RECONSTRUCTION OF PERIODIC SONAR SIGNALSHIDDEN IN
WIDEBAND NOISE USING ENSEMBLE AVERAGING AND MULTI-RATE DSP

Midshipman Samuel P.A. Peter son, Class of 2003
Professor Antal A. Sarkady
Commander CharlesB. Cameron, USN

United States Naval Academy
Electrical and Computer Engineering Department
Annapolis, Maryland 21412

Abstract: The reconstruction of periodic acoustical Sgnas with time-domain periodic
averaging requires ardiable esimate of the fundamenta frequency (f;) of thesgnd. The
recongtruction task is particularly difficult when the sgnd is“hidden” in additive noise
and the Sgnd-to-noiseratioispoor. Thisisusualy the case in most passive SONAR
problems when early detection and characterization of targetsisrequired. Statigticaly
reliable estimates of the fundamenta frequency of anoisy periodic signd can be
computed in the frequency domain using Bartlett’s smoothing procedure. In this
procedure, along, noisy Sgnd is segmented into M mutually exclusve time segments
and a power spectra estimate for each segment is computed. Spectra estimates are
ensamble-averaged to enhance the signal power and reduce the residual spectral variance
of the additive noise. In Bartlett’s smoothing procedure the spectral line detection

efficiency improveswith /M when M > 50.

The Bartlett’s smoothing procedure merely provides a range of vaues for the
fundamenta frequency within arange of four times the sandard deviation of the
embedded periodic Sgndl. In the reconstruction phase, the recorded noisy signd is
reused to obtain one or more cycles of the“clean” signal. In the recongtruction
procedure, the noisy sgnd is ssgmented into J mutudly exdusive time segments, each
exactly T secondsin length. Ensemble averaging in the time domain of these segments

recovers the required “clean” sgnd with an enhancement efficiency of[J when J >50
and when the proper value of T isused. Becausein most problemsthe correct vaue of T
is not known, the enhancement procedure is iterated over arange of four timesthe
gandard deviation and that iteration which provides the maximum signa-to-noiseratio is
declared the winner. For proper enhancement, an integer number of sample points must
occur in T, for each choice of T. This requires anew sampling rate be used on the origina
time sequence for each choice of T. The resampling is efficiently achieved usng an FFT
interpolation technique. The agorithms are optimized for the SHARC ADSP-21060 DSP
hardware and can be used in red time applications.

Key Words: Bartlett’s smoothing; downsampling; DSP program; MEX; PC program,
gder points; time-domain periodic averaging; virtua resampling.

Introduction: Inorder for a submarine to detect another submarine submerged beneeth
the ocean, it must ordinarily clearly identify the presence of a distinctive periodic

acoudtic Sgnd in the water, originating from the enemy submarine. The ocean, however,
isan extremdy noisy environment. Ambient acoudtic noise from animd life, ships,
weether, and other sources can drown out the oftentimes-faint periodic acoustic
sgnatures of submarines. These periodic Sgnatures can come from machinery in the
target submarine rotating or operating in some other periodic fashion. For example, the
shaft which turns the screws of the vessdl in order to prope it through the water may
provide such an acoustic Sgnature.

Target Detection with Bartlett’s Smoothing: The noisy acoustica voltage or current
waveform, v(t) , observed a aremote listening sight can dways be modeled in the time
domain as the superposition of two events:

v(t) =s(t) +n(t)

where s(t) isthe sgnd arriving from a distant source and n(t) isthe ambient ocean

noise. When these two events are mutudly orthogond (i.e. the cross-correlation [1, 15,
11] of s(t) and n(t) is zero), then the power spectrum of the noisy waveform, P, (w), is:

R W) =R W) +F,(w)

where P,(w) and P,(w) arethe power spectra of the clean sgnd and the noise,
respectively [7, 15]. In most sonar problems, the assumption of orthogondity has been
found to be vdid [15]. A smilar statement can be made for the magnitude spectra of
these events.

Aw)=AWw)+ A W)

The detection of adistant target must be based on statigticaly rdliable spectra estimates.
A relidble esimate is one that is not unduly subject to random variations. The Satigtica
reliability of spectra estimates (power or magnitude) can be improved by a procedure
cdled Bartlett’s smoothing. The signd enhancement is assured by the centra limit
theorem [10, 7, 15] and provides improvement in the Sgnd-to-noise ratio.

