-2

Frequency in Hz.

A
v.

 M
ag

-S
pe

ct
ru

m
 

 
Figure 2 (top): Results of Bartlett’s Smoothing, 10M = , S/Nv = 4.3662 
Figure 3 (bottom): Results of Bartlett’s Smoothing, 40M = , S/Nv = 6.4896 
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The exact frequency of the signal must be known in order to identify the source of the 
signal.  The question now arises: how can the frequency analysis be refined in order to 
pinpoint the signal’s frequency with a sufficient degree of accuracy?  There is another 
frequency analysis process called time-domain periodic averaging which can test a 
waveform for the presence of a periodic signal with a specified fundamental frequency. 
What, then, was the utility of Bartlett’s smoothing? Why did we not just perform time-
domain periodic averaging in the first place?  The answer is that periodic time averaging 
only tests for one specific frequency, revealing the strength of that frequency alone.  The 
overall frequency range in which a contact's frequency might fall is too large to simply 
test all possible frequencies.  That would be inefficient and would consume more 
processing time than can be afforded for the proposed real time application.  Instead, 
Bartlett’s smoothing procedure is used as a first and continuously running method of 
detection of a contact, as well as a way to narrow the range of possible frequencies to a 
practical size once that contact is detected.   
  
A good analogy for the interaction of Bartlett’s smoothing and time-domain periodic 
averaging is that of a lookout on a ship.  That lookout has two tools available to him for 
detecting and identifying a contact at sea: his naked eyes and his binoculars.  First, he 
uses his naked eyes, which cannot see a contact as clearly as with the binoculars, to scan 
the entire angular range for which he is responsible.  He keeps scanning with the naked 
eye until he detects that a contact is present, at which time he uses his binoculars to scan 
only that small region where the contact was seen.  His binoculars will allow him to 
examine a small area in detail and to accurately identify the contact.  Bartlett’s smoothing 
corresponds to the naked eye in this analogy, and time-domain periodic averaging 
corresponds to the set of binoculars. If the lookout constantly scanned only small areas 
with his binoculars, he might not detect a contact until it was too late to avoid a collision 
or maybe until the contact left the visual identification area. Just as the lookout is 
constrained by the time it would take him to scan the entire horizon bit by bit with 
binoculars, we are constrained by processing speeds in the digital signal processor which 
is at the center of this research. 
 
Bartlett’s smoothing will run continuously until it finds something conclusive.  After 
averaging a specified number of segments together, the algorithm finds the maximum 
point of the ensemble.  If the difference between the noise floor and the maximum is not 
at least thirty-six times the standard deviation of the noise floor of the ensemble, our 
implementation of Bartlett’s smoothing repeats the process, continuing to average new 
segments into the ensemble. If this test is eventually passed, the signal-to-noise ratio is 
great enough to determine with confidence that a periodic signal is present in the noise.  
The reason for the number thirty-six is that it is the square of six, the signal-to-noise ratio 
which indicates the presence of a target with greater than 90% confidence.  We process 
the results of Bartlett’s smoothing in terms of power (vice magnitude), because the square 
root operation required to compute magnitude is too costly in terms of processing time 
(see fig. 4.)  The orthogonality of signal and noise makes this possible (see Eqs. (2) and 
(3).) Let the frequency corresponding to the maximum magnitude of the ensemble be 

maxf .  The question now becomes how to determine the frequency range around maxf to 
be tested by the time-domain periodic averaging.  Let the beginning and end of the 
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frequency range to be tested by the time-domain periodic averaging be 1f and 2f  
respectively (see fig. 4.)              
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 Figure 4. Bartlett’s Smoothing Procedure 
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Suppose that after recording waveforms of acoustic noise in the ocean for a while, 
Bartlett’s smoothing procedure tells us that there is a contact out there somewhere 
because a periodic signal within the range of 99-101 Hz has been detected.  Now, we 
must take that waveform and perform the periodic time averaging operation on it for 
specific frequencies between 99 and 101 Hz, for example 99.0, 99.5, 100.0, 100.5, and 

Figure 5: Time-domain 
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Note: The value of J is 
determined from 4N , sT , and 

lT , where sT is the new 
sample period according to 
the following equation: 

4
5

l

s

T N
N

T J
= =  

Yes

No

Virtual Resampling

4

5 4

     Test Frequency,   1/

Divide ( ) into  segments ( )

0 1
Length[ ( )]

Length[ ( ) ] /

l l

j

j

f T

v n J v n

j J
v n N

v n N N J

=

≤ ≤ −
=

= =

( ) ( )
( )( )

5

5 5

5

Calculate  averages of sister points: 

   ( ) 2

          ... -1

N

v n v n N v n N

v n J N

+ + + + +

+ +

Calculate and store 
SNR of Ensemble

Have all of the test 
   frequencies, , 

     been tested?
lf

Find the Maximum SNR 
in stored list and declare 
the corresponding frequecy 
          the winner.



 8

101.0 Hz.  The periodic time averaging procedure allows us to test the waveform for the 
strength of one particular frequency, so we must perform it over and over for each 
distinct frequency we wish to test for.   
 
 
Target Identification with Time-domain Periodic Averaging:  Now that a target has 
been detected with a high degree of confidence, we can proceed with the target 
characterization and identification phase.  Our method of target characterization is to 
reconstruct one cycle of the periodic signal using time-domain periodic averaging. This 
process is performed using the same original time series data already used in the 
Bartlett’s smoothing procedure. The reconstructed cycle will be used as a template for 
target identification.  In order to reconstruct the signal, its fundamental frequency must be 
known beforehand; this information is obtained from Bartlett’s smoothing procedure.  
The first step in the time-domain periodic averaging procedure [10, 15, 1] (see fig. 5) is 
to take one of the frequencies, lf , from the list of possible frequencies provided by 
Bartlett’s smoothing and then segment the original waveform into segments with length 
equal to the corresponding period, 1/l lT f= . The corresponding time index and periodic 
index aren and 5N , respectively (see fig. 5.)  The original waveform is then segmented (in 
the time domain) into equal segments of length 5N . At this point, the averaging begins. 
We average the value of the waveform at time index n , which is within the first segment 
of data, with the values at time indices 5n N+ , 52n N+ , 53n N+ , ...and ( ) 5-1n J N+ , 
where J  is the number of segments into which the waveform was originally divided. 
Thus we take the value at a point in the first segment and average it with all the values at  

Figure 6: Results of Time-domain Periodic Averaging 
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its sister points in each of the other segments.  (Sister points are points separated by an 
integral number of periods.)  This operation is performed for each point within the 
segment. The result of this will be an ensemble composed of the average of the segments 
(see fig. 6).  
 
Like Bartlett’s smoothing, this process takes advantage of the fact that noise is random, 
and therefore the average of the noise will be close to zero.  The average of the periodic 
signal within the waveform will become firm in its value when averaged with its sister 
points on other cycles of the signal.  This is how the periodic time averaging improves 
the signal-to-noise ratio.  It is evident that the whole procedure begins with and hinges 
upon the selection of the frequency to be tested, since that is what determines the period 
which will constitute the segment length and which will cause the signal-to-noise ratio to 
increase when averaging when averaging the sister points of the.  A very exact estimate 
of the signal frequency is required in order to yield useful results. There is another 
extremely important, practical issue concerning implementation of these algorithms 
which has not been considered yet. 
 
Since a digital signal processor will be used to perform the mathematical algorithms 
which have been described, the waveform must be discrete, that is to say that the 
continuous waveform recorded by the hydrophones must be sampled by an analog-to-
digital converter in order to be processed by the digital signal processor.  This means we 
will run into a problem when we try to perform time-domain periodic averaging. The 
time-domain periodic averaging was explained as if a continuous waveform was being 
processed.  A discrete waveform, however, only has value at particular, evenly spaced 
points, and has no value whatsoever between those sample points. The distance between 
points (the sampling period) in the sampled waveform is 1s sT f= , where sf  is the 
sampling frequency used to capture the waveform. It will be impossible to average the 
sister points of the different segments unless tT  (the segment length) is an integral 
multiple of sT . tT  is determined by tf , the frequency for which we wish to test, so we 

must engineer sT  to divide tT  evenly, or in other words, ( ) mod 0t sT T = . This presents 
another problem. Waveforms are sampled by the ADC in real time and all continuous 
data in the waveform are forever lost.  It is impossible to physically resample the original 
waveform, since that waveform represents a sound wave that existed only at the 
particular moment in time that it was sensed by the hydrophones. One possible solution 
to this problem would be to use analog recording techniques such as magnetic tape to 
record the waveform for resampling at a later time.  This would mean the original 
waveform would need to be physically resampled in order to make sT divide tT  evenly 
for each frequency to be tested using periodic time averaging. The amount of processor 
memory and increased time this would require rules it out as a solution. 
  
 
Virtual Resampling: Since it is out of the question to physically resample the waveform 
for every run of the time-domain periodic averaging, a method called virtual resampling 
is used. Virtual resampling is the process of effectively multiplying the sampling 
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frequency, sf  by some factor (possibly non-integral) so that ( ) mod 0t sT aT =  where a is 

the multiplication factor and sf  is the original, physical sampling frequency with which 
the waveform was captured. This method consists of two steps: upsampling and 
downsampling. Upsampling multiplies sf by an integral factor, n , and downsampling 
divides sf by an integral factor,k . Therefore, a n k= .  
  