The mathematica dgorithm known as Bartlett’s smoothing (seefig. 4) [7] isused to
average out the noise component of the waveform so that only thesgnd isleft. Inthis
procedure, along, noisy sSgnd is segmented into M mutudly excdusive time segments

and amagnitude spectra estimate for each segment is computed. A typica segment of
unpadded, noisy data made up of a0.1V peak, 100 Hz snewave hiddenin 1.0V RMS
noise with even digtribution is shown in fig. 1. Each sample data segment (element of the
time-domain ensemble) is zero padded in the time domain (at the end), extending its
length from 1,028 samples to 16,384 samples before performing the

1)

2

3

Time Segment or Record m = 10

15 |1.|| |“ . 1 A “u 7

1 I

0.5 5

Sig+Noise in Vols
o
1

-0.5

-1.5

'|1r||||||||| IImER T

-2
18 18.5 19 19.5 20 20.5
Time in Sec.

Figure 1: 0.1 Vpeak, 100 Hz snusoid hidden in 1.0 Vyms NOise.

complex, radix-2 fast Fourier transform (FFT). Zero padding in the time domain
(increasing the data length by afactor of 16), reduces the picket-fence effect [2] in the
frequency domain and improves the frequency resolution by afactor of 16 [11, 9, 13, 12].
In Bartlett’ s smoothing procedure, ensemble averaging produces spectrd line
enhancement, while reducing spectra variance due to additive noise. In this procedure,

spectral-line detection efficiency improves as JM when M >50 (wWhereM isthe
number of dementsin the ensemble). A spectral-estimate based on M =10isshownin
fig. 2. Note that the 100 Hz spectrd line just barely emerges from the noise with a
ggnd-to-noise voltage ratio (SNv) of 4.3662. In taking thisratio the signal is expressed
in peak voltage, whereas the noise is expressed in RM S voltage. Compare thisto the
spectral-estimate based on a M =40 (shown in fig. 3) where the Sgnd-to-noiseratio is
6.4896 and the 100 Hz spectrd line more clearly rises out of the noise floor. A higher
ggnd-to-noise ratio yields a greater target detection confidence. The SNv of 6.4896
gives gpproximately 98% detection confidence and only a 2% chance that the spectra
lineisdueto adatigticd anomay [7, 8, 5].

S/Nv=4.3662, M=10, Est f1=100.0671 Hz, USNA, 2003/1/9 15:19, fold-2

(2]
o

(%))
(5]

wn
o

IS
4l

N
o

Hl.k. \.. | | il h N ‘ “ l”.il

Av. Mag-Spectrum
w w
o (5]

N
(53]

N
o

=
(53]

=
o

50 100 150 200 250
Frequency in Hz.

S/Nv=6.4896, M=40, Est f1=100.0061 Hz, USNA, 2003/1/9 15:23, fold-2
55

50

45

B
o

Vi

0 50 100 150 200 250
Frequency in Hz.

w
(53]

Av. Mag-Spectrum

I
1

w
o
-

ke

® "1’||' e

20

Figure 2 (top): Results of Bartlett’s Smoothing, M =10, S/Nv = 4.3662
Figure 3 (bottom): Results of Bartleit's Smoothing, M =40, S/Nv = 6.4896

The exact frequency of the Sgnd must be known in order to identify the source of the
sgnd. The question now arises. how can the frequency andysis be refined in order to
pinpoint the sgnd’ s frequency with a sufficient degree of accuracy? There is another
frequency analysis process cdled time-domain periodic averaging which can test a
waveform for the presence of a periodic sgna with a specified fundamenta frequency.
What, then, was the utility of Bartlett’s smoothing? Why did we not just perform time-
domain periodic averaging in thefirg place? The answer isthat periodic time averaging
only tests for one specific frequency, reveding the strength of that frequency done. The
overd| frequency range in which a contact's frequency might fal istoo large to Smply
test dl possble frequencies. That would be inefficient and would consume more
processing time than can be afforded for the proposed red time gpplication. Instead,
Bartlett’s smoothing procedure is used as afirst and continuoudy running method of
detection of a contact, aswell as away to narrow the range of possible frequenciesto a
practical size once that contact is detected.

A good andlogy for the interaction of Bartlett' s smoothing and time-domain periodic
averaging isthat of alookout on aship. That lookout has two tools available to him for
detecting and identifying a contact a sea: his naked eyes and hisbinoculars. First, he
uses his naked eyes, which cannot see a contact as clearly as with the binoculars, to scan
the entire angular range for which heis responsible. He keeps scanning with the naked
eye until he detects that a contact is present, at which time he uses his binoculars to scan
only that smal region where the contact was seen. His binoculars will dlow him to
examineasmdl areain detail and to accurately identify the contact. Bartlett’s smoothing
corresponds to the naked eye in this analogy, and time-domain periodic averaging
corresponds to the set of binoculars. If the lookout congtantly scanned only small areas
with his binoculars, he might not detect a contact until it was too late to avoid a collison
or maybe until the contact |eft the visud identification area. Just as the lookout is
condrained by the time it would take him to scan the entire horizon bit by bit with
binoculars, we are constrained by processing speedsin the digital signa processor which
isat the center of thisresearch.