Upsampling is accomplished by zero padding in the frequency domain. The original, 
sampled waveform is converted to the frequency domain using the radix-2 fast Fourier 
transform.  The resulting magnitude of the FFT is an array of N discrete values.  The 
array length is multiplied by a factor of n by placing an array of ( -1)n N× zeros in the 
middle of the array, separating the first half and second half. This discrete, frequency-
domain representation of the waveform is simply an array of values, except that after the 
zero padding the series of values is no longer associated with specific points on the 
frequency axis. To the DSP, the series of values in the frequency domain is just an array.  
The inverse FFT (IFFT) is then performed on this zero-padded array, and since the length 
of the array in the frequency domain is equal to the length of the array produced by the 
IFFT in the time domain, the number of sample points in the time domain has been 
multiplied by a factor of n  as well.  The length of the time-domain signal in units of 
time, however, remains the same as that of the original waveform.  So now there are n  
times the number of sample points per unit of time there were before upsampling.  
Practically speaking, the resolution of the waveform has been improved by a factor of n  
by reducing the amount of time between samples.  What has been achieved is 
interpolation in the time domain.  The only limit on how finely we can interpolate is the 
amount of memory available to us to store the array after we have enlarged it.             
 
Downsampling is extremely simple.  It consists of decimation of the upsampled 
waveform in the time domain by an appropriate factor,k .  This means that the upsampled 
array is sampled at every k th value.  By upsampling an array and then downsampling the 
resultant array, the original sampling rate has been effectively multiplied by the rational 
factor /n k , thus virtually resampling the original waveform.  As indicated earlier, this 
virtual resampling must be done for every possible, specific frequency that is to be tested 
from the narrow range of possible frequencies given by the results of Bartlett’s 
smoothing. 
 
 
Implementation:  The FFT code used in our algorithm was written in assembly language 
by Analog Devices, the maker of the ADSP-21060 SHARC DSP, and is freely available 
on their website [3]. It is a most efficient, complex, radix-2 FFT implementation on the 
SHARC DSP.  This program was altered in only minor ways to make it callable from 
another program which also runs on the DSP, written in the C programming language.  
The essential operation of the program itself was not changed at all. The most significant 
addition to this assembly code was a context saving routine that enabled it to be called by 
a C program on the DSP. The code for both of these programs is included in the 
Appendix. This second program also generates the sine and cosine factors used in the 
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calculation of the FFT and is under the control of another program which runs on the PC.  
The PC program and the DSP program interact through a two-way handshake scheme. 
 
In order to implement the FFT on the DSP, a memory-mapping file specific to the 
SHARC DSP called a linker definition file had to be custom made.  This code allots the 
internal memory of the DSP with very specific boundaries, specifying the addresses in 
the internal memory of the DSP which each memory segment will occupy.  This file must 
be customized for every different program that is to run on the DSP, which means that it 
also must be customized for different lengths of the FFT.  The code for the linker 
definition file for a 16k FFT is included in the Appendix. 
 
The PC program, also written in C, controls the operation of the DSP through the 
Blacktip PCI (rev. 3) board on which it is mounted. It uses a series of pre-defined 
functions provided by Bittware, the maker of the Blacktip PCI board. These functions 
allow the PC to write and read data to and from any register in the DSP’s memory, as 
well as give the DSP many other commands. The PC program simply downloads the real 
and imaginary arguments of the FFT and the length of the FFT to the specific locations in 
memory where the DSP will look for them and then calls the DSP program to perform the 
FFT. In this implementation, 1k of data is downloaded to the DSP which then 
automatically zero pads the data to a length of 16k, because the default value of allotted 
yet unfilled internal memory blocks on the SHARC is zero. Therefore, the length of the 
FFT that is performed has length 16k. 
 
After the results of the FFT are returned to the C program, the PC program begins the 
ensemble averaging portion of Bartlett’s smoothing.  Only the first half (8192 data points, 
or 8k) of the results are utilized; the other half is redundant due to Hermitian symmetry.  
In order to avoid the square root operation, which is too costly in terms of processing 
time, power spectral densities are used (the square of the magnitude of the FFT.)  
Because of this, the results of the ensemble averaging must be scaled when they are 
analyzed.  After determining the power spectral density (PSD) from the results of one 
FFT, that PSD is summed into an array called the ensemble, which also has a length of 
8k. 
 
An important item to note is that the words “sum” and “average” are being used 
interchangeably, because although the theoretical algorithms call for averaging to be 
performed, only sums are actually performed in this implementation in order to avoid the 
division operation.  The goal of this research is to prove that the Bartlett’s smoothing 
algorithm can be performed in real time, so processing time must be conserved wherever 
possible.  By using sums instead of true averages, the results are scaled by an integer 
factor. 
 
After the ensemble is updated with the results of an arbitrary number of power spectral 
densities (100 in the code example in the Appendix), the ensemble’s signal-to-noise ratio 
is checked. The first step in this process is to determine the maximum value present in the 
ensemble and the array index corresponding to that maximum. After the maximum is 
found, the average of the noise floor is computed (the true average, that is; since this 
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calculation is performed on a relatively infrequent basis, division can be afforded).  In 
this calculation, the points in the array that are close to the maximum are omitted, 
because their values are not indicative of the noise.  From this average, the standard 
deviation of the noise floor is computed. Note that the C language square root function is 
used here; this can be afforded, because it is performed so relatively infrequently.  If the 
difference between the maximum value in the array and the noise floor average is greater 
than or equal to thirty-six times the standard deviation of the noise floor, then a target has 
been detected with greater than 99% confidence, and the frequency of the target is 
computed.  This same method of checking the signal-to-noise ratio is used to check the 
super ensemble.  The super ensemble is the average of an arbitrary number of ensembles 
in the same way that the ensemble is the average of individual PSD’s.  The super 
ensemble indicates the long term signal-to-noise ratio, while individual ensembles 
indicate the short-term signal-to-noise ratio. 
 
MATLAB offers a convenient feature called MEX which allows MATLAB m-files to 
call C program as if they were MATLAB functions [14, 4, 6].  Although MEX was 
initially used to call the PC program, this method turned out to be severely limited in its 
ability to be implemented in real time. The primary reason for this is that MATLAB is a 
single-threaded application and is not currently capable of multi-threading.  This means 
the only way for a MATLAB m-file to utilize the PC program which, in turn, controls the 
DSP was through an explicit function call.  The only information that could be exchanged 
was by MATLAB passing the PC program arguments and receiving arguments in return 
from the function call.  
 
MATLAB offers several desirable features, data collection and data plotting, that warrant 
its use in the development of this algorithm.  It performs data collection through a 
MATLAB program which reads in audio data input to the PC’s sound card through the 
microphone jack and stores that data in a .wav file. MATLAB also has a simple function 
called “wavread” which converts .wav files to array data suitable for digital signal 
processing.  At the end of the Bartlett’s smoothing algorithm, MATLAB’s data plotting 
capability to display discernable results. Another feature called the MATLAB Compiler 
was used call the “wavread” function from the PC program.  The MATLAB Compiler is 
the opposite of MEX; it allows the user to call m-files from C programs as if they were C 
functions.  This functionality was used to get input data from .wav files of periodic 
signals hidden in noise that had been previously recorded, generated using a random 
noise generator and a function generator in the laboratory.   
 
The PC program was written in C using Microsoft Visual C++ 6.0, and the DSP program 
(written in both C and assembly language) was created using the Analog Devices 
VisualDSP Software Development Tools version 2.2. VisualDSP produces an executable 
program file that can be downloaded to and run by the DSP.  
 
The greatest possible length of our radix-2 FFT on the ADSP-21060 is 16,384 (16k) 
because of the size of the internal memory.  A greater length could be achieved if 
external memory were utilized, but the extra time those external memory accesses would 
take is unacceptable for our purposes.  The ADSP-21060 has 4 Mbits of internal memory 
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into which the program code must be stored along with the real and imaginary input and 
output data arrays, and the arrays of sine and cosine factors (used for computing the 
FFT.) Each sinusoidal array is half the length of the FFT, so the total number of 16,384 
element arrays that must be stored is effectively five. Each element of each array is a 32-
bit number in IEEE single-precision, floating-point format. Multiplying 
16384 32 5 × × yields a total data storage of 2.62 Mbits.  Since we are using the radix-2 
FFT for the sake of speed, the FFT length can only be powers of two. It is apparent, then, 
that 16,384 is the greatest possible length of the FFT, because the next greatest length, 
32,768, would require more internal memory than is available on the ADSP-21060, and 
as noted above, we elected to use only internal memory.  
 
To obtain an accurate measurement of the time required for the DSP to compute a single 
FFT (see table I), the programs were configured to compute the same FFT 1,000 times.  
This was done without the MATLAB program, and the input data were read by the PC 
program from data files.  A stopwatch was used to time the completion of these 1,000 
FFT’s with consistent results.  Because of the significant amount of time required by the 
calculation of 1,000 FFT’s, the human error induced by the use of the stopwatch was 
deemed insignificant. The stopwatch was started simultaneously with the keyboard 
command which started the calculation and was stopped by visual cue from the computer 
screen, the disappearance of the execution window indicating that the PC program had 
finished working.  Also, because of the large number of FFT’s, the error from the other 
parts of the program besides the FFT itself was deemed to be within acceptable limits. 
 

 

 
The results of the Bartlett’s smoothing implementation proved that it can be done in real 
time.  Figure 7 shows the results of Bartlett’s smoothing, both the ensemble (M=100) and 
the super ensemble (M=700, or 7 ensembles.)  The program calculated a signal-to-noise 
ratio of 284.108993 for the ensemble, and the detected frequency was 98.632813 Hz.  
The original signal-plus-noise waveform consisted of a 100 Hz, 100 mVp sine wave 
hidden in 300 mVrms noise. To obtain an accurate measurement of the total time required 
for the Bartlett’s smoothing algorithm, a stopwatch method similar to the method used to 
time the FFT was used. The results of these time trials are in table II, and they clearly 
show that the FFT is by far the most time-consuming process in Bartlett’s smoothing 
algorithm.  The rest of the process besides the FFT takes only an additional 5 ms per 1k 

Time Trials for the FFT   
Length (N): 16,384   
Processor: ADSP-21060 SHARC DSP 
Number of FFT's: 1,000 

  Time/s  

Trial 1 40.7
Trial 2 40.7
Trial 3 40.6
Trial 4 40.8
Trial 5 40.7
Average of Trials 40.7
Standard Deviation of Trials 0.0632
Average Time per FFT 0.0407

Table I: Speed of the FFT on 
the SHARC DSP 
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data segment.  This timing measurement includes the time to form 7 ensembles, check the 
signal-to-noise ratio of each one, update the super ensemble each time a new ensemble 
was formed, as well as check the signal-to-noise ratio of the super ensemble each time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                 
 
 
 
 
Conclusion:  The most challenging problem in the signal reconstruction algorithm is to 
perform it in real time without introducing gaps in the acquired data.  The question is, can 
the signals be processed as fast as they are recorded? Thanks to the relatively recent 
advances in DSP technology, the answer is “yes.” Modeling the ocean as a 4 kHz 
bandwidth limited acoustic channel requires data to be sampled at 8 kHz in order to avoid 
aliasing, according to Nyquist theorem [15].  Using this 8 kHz sampling rate, the time 
required to gather 1024 samples of acoustic data is 1,024/8,000 s, or 128 ms. Each set of 
1,024 samples is zero-padded to a length of 16,384. Since each 16,384-point FFT takes 
approximately 41 ms of computation time, 87 ms are left each cycle to complete the 

Figure 7: Experimental Results of Bartlett’s Smoothing, M=100 (top), M=700 (bottom) 
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remainder of the algorithm. The rest of the Bartlett’s smoothing procedure takes up an 
almost negligible amount of additional time, and therefore can be implemented in real 
time by the SHARC DSP. 
 
One severe limitation of the ADSP-21060 is the size of its internal memory which limit 
the size of the FFT.  It was found that this limited size posed the most problems to the 
virtual resampling process, because the size limit of the FFT determines the limit on the 
upsampling factor, n.  With only a 16k FFT, the resolution between possible test 
frequencies obtained from Bartlett’s smoothing is very poor and could pose a significant 
barrier to accurate target characterization. 
 
In order to carry out the entire detection and characterization algorithm in real time, 
parallel DSP’s must be used so that when a target is detected using Bartlett’s smoothing, 
the target characterization task can be handed off to other processors which can 
simultaneously take on that task.  Each processor could take one test frequency and 
perform time-domain periodic averaging for that one frequency.  The processors working 
simultaneously on what could potentially be a long list of frequencies would increase the 
speed at which target characterization happens.  Also, DSP’s with greater internal 
memory than 4Mbits should be used in order to increase the possible length of the FFT. 
 
 
 

Time Trials for Bartlett's Smoothing 
Length of FFT: 16,384 (1024 data + 15360 zeros) 
Number of FFT's: 700 
FFT Processor : ADSP-21060 SHARC DSP 
  

Time/s 

Trial 1 32
Trial 2 32
Trial 3 32
Trial 4 32
Trial 5 32
Average of Trials 32
Standard Deviation of Trials 0
Average Bartlett's Smoothing Time per FFT 0.0457
Average Time for FFT Alone 0.0407
Average Time Added by Bartlett's Smoothing 0.005
 
 
 
 
 
 
 
 
 

Table II: Speed of 
Bartlett’s Smoothing 
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The PC Program 
Subfinder3.c 

 
 
 
 
 
/* Author:  Samuel Peterson   
 Advisors:  Professor Antal Sarkady, CDR Charles Cameron, USN 
 Date:   07 May 2003 
 Organization: United States Naval Academy Electrical and Computer 
    Engineering Department 
 Title:   SubFinder3.c  
 Description:  This program performs Bartlett's smoothing on audio  
    data extracted from a .wav file. Bartlett's smoothing  
    processes a periodic signal masked in noise and determines  
    the approximate frequency of the signal. 
*/                                                                              
 
#include <stdio.h> 
#include <stdlib.h> 
#include "dsp21k.h" 
#include "math.h" 
#include "mex.h" /* mex.h enables this program to be called by MATLAB */ 
 
/*These three are included for the MATLAB compiler*/ 
#include "SamWavreedlib.h" 
#include "matlab.h" 
#include "matrix.h" 
 
 
#define ADSP1_NUM       0       /* assume ADSP number 0 */ 
#define CHUNK   100  /* Number of 1k pieces in the chunk */ 
#define SUPERCHUNK  7  /* Number of chunks in the superchunk */ 
                  
#define DSP2106x_PROGNAME    "SUBFINDERDSP.dxe"  /*  dsp executable */ 
 
 
/* Output Arguments */ 
#define SUPERENSEMBLE  plhs[0] 
#define ENSEMBLE   plhs[1] 
 
 
 
/*---------------------------------------------------------------------------*/ 
static void subfinder(float Ensemble[], float SuperEnsemble[]) 
{ 
 PDSP21K processor1; 
 
 float ReFFTbufINchunk[102400];    
 float ReFFTbufIN[1024]; 
 float oldestEnsemble[8192] = {0}; 
 
 float ensemble1[8192] = {0}; /* Latest Ensemble */ 
 float ensemble2[8192] = {0}; 
 float ensemble3[8192] = {0}; 
 float ensemble4[8192] = {0}; 
 float ensemble5[8192] = {0}; /* Oldest Ensemble */ 
 
 float PSD[8192]; 
 float ReFFTbufOUT[16384], ImFFTbufOUT[16384]; 
 float maxValue = 0; 
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 int N = 1024; 
 int maxIndex = 0; 
 float noiseFloorAverage = 0; 
 float variance = 0; 
 float StdDev = 0; 
 float SEmaxValue = 0; 
 int SEmaxIndex = 0; 
 float SEnoiseFloorAverage = 0; 
 float SEvariance = 0; 
 float SEstdDev = 0; 
 float x = 0; 
 float xSE = 0; 
 float targetFrequency = 0; 
 float SNR; 
 int Fftcount = 0; 
 
 int a, b, c, d, e, f, g, h, i, j, k, l, m1, m2, n, p, q, r, s, z; 
 int kSE, gSE, fSE, dSE, nSE, m1SE, m2SE; 
 
    unsigned int eN = (unsigned int)(N*16); /* Length of FFT */ 
    unsigned int heN = (unsigned int)N;  /*Length of unpadded data segment*/ 
 
    mxArray *x_ptr; 
    mxArray *y_ptr; 
    double *y; 
    double ret; 
 
 
 
 /********************************************************/ 
 /* Read in data from a .wav file using a MATLAB program */ 
 /********************************************************/ 
    /* Create an mxArray to input into mlfSamWavreed */ 
    x_ptr = mxCreateString("100sec-100mv-sin-100Hz-300mVrms-Noise.wav"); 
 
    /* Call the library initialization function */ 
    SamWavreedlibInitialize();  
  
    /* Call the implementation function */ 
    y_ptr = mlfSamwavreed(x_ptr); 
     
    /* Call the library termination function */ 
    SamWavreedlibTerminate(); 
 
    /* The return value from mlfSamWavreed is an mxArray so we must extract the  
  data from it */ 
    y = mxGetPr(y_ptr); 
    ret = *y; 
 /************************************************************************/ 
 
 
 /*************/ 
 /* DSP setup */ 
 /*************/ 
 /* Open the DSP processor */ 
 if ((processor1 = dsp21k_open(ADSP1_NUM)) == NULL) 
 { 
   printf("problem opening processor number ADSP#%d\n", ADSP1_NUM); 
   exit(1); 
 } 
 
 /* Reset the board.*/ 
 dsp21k_reset_bd( processor1 ); 
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 /* Configure the processor.*/ 
 dsp21k_cfg_proc( processor1 ); 
 
 /* download the dsp program on processor #1 */ 
 if( !dsp21k_dl_exe(processor1, DSP2106x_PROGNAME) ) 
 { 
   printf("problem downloading %s\n", DSP2106x_PROGNAME); 
   exit(1); 
 } 
      
 /*Start the DSP program*/ 
 dsp21k_start( processor1 ); 
 /*************************************************************************/ 
 
 
 /* Break up 500k data superchunk into 100k pieces.  
  Process the superchunk, creating a super ensemble. */ 
 for(z=0; z < SUPERCHUNK; z++){  
 
  for(q=0; q < 102400; q++){ 
 
   ReFFTbufINchunk[q] = (float)y[(q+(102400*z))];  
                                                            /* Copy 100k of data into*/  
  }                                                  /*   appropriate array */ 
 
      
  /*Break up the 100k data chunk into 1k pieces 
  Process the chunk, creating an ensemble.*/ 
  for(j=0;j<CHUNK;j++){ 
 
   for(i=0;i<1024;i++){ 
 
      ReFFTbufIN[i] = ReFFTbufINchunk[(i+(1024*j))]; 
   } 
 
   /******************************/ 
   /* interact with processor #1 */ 
   /******************************/   
   /*Download input arrays to the processor memory.*/ 
   dsp21k_dl_flts(processor1, dsp21k_get_addr(processor1, "_redata"),        
           heN, ReFFTbufIN); 
 
 
 