Bartlett’s smoothing will run continuoudy until it finds something condusve. After
averaging a pecified number of segments together, the agorithm finds the maximum
point of the ensemble. If the difference between the noise floor and the maximum is not
at least thirty-Sx times the standard deviation of the noise floor of the ensemble, our
implementation of Bartlett’s smoothing repests the process, continuing to average new
segments into the ensemble. If thistest is eventually passed, the signd-to-noiseratio is
great enough to determine with confidence that a periodic Signd is present in the noise.
The reason for the number thirty-gix isthat it isthe square of Sx, the Sgnd-to-noise ratio
which indicates the presence of atarget with greater than 90% confidence. We process
the results of Bartlett’'s smoothing in terms of power (vice magnitude), because the square
root operation required to compute magnitude is too cosily in terms of processing time
(seefig. 4.) Theorthogondity of signa and noise makes this possible (see Egs. (2) and
(3).) Let the frequency corresponding to the maximum magnitude of the ensenble be
fm- Thequestion now becomes how to determine the frequency range around f ., to

be tested by the time-domain periodic averaging. Let the beginning and end of the

frequency range to be tested by the time-domain periodic averaging be f,and f,

respectively (seefig. 4.)

Signal+Noise = v(n) sampled at f,
During Time Window T,
A 4
Divide v(n) into K segments v(n),
Lengthv(n),] =N, N, =104 k=0

|

Zero Pad v(n), until N, =16" N,

Length[v(n),] = N,

V(m), =FFT{v(n) 4

A

P(M), =RV (M)]+ MV (1)]
Length[P(r) J =N, :

N, =

72
Average New Segment Into Ensemble
R(m) - R,(m)+P(m),

|

k- k+1

Doesk =10 ?

Yes
v

k-0

|

No——»

v
Calculate upper and lower

limit of range of
possible frequencies and

frequency indices.

f=f_ -1T,

f,=f +1/T,
N

=f —3
m=h f./2
N

=f —
™=t T2

|

Determine Std. Deviation, s,
of noise floor of the Ensemble,
excluding values betweenm, and m,

4—No

Determine Ensemble Max Value, P

? 7 max

.

Find frequency index, m__,,
Corresponding to P,

DoesP, =36"s ?

Yes

v

Makelist of L test
frequencies, f,,
between f, and f,

AEI£L)

l

Virtual
Resampling

Figure 4. Bartlett's Smoothing Procedure

Suppose that after recording waveforms of acoustic noise in the ocean for awhile,
Bartlett’s smoothing procedure tells us that there is a contact out there somewhere
because a periodic signa within the range of 99-101 Hz has been detected. Now, we
must teke that waveform and perform the periodic time averaging operation on it for
specific frequencies between 99 and 101 Hz, for example 99.0, 99.5, 100.0, 100.5, and

Virtual Resampling «—

A 4

Test Frequency, f, = 1/T,
Divide v(n) into J segments v(n)
OEj£J-1
Length[v(n)] =N,
Length[v(n) ;] =Ny =N,/J

Y
Calculate N, averages of sister points:

v(n) +V(n+ N5)+v(n+ 2N5) +
~Av(n+(J-)N)

A 4

Calculate and store
SNR of Ensemble

eSS

Have dl of thet

Figure5: Time-domain
Periodic Averaging

Note Thevdueof Jis
determined fromN, , T, and
T, , whereT,isthe new
sample period according to
the following equetion:

_ N,

T, J

S

5

frequencies, f, No-»

been tested?

Yes

Find the Maximum SNR

in stored list and declare

the corresponding frequecy)
the winner.

101.0 Hz. The periodic time averaging procedure dlows us to test the waveform for the
strength of one particular frequency, so we must perform it over and over for each
distinct frequency we wish to test for.

Target | dentification with Time-domain Periodic Averaging: Now that atarget has
been detected with a high degree of confidence, we can proceed with the target
characterization and identification phase. Our method of target characterization isto
recongtruct one cycle of the periodic Sgnd using time-domain periodic averaging. This
processis performed using the same original time series data dready used in the
Bartlett’ s smoothing procedure. The reconstructed cycle will be used as atemplate for
target identification. In order to recongtruct the sgnd, its fundamenta frequency must be
known beforehand; this information is obtained from Bartlett’ s smoothing procedure.
Thefirg sep in the time-domain periodic averaging procedure[10, 15, 1] (seefig. 5) is
to take one of the frequencies, f,, from thelist of possible frequencies provided by
Bartlett’s smoothing and then segment the originad waveform into sesgments with length
equd to the corresponding period, T, =1/ f, . The corresponding time index and periodic
index aren and N, respectively (seefig. 5.) Theorigind waveform is then segmented (in
the time domain) into equal segments of length N, . At this point, the averaging begins.
We average the vaue of the waveform at timeindex n, which iswithin the first ssgment
of deta, with the values a timeindicesn + Ny, n+2Ng, n+3N;, ..andn+(J-1) N,

where J isthe number of ssgmentsinto which the waveform was origindly divided.
Thus we take the vaue a a point in the first ssgment and average it with dl the vaues at

M=10000, Vs=0.1Vp, Vn=1Vrms, USNA 2003/1/9 15:30, fold,2

0.15

M.\/\ V\J
YA
Wl L7

-0.1 _\] v

Recovered Signal in Volts

-0.15

-0.2

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Time in sec.