   /****************** Two-Way Handshakes *****************/ 
 
   /* Set PCflag. */ 
   dsp21k_dl_int(processor1, dsp21k_get_addr(processor1, "_PCflag"), 1); 
   /* Wait for the DSPflag to be set true. */ 
   while (!dsp21k_ul_int(processor1, dsp21k_get_addr(processor1,  
           "_DSPflag"))); 
   /* Lower the PCflag in response. */ 
   dsp21k_dl_int(processor1, dsp21k_get_addr(processor1, "_PCflag"), 0); 
   /* Wait for the DSPflag to be lowered. */ 
   while (dsp21k_ul_int(processor1, dsp21k_get_addr(processor1,  
           "_DSPflag"))); 
   /* Two-way Handshake completed. */ 
 
    
   /* Wait for DSPdone flag to be set true */ 
   while (!dsp21k_ul_int(processor1, dsp21k_get_addr(processor1,  
           "_DSPdone"))); 
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   /* Set the PCdone flag in response. */ 
   dsp21k_dl_int(processor1, dsp21k_get_addr(processor1, "_PCdone"), 1); 
   /* Wait for the DSPdone flag to be lowered. */ 
   while (dsp21k_ul_int(processor1, dsp21k_get_addr(processor1,  
           "_DSPdone"))); 
   /* Lower the PCdone flag in response. */ 
   dsp21k_dl_int(processor1, dsp21k_get_addr(processor1, "_PCdone"), 0); 
   /* Another Two-way handshake completed. */ 
    
   /* upload the results */ 
   dsp21k_ul_flts(processor1, dsp21k_get_addr(processor1, "_refft"), eN, 
           ReFFTbufOUT); 
   dsp21k_ul_flts(processor1, dsp21k_get_addr(processor1, "_imfft"), eN, 
           ImFFTbufOUT); 
   /* done interacting with processor */ 
   /***********************************/ 
 
       
   /*Ensemble Averaging*/ 
   for(h=0; h < 8192 ; h++){ 
 
          
      /*Calculate Power Spectral Density*/ 
      PSD[h] = (ReFFTbufOUT[h])*(ReFFTbufOUT[h]) +    
        (ImFFTbufOUT[h])*(ImFFTbufOUT[h]); 
         
      /*Add the PSD to the running sum. The division operation in  
    ensemble averaging will be omitted, because it is too costly in 
    terms of processing time. */ 
      Ensemble[h] = Ensemble[h] + PSD[h]; 
   } 
 
   Fftcount++; 
 
   /* If every 1k piece of the chunk has been analyzed,  
   set the exit flag so that the FFT stops repeating*/ 
   if(j==(CHUNK)){ 
        
      dsp21k_dl_int(processor1, dsp21k_get_addr(processor1, "_exitFlag"), 
             1);
     
   } 
  } 
 
 
       
 
 /**********************************************************************************
/ 
  /* Check the signal-to-noise ratio of the Ensemble. */ 
 
 /**********************************************************************************
/ 
     
  /* Determine max value and find frequency index corresponding to max value. 
*/ 
  maxValue = Ensemble[0]; 
  maxIndex = 0; 
 
  for(k=1; k < 8192; k++){   
 
   if(Ensemble[k] > maxValue){ 
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      maxValue = Ensemble[k]; 
      maxIndex = k; 
   }  
  } 
 

/* Calculate upper and lower limits of range of frequency indeces. The value 
16 is equal to 2.048 x 7.8125. The value 2.048 is equal to 8192/(8000/2), 
assuming that 8 KHz is the sampling rate of the original data. The value 
7.8125 is equal to 1/.128, where .128 is the sampling window in seconds for 
1024 data points assuming a sampling rate of 8 KHz. */ 

  m1 = maxIndex - 16; 
  m2 = maxIndex + 16; 
       

/* If the max frequency index is less than 16, then less than 32 samples need 
to be excluded from the noise floor average. The noise floor average will 
include those samples after m2, so only samples from m2 and below will be 
excluded in the average. */ 

  if(maxIndex < 16){ 
 
   for(r=m2; r < 8192; r++){ 
 
    noiseFloorAverage = noiseFloorAverage + Ensemble[r];  
 
   } 
 
   noiseFloorAverage = noiseFloorAverage/(8192 - m2); 
 
  }else{  
 
      

/* Determine noise floor average value (excluding values close to the 
 max.) */ 

   for(g=0; g < m1; g++){ 
 
    noiseFloorAverage = noiseFloorAverage + Ensemble[g];  
   } 
 
   for(l=m2; l < 8192; l++){ 
 
    noiseFloorAverage = noiseFloorAverage + Ensemble[l];  
   } 
 

noiseFloorAverage = noiseFloorAverage/8160;  /*8192 - 32 = 8160  There 
       are 32 points around 
and        including the maxValue 
       that are not including 
       in this calculation.*/
       

  } 
        
  
 
  /* Calculate standard deviation of noise floor. */ 
  for(s=0; s < m1; s++){ 
 
     x = Ensemble[s] - noiseFloorAverage; 
     variance = variance + x*x; 
  } 
 
  for(n=m2; n < 8192; n++){ 
 
     x = Ensemble[n] - noiseFloorAverage; 
     variance = variance + x*x; 
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  } 
        
  variance = variance/8160; 
  StdDev = (float)sqrt(variance);  
 
  /* Give the user the SNR based on the current ensemble */ 
  SNR = (maxValue - noiseFloorAverage)/(StdDev); 
  printf("Signal-to-Noise Ratio is %f (Peak Power/Mean Noise Power)\n", SNR);  
        
 
  /* If the difference between the max value and the noise floor average is 
  greater than or equal to 36x the standard deviation of the noise floor, then 
  stop and identify target. (if the square of the difference is at least 1296 
  times the variance. 1296 = 36^2)*/ 
  if((maxValue - noiseFloorAverage) >= 36*(StdDev)){ 
 
     /* Stop and identify target. The number 0.48828125 is equal to the  
   sampling frequency (8 kHz) divided by 2, then divided by the length of 
   the Ensemble. This is the way to correlate the frequency with the  
   frequency index, and it is described in the paper with the equation in 
   the Bartlett's Smoothing block diagram. */ 
   targetFrequency = maxIndex*(0.48828125); 
   mexPrintf("Target Detected in Ensemble.\nTarget Frequency: %f Hz\n", 
           targetFrequency); 
   mexPrintf("Signal-to-Noise Ratio is %f (Peak Voltage/RMS Noise)\n", 
            SNR); 
   mexPrintf("Number of FFT's: %i \n", Fftcount); 
 
  }      
 
 
  /* Update the Super Ensemble by subtracting out the oldest ensemble and  
  adding in the newest one.*/ 
  for(p=0; p<8192; p++){ 
       
   SuperEnsemble[p] = (SuperEnsemble[p] - oldestEnsemble[p]) +  
           
 Ensemble[p]; 
 
  } 
 
  /* Update the list of recent ensembles */ 
 
  for(a=0; a < 8192; a++){ 
   
   oldestEnsemble[a] = ensemble5[a]; 
  } 
 
   
  for(b=0; b < 8192; b++){ 
   
   ensemble5[b] = ensemble4[b]; 
  } 
 
  for(c=0; c < 8192; c++){ 
   
   ensemble4[c] = ensemble3[c]; 
  } 
 
  for(d=0; d < 8192; d++){ 
   
   ensemble3[d] = ensemble2[d]; 
  } 
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  for(e=0; e < 8192; e++){ 
   
   ensemble2[e] = ensemble1[e]; 
  } 
 
 
  for(f=0; f < 8192; f++){ 
   
   ensemble1[f] = Ensemble[f]; 
  } 
 
  /*********************************************************/ 
  /* Check the signal-to-noise ratio of the Super Ensemble */ 
  /*********************************************************/ 
      
  /* Determine max value and find frequency index corresponding to max value. 
*/ 
  SEmaxValue = SuperEnsemble[0]; 
  SEmaxIndex = 0; 
 
  for(kSE=1; kSE < 8192; kSE++){   
 
   if(SuperEnsemble[kSE] > SuperEnsemble[kSE-1]){ 
 
      SEmaxValue = SuperEnsemble[kSE]; 
      SEmaxIndex = kSE; 
   } 
  } 
 
  /* Calculate upper and lower limits of range of frequency indeces. The value 
  16 is equal to 2.048 x 7.8125. The value 2.048 is equal to 8192/(8000/2), 
  assuming that 8 KHz is the sampling rate of the original data. The value  
  7.8125 is equal to 1/.128, where .128 is the sampling window in seconds for 
  1024 data points assuming a sampling rate of 8 KHz. */ 
  m1SE = SEmaxIndex - 16; 
  m2SE = SEmaxIndex + 16; 
      
  /* Determine noise floor average value (excluding values close to the max.) 
*/ 
  for(gSE=0; gSE < m1SE; gSE++){ 
 
     SEnoiseFloorAverage = SEnoiseFloorAverage + SuperEnsemble[gSE];  
  } 
 
  for(fSE=m2SE; fSE < 8192; fSE++){ 
 
   SEnoiseFloorAverage = SEnoiseFloorAverage + SuperEnsemble[fSE];  
  } 
 
  SEnoiseFloorAverage = SEnoiseFloorAverage/8160;  /*8192 - 32 = 8160  There 
          are 32 points around 
and           including the 
maxValue           that are not 
included  
          in this calculation.*/
       
 
 
  /* Calculate standard deviation of noise floor. */ 
  for(dSE=0; dSE < m1SE; dSE++){ 
 
     xSE = SuperEnsemble[dSE] - SEnoiseFloorAverage; 
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     SEvariance = SEvariance + xSE*xSE; 
  } 
        
  for(nSE=m2SE; nSE < 8192; nSE++){ 
 
     xSE = SuperEnsemble[nSE] - SEnoiseFloorAverage; 
     SEvariance = SEvariance + xSE*xSE; 
  } 
    
  SEvariance = SEvariance/8160; 
  SEstdDev = (float)sqrt(SEvariance); 
        
 
  /* If the difference between the max value and the noise floor average is 
  greater than or equal to 36x the standard deviation of the noise floor, then 
  stop and identify target. (if the square of the difference is at least 1296 
  times the variance. 1296 = 36^2)*/ 
  if((SEmaxValue - SEnoiseFloorAverage) >= 36*(SEstdDev)){ 
 
 
   /* Stop and identify target. The number 0.48828125 is equal to the 
   sampling frequency (8 kHz) divided by 2, then divided by the length of 
   the Ensemble. This is the way to correlate the frequency with the  
   frequency index, and it is described in the paper with the equation in 
   the Bartlett's Smoothing block diagram. */ 
   targetFrequency = SEmaxIndex*(0.48828125); 
   printf("Target Detected in Super Ensemble.\nTarget Frequency: %f  
          Hz\n", 
targetFrequency); 
  } 
 
 }     
       
 /* close the processors ==============================================*/ 
 dsp21k_close(processor1); 
  
}; 
 
 
 
/*This function is required, by name, in a mex file with the exact arguments shown.*/ 
void mexFunction( 
 int nlhs, 
 mxArray *plhs[], 
 int nrhs, 
 const mxArray *prhs[] ) 
{ 
  
 /*Declare all of the arguments passed into the subfinder function.*/ 
 float *SuperEnsemble, *MyEnsemble; 
 
 
  
 /*Check for the correct number of input and output arguments.*/ 
 if (nrhs != 0) 
    mexErrMsgTxt("Subfinder requires no input arguments."); 
    else if (nlhs !=  2)  
    mexErrMsgTxt("Subfinder requires five output arguments."); 
 
 
 MyEnsemble = mxCalloc(8192, sizeof(mxSINGLE_CLASS)); 
 
 /* Create a matrix for the return arguments.*/  
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 ENSEMBLE = mxCreateNumericMatrix(1, 8192, mxSINGLE_CLASS, mxREAL); 
 SUPERENSEMBLE = mxCreateNumericMatrix(1, 8192, mxSINGLE_CLASS, mxREAL); 
 
 /* Assign pointers to the various parameters  */ 
 
 mxFree(mxGetData(ENSEMBLE)); 
 mxSetData(ENSEMBLE, MyEnsemble); 
 SuperEnsemble = (float *)mxGetData(SUPERENSEMBLE); 
 
 
 
 
 /* Do the actual computations in the subfinder program */ 
    subfinder(MyEnsemble, SuperEnsemble);  
    return; 
 
} 
 
/* END OF SUBFINDER3.C */ 
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MATLAB M-file 
RunSubfinder3.m 

 
% RunSubfinder3.m 
% This program plots the data from the Bartlett’s smoothing algorithm performed on the  
% PC and SHARC DSP.  
% Prof. Antal A. Sarkady, Dec,10,2002 
% Midshipman Samuel P.A. Peterson, 07 May 2003 
% 
 
TheEnsemble = single(zeros(1,8192)); 
SuperEnsemble = single(zeros(1,8192)); 
 
 
%This is a MEX function call. The MEX file is Subfinder3.c 
[SuperEnsemble, TheEnsemble] = Subfinder3; 
 
% 
Ts = 1/8000;                    % Sampling Period. 
Mfft = 16;                      % Zero-padding factor. 
Ngs = 1024;                     % Length of each FFT before zero-padding. 
df=(1/Mfft)*(1/Ts)/Ngs;           % Frequency increment 
f=0:df:df*((Mfft/2)*Ngs-1);       % Frequency scale, Pos. freq. only 
 
%t_s=['S/Nv=',num2str(SNv),', M=',int2str(M),', Est f1=', num2str(Fmax),' Hz']; 
 
subplot(2,1,1); plot(f, TheEnsemble); axis([0 250 0 5000000]); xlabel('Frequency, Hz');  
 ylabel('Power'); title('t_s'); grid; 
subplot(2,1,2); plot(f, SuperEnsemble); axis([0 250 0 5000000]); xlabel('Frequency, 
 Hz'); ylabel('Power'); title('t_s'); grid; 
 
 
 
 
% END OF RUNSUBFINDER.M 
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DSP C Program 
SubFinderDSP.c 

 
 
/*__________________________________________________________________________ 
SubFinderDSP.C     
 
Interface program which is called by a C program on the PC and then calls  
an assembly routine.  
 
*/ 
 
/*This header file is included for twiddle factor generation.*/ 
#include <math.h> 
 
/*Function  protoype*/ 
void fftrad2(void); 
 
/* Global variables (and one macro) used in the computation of the FFT*/ 
#define N 16384 /*Length of FFT*/ 
 
float extern sine[N/2]; 
float extern cosine[N/2]; 
 
int DSPdone = 0; 
int PCdone =0; 
int PCflag, DSPflag; 
int exitFlag = 0; 
 
/**********************************************************/ 
 
int main( void ) 
{ 
 
 
  
 /******** Twiddle Factor Generation, adapted from TWIDRAD2.C,18-FEB-91,  
  Steven Cox, Analog Devices DSP Div.*************/ 
  
   int k; 
   int n = N/2; 
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   float freq; 
   float pi; 
  
   /* initialize pi */ 
   pi = 4.0*atan(1.0); 
  
   freq=2.0*pi*0.5/(float)n; 
   for (k=0; k <= n-1; k++) 
   { 
     sine[k]=sin((float)k * freq); 
     cosine[k]=cos((float)k * freq); 
   } 
 /* Done with twiddle factor generation*/ 
  
  
 /* Do not stop doing FFT's until told so by the PC program which will set the  
  exitFlag when it's time. */ 
 while(!exitFlag){ 
 
 
  /*******************************************************************/ 
  /*************************Two-way Handshake*************************/ 
  /*******************************************************************/ 
  /*Wait for the PCflag to be set*/ 
  while(!PCflag); 
  /*Set the DSP flag*/ 
  DSPflag = 1; 
  /*Wait for the PCflag to be lowered*/ 
  while(PCflag); 
  /*Lower the DSP flag*/ 
  DSPflag = 0; 
  /*Two-way handshake completed*/ 
  
  
  fftrad2(); /*Call the FFT*/ 
   
 
  /***********Another Two-way handshake************/ 
  /* The FFT is done, so set DSPdone flag. */ 
     DSPdone = 1; 
     /* Wait for the PCdone flag. */ 
  while(!PCdone); 
  /* Lower the DSPdone flag. */ 
  DSPdone = 0; 
  /* Wait for the PCdone flag to be lowered. */ 
  while(PCdone); 
  /* Another Two-way handshake complete*/ 
 
 } 
  
    exit( 0 ); 
} 
 
//********************************************************* 
 
// End of file SubFinderDSP.c 
 
//********************************************************* 
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DSP Assembly Program 
SubFinderDSP.asm 

 
 
 
/*___________________________________________________________________________ 
SubFinderDSP.ASM    ADSP-21060 Radix-2 DIT Complex Fast Fourier Transform 
 
Calculates a radix-2 FFT. The FFT length (N) must be a power of 2 and a  
minimum of 32 points. Input data is not destroyed during the course of this  
routine. The input and output arrays are normal ordered. The real array is  
stored in DM, the imaginary array is stored in PM. The real twiddle factors  
are in an N/2 long Cosine table stored in PM, and the imaginary twiddle  
factors are in an N/2 long Sine Table in stored in DM. The twiddle factors  
are generated by the program TWIDRAD2. 
 
To implement a inverse FFT, one only has to (1) swap the real and imaginary 
of the incoming data, (2) take the forward FFT, (3) swap the real and 
imaginary of the outgoing data, and (4) scale the data by 1/N. 
 
Author:   10-SEP-90, Kapriel Karagozian, Analog Devices DSP Div.(617) 461-3672 
Version:  25-APR-91, Ronnin Yee, Steven Cox 
       26-MAY-93, Steven Cox, in FSTAGE drain pipe without dummy dm access 
      14-DEC-93, Cleaned up format, added benchmarks 
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      15-JUL-01, Michael Hennerich, bitreversed addressing mode for  
    DAG2 implemented, Last Stage usage of complex   
    conjugated twiddel pairs N/4 apart implemented 
    07-MAY-03, Samuel Peterson, USNA, adapted code with context  
    saving to be called from a C program. 
 
Calling Parameters: 
    pm(cosine[N/2]) - real twiddle factors from TWIDRAD2 program 
    dm(sine[N/2])   - imaginary twiddle factors from TWIDRAD2 program 
    dm(redata[N])    - real input array, bitreversed to a working array 
    pm(imdata[N])    - imaginary input array, bitreversed to a working array 
 
    (Note: Because the bit reversed address mode is used with the arrays 
    _refft and _imfft, they must start at addresses that are integer 
    multiples of the length (N) of the transform, (i.e. 0,N,2N,3N,...). 
    This is accomplished by specifing two segments starting at those addresses 
    in the architecture file and placing the variables alone in their 
    respective segments. These addresses must also be reflected in the 
    preprocessor variables ORE and OIM in bit reversed format.) 
 
Return Values: 
    dm(_refft[N])   - real working array and output 
    pm(_imfft[N])   - imaginary working array and output 
     
Altered Registers: 
    Most I, M, L, and R registers. 
    Three levels of loop nesting. 
 
Benchmarks: Radix-2, complex with bit reversal 
 
    FFT Length    cycles   ms @ 25 MHz CLK  ms @ 33 MHz CLK  ms @ 40 MHz CLK 
    ----------    ------   ---------------  ---------------  --------------- 
  64           940        .038             .028             .024 
 128          1946        .078             .059             .049 
 256          4184        .167             .127             .105 
 512          9142        .366             .277             .229 
    1024         20052       .802             .608             .501 
    2048         43890      1.756            1.330            1.097 
    4096         95632      3.825            2.898            2.391 
    8192         207282     8.291            6.281            5.182 
 
   First 2 Stages    - 8 cycles per 4 (radix-2) butterflies 
   Middle Stages     - 4 cycles per butterfly 
   2nd to Last Stage - 9 cycles per 2 butterflies 
   Last Stage        - 9 cycles per 2 butterfly groups 
 
Memory Usage: 
    pm code = 176 words, pm data = 2.5*N words, dm data = 2.5*N words 
____________________________________________________________________________*/ 
 
 
/* Include for symbolic definition of system register bits */ 
#include "def21060.h" 
 
#include <asm_sprt.h> 
 
/*_________The constants below must be changed for different length FFTs______ 
N        = number of points in the FFT, must be a power of 2 
STAGES   = log2(N) 
BRMODIFY_DM = bitrev(32 bit N/2) 
BRMODIFY_PM = bitrev(24 bit N/2) 
ORE      = bitrev(32 bit addr of input real in dm), addr is 0,N,2N,3N,... 
OIM      = bitrev(24 bit addr of input imag in pm), addr is 0,N,2N,3N,... 
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____________________________________________________________________________*/ 
 
#define N               16384 
#define STAGES          14 
#define BRMODIFY_DM     0x00040000 
#define BRMODIFY_PM     0x000400 
 
#define ORE             0x0000c000 
#define OIM             0x000240 
 
/*________These constants are independent of the number of points___________*/ 
#define BFLY8           4       /*Number of bttrfly in a group of 8*/ 
 
.SEGMENT/DM             seg_dmda; 
.VAR    _redata[N];   /* input real array */ 
.GLOBAL _redata; 
.VAR    _refft[N];         /* real result */ 
.GLOBAL _refft; 
.VAR    _sine[N/2];       /*imag twiddle factors, from TWIDRAD2 */ 
.GLOBAL _sine; 
.ENDSEG; 
 
 
.SEGMENT/PM             seg_pmda; 
.VAR    _imdata[N]; /* input image array */ 
.GLOBAL _imdata; 
.VAR    _imfft[N];      /*imag result*/  
.GLOBAL _imfft; 
.VAR    _cosine[N/2];   /* real twiddle factors, from TWIDRAD2 */ 
.GLOBAL _cosine; 
.ENDSEG; 
 
 
 
.SEGMENT/PM             seg_pmco; 
 
 
 
.GLOBAL _fftrad2; /*SP: I saw this global declaration in sample programs*/ 
 
/*_______________________________begin FFT__________________________________*/ 
 
StartFFT:  call _fftrad2; 
stop:   idle; 
 
_fftrad2:  /* SP added underscore, which is necessary to interface with C*/ 
 
    leaf_entry;  
 
/* 
 Need to save all registers used by the FFT routine here. This section of 
 code imitates the save_reg macro on page 2-88 of the VDSP C-compiler 
 Guide and reference. Also based on an example in EE-134, an engineer to 
 engineer note published by Analog Devices (p.2,3). That document tells 
 how to do C-runtime stack context switching for the registers in DAG1 by 
 first saving each register to a general purpose register. 
*/ 
 puts=r0; 
 r0=b0; 
 puts=r0; 
 r0=b1; 
 puts=r0; 
 r0=b2; 
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 puts=r0; 
 r0=b3; 
 puts=r0; 
 r0=b4; 
 puts=r0; 
 puts=b8; 
 puts=b9; 
 puts=b10; 
 puts=b11; 
 puts=b12; 
 puts=b13; 
 puts=b14; 
 
 r0=l0; 
 puts=r0; 
 r0=l1; 
 puts=r0; 
 r0=l2; 
 puts=r0; 
 r0=l3; 
 puts=r0; 
 r0=l4; 
 puts=r0; 
 puts=l8; 
 puts=l9; 
 puts=l10; 
 puts=l11; 
 puts=l12; 
 puts=l13; 
 puts=l14; 
 
 r0=m0; 
 puts=r0; 
 r0=m1; 
 puts=r0; 
 r0=m2; 
 puts=r0; 
 r0=m4; 
 puts=r0; 
 puts=m8; 
 puts=m9; 
 puts=m10; 
 puts=m11; 
 puts=m12; 
 puts=m13; 
 puts=m14; 
 
 r0=i0; 
 puts=r0; 
 r0=i1; 
 puts=r0; 
 r0=i2; 
 puts=r0; 
 r0=i3; 
 puts=r0; 
 r0=i4; 
 puts=r0; 
 puts=i8; 
 puts=i9; 
 puts=i10; 
 puts=i11; 
 puts=i12; 
 puts=i13; 
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 puts=i14; 
 
 puts=f0; 
 puts=f1; 
 puts=f2; 
 puts=f3; 
 puts=f4; 
 puts=f5; 
 puts=f6; 
 puts=f7; 
 puts=f8; 
 puts=f9; 
 puts=f10; 
 puts=f11; 
 puts=f12; 
 puts=f13; 
 puts=f14; 
 puts=f15; 
 
 puts=r2; 
 puts=r3; 
 puts=r4; 
 puts=r5; 
 puts=r9; 
 puts=r10; 
 puts=r13; 
 puts=r15; 
 
 
 bit set mode1 BR0;  /* enable bit reverse of i0 */ 
 bit set mode1 BR8; /* enable bit reverse of i8 */ 
 b8=OIM;    /* Points to input imaginary array */ 
 b0=ORE;          /* Points to input real array to be read in */ 
 l8=0; 
 l0=0; 
 m0=BRMODIFY_DM;        /* Modifier for bitreverse counter*/ 
 m8=BRMODIFY_PM;     /* Modifier for bitreverse counter*/ 
  
  
 
 r0=_done;   
 r0=0;*/ 
 
   /* bit reversed order */ 
 b2=_refft; 
 l2=N;       /* Circ pointer limits loopend pointer overflow */ 
 m1=1;       /* This loop increments forward +1*/ 
 
 b10=_imfft; 
 l10=N;      /* Circ pointer limits loopend pointer overflow */ 
 m10=1; 
     
 /*Do the first two stages (actually a radix-4 FFT stage)*/ 
 
      f0=dm(i0,m0),   f1=pm(i8,m8); 
      f2=dm(i0,m0),   f3=pm(i8,m8); 
  f0=f0+f2,       f2=f0-f2,       f4=dm(i0,m0),   f5=pm(i8,m8); 
  f1=f1+f3,       f3=f1-f3,       f6=dm(i0,m0),   f7=pm(i8,m8); 
  f4=f6+f4,       f6=f6-f4; 
  f5=f5+f7,       f7=f5-f7; 
  f8=f0+f4,       f9=f0-f4; 
  f10=f1+f5,      f11=f1-f5; 
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lcntr=N/4-1,  do FSTAGE until lce;    /* do N/4 simple radix-4 butterflies */ 
  f12=f2+f7,      f13=f2-f7,      f0=dm(i0,m0),   f1=pm(i8,m8); 
  f14=f3+f6,      f15=f3-f6,      f2=dm(i0,m0),   f3=pm(i8,m8); 
  f0=f0+f2,       f2=f0-f2,       f4=dm(i0,m0),   f5=pm(i8,m8); 
  f1=f1+f3,       f3=f1-f3,       f6=dm(i0,m0),   f7=pm(i8,m8); 
  f4=f6+f4,       f6=f6-f4,       dm(i2,m1)=f8,   pm(i10,m10)=f10; 
  f5=f5+f7,       f7=f5-f7,       dm(i2,m1)=f12,  pm(i10,m10)=f14; 
  f8=f0+f4,       f9=f0-f4,       dm(i2,m1)=f9,   pm(i10,m10)=f11; 
FSTAGE: f10=f1+f5,      f11=f1-f5,      dm(i2,m1)=f13,  pm(i10,m10)=f15; 
 
 
  f12=f2+f7,      f13=f2-f7; /* change on 5/26/93, drain pipe*/ 
  f14=f3+f6,      f15=f3-f6; /* without out of range dm xfer*/ 
      dm(i2,m1)=f8,   pm(i10,m10)=f10; 
      dm(i2,m1)=f12,  pm(i10,m10)=f14; 
      dm(i2,m1)=f9,   pm(i10,m10)=f11; 
      dm(i2,m1)=f13,  pm(i10,m10)=f15; 
 
    /*middle stages loop */ 
 
 bit clr mode1 BR0;     /*finished with bitreversal*/ 
 bit clr mode1 BR8;    /*finished with bitreversal*/ 
 
 b8=_imfft; 
 l8=N; 
  
 b0=_refft; 
 l0=N;       /* Circ pointer limits loopend pointer overflow */ 
 b1=_sine; 
 l1=@_sine; 
 
 b9=_cosine; 
 l9=@_cosine; 
 b11=_imfft; 
 l11=N;      /* Circ pointer limits loopend pointer overflow */ 
 
 m0=-BFLY8; 
 m1=-N/8; 
 m2=-BFLY8-1; 
 m9=-N/8; 
 m11=-1; 
 
 r2=2; 
 r3=-BFLY8;           /*initializes m0,10 - incr for butterf branches*/ 
 r5=BFLY8;            /*counts # butterflies per a group */ 
 r9=(-2*BFLY8)-1;     /*initializes m12 - wrap around to next grp + 1*/ 
 r10=-2*BFLY8;        /*initializes m8 - incr between groups */ 
 r13=-BFLY8-1;        /*initializes m2,13 - wrap to bgn of 1st group */ 
 r15=N/8;             /*# OF GROUPS IN THIRD STAGE*/ 
 
 f1=dm(i1,m1),   f7=pm(i9,m9); /*set pointers to tables to 1st coeff. */ 
 
lcntr=STAGES-4, do end_stage until lce; /*# OF STAGES TO BE HANDLED = LOG2N-4*/ 
 m8=r10; 
 m10=r3; 
 m12=r9; 
 i0=_refft+N-1; 
 i2=_refft+N-1; 
 i8=_imfft+N-1; 
 i10=_imfft+N-1; 
 i11=_imfft+N-1; 
 r15=r15-r2,     m13=r13;        /*CALCULATE # OF CORE */ 
     /*BFLIES/GROUP IN THIS STAGE*/ 
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          f0=dm(i1,m1),   
f7=pm(i8,m8); 
f12=f0*f7,                              f6=dm(i0,m0),   f1=pm(i9,m9); 
f8=f1*f6,                                               modify(i11,m10); 
f11=f1*f7,                                              f7=pm(i8,m8); 
f14=f0*f6,  f12=f8+f12,                 f8=dm(i0,m0); 
f12=f0*f7,  f13=f8+f12, f10=f8-f12,     f6=dm(i0,m0);    
 
/*Each iteration does another set of bttrflys in each group*/ 
 
lcntr=r5,   do end_group until lce;    /*# OF BUTTERFLIES/GROUP IN THIS STAGE*/ 
 
/*core butterfly loop*/ 
 
lcntr=r15,  do end_bfly until lce;     /*Do a butterfly in each group - 2*/ 
    f8=f1*f6,   f14=f11-f14,                    dm(i2,m0)=f10,  f9=pm(i11,m8); 
    f11=f1*f7,  f3=f9+f14,      f9=f9-f14,      dm(i2,m0)=f13,  f7=pm(i8,m8); 
    f14=f0*f6,  f12=f8+f12,                     f8=dm(i0,m0),   pm(i10,m10)=f9; 
end_bfly: 
    f12=f0*f7,  f13=f8+f12,     f10=f8-f12,     f6=dm(i0,m0),   pm(i10,m10)=f3; 
 
/*finish up last bttrfly and set up for next stage*/ 
 
f8=f1*f6,               f14=f11-f14,    dm(i2,m0)=f10,  f9=pm(i11,m8); 
f11=f1*f7,  f4=f9+f14,  f9=f9-f14,      dm(i2,m0)=f13,  f14=pm(i8,m11); 
f14=f0*f6,  f12=f8+f12,                 f8=dm(i0,m2),   pm(i10,m10)=f9; 
f13=f8+f12, f10=f8-f12,          f0=dm(i1,m1),   
f7=pm(i8,m8);/*dm:sin*/ 
   f14=f11-f14,          dm(i2,m0)=f10,  
f9=pm(i11,m12); 
  /*start on next butterfly in each group*/ 
f12=f0*f7,  f3=f9+f14,  f9=f9-f14,      f6=dm(i0,m0),   f1=pm(i9,m9);/*pm:cos*/ 
f8=f1*f6,                               dm(i2,m2)=f13,  pm(i10,m10)=f4; 
f11=f1*f7,                                              pm(i10,m10)=f9; 
f14=f0*f6,  f12=f8+f12,                 f8=dm(i0,m0),   f7=pm(i8,m8); 
end_group: 
f12=f0*f7,  f13=f8+f12, f10=f8-f12,     f6=dm(i0,m0),   pm(i10,m13)=f3; 
 
      
     r4=r15+r2,          i1=b1;       /*PREPARE R4 FOR #OF BFLIES CALC*/ 
     r15=ashift r4 by -1;             /*# OF BFLIES/GRP IN NEXT STAGE*/ 
     r4=-r15,            i9=b9; 
     m1=r4;                                /*update inc for sin & cos */ 
     m9=r4; 
     r5=ashift r5 by 1,  f1=dm(i1,m1);     /*update # bttrfly in a grp*/ 
     r3=-r5;                               /*   inc for bttrfly branch*/ 
     r13=r3-1,           m0=r3;            /*   wrap to 1st grp       */ 
     r10=ashift r3 by 1, f7=pm(i9,m9);     /*   inc between grps      */ 
end_stage:  r9=r10-1,           m2=r13;           /*   wrap to grp +1        */ 
 
/*_________ next to last stage__________*/ 
 m1=-2;                  /*modifier to sine table pntr    */ 
 m8=r10;                 /*incr between groups            */ 
 m9=-2;                  /*modifier to cosine table pntr  */ 
 m10=r3;                 /*incr between bttrfly branches  */ 
 m12=r9;                 /*wrap around to next grp + 1    */ 
 m13=r13;                /*wrap to bgn of 1st group       */ 
 
 i0=_refft+N-1; 
 i1=_sine+(N/2)-2;        /*pntr to 1st sine coeff         */ 
 i2=_refft+N-1; 
 i8=_imfft+N-1; 
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 i9=_cosine+(N/2)-2;      /*pntr to 1st cosine coeff       */        
 i10=_imfft+N-1; 
 i11=_imfft+N-1; 
          f0=dm(i1,m1),   
f7=pm(i8,m8); 
f12=f0*f7,                              f6=dm(i0,m0),   f1=pm(i9,m9); 
f8=f1*f6,                                               modify(i11,m10); 
f11=f1*f7,                                              f7=pm(i8,m12); 
f14=f0*f6, f12=f8+f12,                  f8=dm(i0,m0); 
f12=f0*f7, f13=f8+f12,  f10=f8-f12,     f6=dm(i0,m0);                            
 
/*Do the N/4 butterflies in the two groups of this stage*/ 
 
lcntr=N/4,  do end_group2 until lce;     
    f8=f1*f6,                   f14=f11-f14,    dm(i2,m0)=f10,  f9=pm(i11,m8); 
    f11=f1*f7,  f3=f9+f14,      f9=f9-f14,      dm(i2,m0)=f13,  f1=pm(i9,m9); 
    f14=f0*f6,  f12=f8+f12,                     f8=dm(i0,m2),   pm(i10,m10)=f9; 
 f13=f8+f12, f10=f8-f12,          f0=dm(i1,m1),   
f7=pm(i8,m8); 
    f12=f0*f7,                  f14=f11-f14,    f6=dm(i0,m0),   f9=pm(i11,m12); 
 
    f8=f1*f6,   f3=f9+f14,      f9=f9-f14,      dm(i2,m0)=f10,  pm(i10,m10)=f3; 
    f11=f1*f7,                                  dm(i2,m2)=f13,  pm(i10,m10)=f9; 
    f14=f0*f6, f12=f8+f12,                      f8=dm(i0,m0),   f7=pm(i8,m12); 
end_group2: 
    f12=f0*f7, f13=f8+f12,      f10=f8-f12,     f6=dm(i0,m0),   pm(i10,m13)=f3; 
 
 
/*   The last stage      */ 
 
 
 i1=_sine;        /*pntr to 1st sine coeff         */  
 i9=_cosine;      /*pntr to 1st cosine coeff       */ 
 m2=N/2;                 
 m0=(N/2)+1;  /* modifier */ 
 m4=1; 
 m14=1; 
 i0=_refft+N/2;  /*pntr to REAL X0,X1*/ 
 i2=_refft;   /*pntr to REAL X0',X1'*/ 
 i8=_imfft+(N/2);  /*pntr to REAL X0,X1*/ 
 i10=_imfft;   /*pntr to IMAG Y0',Y1'*/ 
 i11=_imfft;    /*pntr to IMAG Y0*/ 
 b3=_refft; 
 b4=_refft; 
  
 b12=_imfft;   /* base register for 2nd butterfly*/ 
 b13=_imfft; 
 b14=_imfft;  
 i3=_refft+(3*N/4); /*2nd bttrfly pntr to REAL X0,X1*/ 
 i4=_refft+(N/4);  /*2nd bttrfly pntr to REAL X0,X1*/ 
 i12=_imfft+(3*N/4); /*2nd bttrfly pntr to REAL X0,X1*/ 
 i13=_imfft+(N/4); /*2nd bttrfly pntr to IMAG Y0',Y1'*/ 
 i14=_imfft+(N/4); /*2nd bttrfly pntr to IMAG Y0*/ 
 l3=N; 
 l4=N; 
 l12=N; 
 l13=N; 
 l14=N; 
 
 
 /*start first bttrfly*/ 
 
f6=dm(i0,m2)/*X1*/  ,f7=pm(i8,m14);/*Y1*/ 
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f0=dm(i1,m4)/* sin */ ,f1=pm(i9,m14);/* cos */ 
f8=f1*f6,/*CX1*/  m10=m0; 
f12=f0*f7,/*SY1*/ m13=m2; 
f11=f1*f7/*CY1*/ ,f12=f8+f12 /*CX1+SY1*/ ,f10=dm(i0,m0)/*X0*/ 
,f9=pm(i11,m14);/*Y0*/ 
f14=f0*f6/*SX1*/ ,f6=dm(i3,m2)/*X1*/ ,f7=pm(i12,m14); /*Y1*/  
f8=f0*f6, f15=f11-f14; 
f12=f1*f7, f13=f10+f12 ,f4=f10-f12;  
  
/*do two bttrflys in one loop with single twiddle fetch*/ 
/*use complex conjugated twiddel pairs N/4 appart    */ 
lcntr=N/4 , do last_stage until lce; 
f11=f0*f7,  f3=f9+f15, f2=f9-f15,  f10=dm(i3,m0),
 f9=pm(i14,m14); 
f14=f1*f6,  f12=f8-f12,     f6=dm(i0,m2), f7=pm(i8,m14); 
/*single twiddel fetch*/    f0=dm(i1,m4), 
 f1=pm(i9,m14); 
f8=f1*f6,  f15=f11+f14,     dm(i2,m2)=f13,
 pm(i10,m13)=f3; 
f12=f0*f7, f4=f10+f12 ,f13=f10-f12, dm(i2,m0)=f4,   pm(i10,m10)=f2;  
f11=f1*f7, f2=f9+f15, f3=f9-f15,  f10=dm(i0,m0),
 f9=pm(i11,m14); 
f14=f0*f6, f12=f8+f12,     f6=dm(i3,m2), 
 f7=pm(i12,m14); 
f8=f0*f6,  f15=f11-f14,     dm(i4,m2)=f13,
 pm(i13,m13)=f3;  
last_stage: f12=f1*f7, f13=f10+f12 ,f4=f10-f12,  dm(i4,m0)=f4,
 pm(i13,m10)=f2; 
 
/* 
 Restore all registers used by the FFT. 
*/ 
 
 r15=gets(1); 
 r13=gets(2); 
 r10=gets(3); 
 r9=gets(4); 
 r5=gets(5); 
 r4=gets(6); 
 r3=gets(7); 
 r2=gets(8); 
  
 f15=gets(9); 
 f14=gets(10); 
 f13=gets(11); 
 f12=gets(12); 
 f11=gets(13); 
 f10=gets(14); 
 f9=gets(15); 
 f8=gets(16); 
 f7=gets(17); 
 f6=gets(18); 
 f5=gets(19); 
 f4=gets(20); 
 f3=gets(21); 
 f2=gets(22); 
 f1=gets(23); 
 f0=gets(24); 
  
 i14=gets(25); 
 i13=gets(26); 
 i12=gets(27); 
 i11=gets(28); 
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 i10=gets(29); 
 i9=gets(30); 
 i8=gets(31); 
 r0=gets(32); 
 i4=r0; 
 r0=gets(33); 
 i3=r0; 
 r0=gets(34); 
 i2=r0; 
 r0=gets(35); 
 i1=r0; 
 r0=gets(36); 
 i0=r0; 
 
 m14=gets(37); 
 m13=gets(38); 
 m12=gets(39); 
 m11=gets(40); 
 m10=gets(41); 
 m9=gets(42); 
 m8=gets(43); 
 r0=gets(44); 
 m4=r0; 
 r0=gets(45); 
 m2=r0; 
 r0=gets(46); 
 m1=r0; 
 r0=gets(47); 
 m0=r0; 
  
 l14=gets(48); 
 l13=gets(49); 
 l12=gets(50); 
 l11=gets(51); 
 l10=gets(52); 
 l9=gets(53); 
 l8=gets(54); 
 r0=gets(55); 
 l4=r0; 
 r0=gets(56); 
 l3=r0; 
 r0=gets(57); 
 l2=r0; 
 r0=gets(58); 
 l1=r0; 
 r0=gets(59); 
 l0=r0; 
 
 b14=gets(60); 
 b13=gets(61); 
 b12=gets(62); 
 b11=gets(63); 
 b10=gets(64); 
 b9=gets(65); 
 b8=gets(66); 
 r0=gets(67); 
 b4=r0; 
 r0=gets(68); 
 b3=r0; 
 r0=gets(69); 
 b2=r0; 
 r0=gets(70); 
 b1=r0; 
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 r0=gets(71); 
 b0=r0; 
 r0=gets(72); 
  
 alter(72);  /*all context restored*/  
 
leaf_exit;    /*finished*/ 
/* exit; */ 
/*_______________________________________________________________________*/ 
.ENDSEG; 
 
 
/* END OF SUBFINDERDSP.ASM */ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DSP Linker Definition File 
SubFinderDSP_ADSP_21060.ldf 

 
 
 
ARCHITECTURE(ADSP-21060) 
 
// 
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// ADSP-21060 Memory Map: 
//   ------------------------------------------------ 
//   Internal memory  0x0000 0000 to 0x0007 ffff 
//   ------------------------------------------------ 
//                    0x0000 0000 to 0x0000 00ff  IOP Regs 
//                    0x0000 0100 to 0x0001 ffff  (reserved) 
//           Block 0  0x0002 0000 to 0x0002 ffff  Normal Word (32/48) Addresses 
//                   (0x0002 0000 to 0x0002 9fff) 48-bit words 
//                   (0x0002 0000 to 0x0002 ffff) 32-bit words 
//           Block 1  0x0003 0000 to 0x0003 ffff  Normal Word (32/48) Addresses 
//                   (0x0003 0000 to 0x0003 9fff) 48-bit words 
//                   (0x0003 8000 to 0x0003 ffff) 32-bit words 
//           Block 0  0x0004 0000 to 0x0005 ffff  Short Word (16) Addresses 
//           Block 1  0x0006 0000 to 0x0007 ffff  Short Word (16) Addresses 
//   ------------------------------------------------ 
//   Multiproc memory 0x0008 0000 to 0x003f ffff 
//   ------------------------------------------------ 
//                    0x0008 0000 to 0x000f ffff  SHARC ID=001 Internal memory 
//                    0x0010 0000 to 0x0017 ffff  SHARC ID=010 Internal memory 
//                    0x0018 0000 to 0x001f ffff  SHARC ID=011 Internal memory 
//                    0x0020 0000 to 0x0027 ffff  SHARC ID=100 Internal memory 
//                    0x0028 0000 to 0x002f ffff  SHARC ID=101 Internal memory 
//                    0x0030 0000 to 0x0037 ffff  SHARC ID=110 Internal memory 
//                    0x0038 0000 to 0x003f ffff  SHARC ID=all Internal memory 
//   ------------------------------------------------ 
//   External memory  0x0040 0000 to 0xffff ffff 
//   ------------------------------------------------ 
// 
// This architecture file allocates: no, it doesn't, I need to update this 
//         Internal 256 words of run-time header in memory block 0 
//                  256 words of initialization code in memory block 0 
//                  36K words of C code space in memory block 0 
//                 3.5K words of C PM data space in memory block 0 
//                  32K words of C DM data space in memory block 1 
//                   8K words of C heap space in memory block 1 
//                   8K words of C stack space in memory block 1 
 
SEARCH_DIR( $ADI_DSP\21k\lib ) 
 
// The lib060.dlb must come before libc.dlb because libc.dlb has some 21020 
// specific code and data 
$LIBRARIES = lib060.dlb, libc.dlb; 
 
// Libraries from the command line are included in COMMAND_LINE_OBJECTS. 
$OBJECTS = 060_hdr.doj, $COMMAND_LINE_OBJECTS; 
 
MEMORY 
{ 
 seg_rth  { TYPE(PM RAM) START(0x00020000) END(0x0002008f) WIDTH(48) } 
 seg_rsti { TYPE(PM RAM) START(0x00020090) END(0x000200ff) WIDTH(48) } 
 seg_init { TYPE(PM RAM) START(0x00020100) END(0x0002010f) WIDTH(48) } 
 seg_pmco { TYPE(PM RAM) START(0x00020110) END(0x00021fff) WIDTH(48) } 
 seg_pmda { TYPE(PM RAM) START(0x00024000) END(0x0002ffff) WIDTH(32) } 
 
 seg_dmda { TYPE(DM RAM) START(0x00030000) END(0x0003bfff) WIDTH(32) } 
 seg_heap { TYPE(DM RAM) START(0x0003c000) END(0x0003dfff) WIDTH(32) } 
 seg_stak { TYPE(DM RAM) START(0x0003e000) END(0x0003ffff) WIDTH(32) } 
} 
 
 
 
PROCESSOR p0 
{ 
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    LINK_AGAINST( $COMMAND_LINE_LINK_AGAINST) 
    OUTPUT( $COMMAND_LINE_OUTPUT_FILE ) 
 
    SECTIONS 
    { 
  // .text output section 
  seg_rsti 
  { 
   INPUT_SECTIONS( $OBJECTS(seg_rsti) $LIBRARIES(seg_rsti)) 
  } >seg_rsti 
 
  seg_rth 
  { 
   INPUT_SECTIONS( $OBJECTS(seg_rth) $LIBRARIES(seg_rth)) 
  } >seg_rth 
 
  seg_init 
  { 
   INPUT_SECTIONS( $OBJECTS(seg_init) $LIBRARIES(seg_init)) 
  } >seg_init 
 
  seg_pmco 
  { 
   INPUT_SECTIONS( $OBJECTS(seg_pmco) $LIBRARIES(seg_pmco)) 
  } >seg_pmco 
   
 
  seg_pmda 
  { 
   INPUT_SECTIONS( $OBJECTS(seg_pmda) $LIBRARIES(seg_pmda)) 
  } >seg_pmda 
 
  seg_dmda 
  { 
   INPUT_SECTIONS( $OBJECTS(seg_dmda) $LIBRARIES(seg_dmda)) 
  } > seg_dmda 
 
  stackseg 
  { 
 
   // allocate a stack for the application 
   ldf_stack_space = .; 
   ldf_stack_length = MEMORY_SIZEOF(seg_stak); 
  } > seg_stak 
 
  heap 
  { 
   // allocate a heap for the application 
   ldf_heap_space = .; 
   ldf_heap_end = ldf_heap_space + MEMORY_SIZEOF(seg_heap) - 
1; 
   ldf_heap_length = ldf_heap_end - ldf_heap_space;         
  } > seg_heap 
   
    } 
} 
 
// END OF SUBFINDERDSP_ADSP_21060.LDF 
 