Figure 6: Results of Time-domain Periodic Averaging

itsSigter pointsin each of the other segments. (Sister points are points separated by an
integral number of periods.) This operation is performed for each point within the
segment. The result of thiswill be an ensemble composed of the average of the segments
(seefig. 6).

Like Bartlett’' s smoothing, this process takes advantage of the fact that noise is random,
and therefore the average of the noise will be close to zero. The average of the periodic
sgnd within the waveform will become firm in its value when averaged with its Sster
points on other cycles of the sgna. Thisis how the periodic time averaging improves
the sgnd-to-noiseretio. It isevident that the whole procedure begins with and hinges
upon the selection of the frequency to be tested, since that is what determines the period
which will condtitute the segment length and which will cause the Sgnd-to-noise ratio to
increase when averaging when averaging the sster points of the. A very exact etimate
of the signd frequency isrequired in order to yield useful results. Thereis another
extremely important, practical issue concerning implementation of these dgorithms
which has not been considered yet.

Since adigitd sgnd processor will be used to perform the mathematica dgorithms
which have been described, the waveform must be discrete, that isto say that the
continuous waveform recorded by the hydrophones must be sampled by an analog-to-
digital converter in order to be processed by the digital signa processor. This meanswe
will run into a problem when we try to perform time-domain periodic averaging. The
time-domain periodic averaging was explained asif a continuous waveform was being
processed. A discrete waveform, however, only has vaue at particular, evenly spaced
points, and has no vaue whatsoever between those sample points. The distance between
points (the sampling period) in the sampled waveformis T, =1/ f, , where f isthe
sampling frequency used to capture the waveform. It will beimpossible to average the
sster points of the different ssgments unless T, (the segment length) is an integral

multiple of T,. T, isdetermined by f,, the frequency for which we wish to test, so we
must engineer T, to divide T, evenly, or in other words, T, mod (T,) =0. This presents
another problem. Waveforms are sampled by the ADC in red time and al continuous
data in the waveform are forever logt. It isimpossible to physicaly resample the origind
waveform, since that waveform represents a sound wave that existed only at the
particular moment in time that it was sensed by the hydrophones. One possible solution
to this problem would be to use anaog recording techniques such as magnetic tape to
record the waveform for resampling at alater time. Thiswould mean the origind
waveform would need to be physically resampled in order to make T divide T, evenly
for each frequency to be tested using periodic time averaging. The amount of processor
memory and increased time this would require rules it out as a solution.

Virtual Resampling: Sinceit isout of the question to physicdly resample the waveform
for every run of the time-domain periodic averaging, amethod called virtud resampling
isused. Virtua resampling isthe process of effectively multiplying the sampling

frequency, f, by some factor (possibly nonrintegral) so thet T, mod (aT,) =0 where ais
the multiplication factor and f, isthe origind, physicad sampling frequency with which

the waveform was captured. This method consists of two steps: upsampling and
downsampling. Upsampling multiplies f by an integrd factor, n, and downsampling
divides f by an integrd factor, k . Therefore, a=n/k.

Upsampling is accomplished by zero padding in the frequency domain. The origind,
sampled waveform is converted to the frequency domain using the radix- 2 fast Fourier
transform. The resulting magnitude of the FFT isan array of N discrete values. The
array length ismultiplied by afactor of nby placing anaray of (n-1)” N zerosinthe
middle of the array, separaing the first haf and second half. This discrete, frequency-
domain representation of the waveform issmply an array of vaues, except that after the
zero padding the series of valuesis no longer associated with specific points on the
frequency axis. To the DSP, the series of valuesin the frequency domainisjust an array.
Theinverse FFT (IFFT) isthen performed on this zero-padded array, and since the length
of the array in the frequency domain is equa to the length of the array produced by the
I[FFT in the time domain, the number of sample pointsin the time domain has been
multiplied by afactor of n aswell. The length of the time-domain Sgnd in units of

time, however, remains the same as that of the origind waveform. So now thereare n
times the number of sample points per unit of time there were before upsampling.
Practicaly spesking, the resolution of the waveform has been improved by afactor of n
by reducing the amount of time between samples. What has been achieved is
interpolation in the time domain. The only limit on how finey we can interpolate isthe
amount of memory available to usto store the array after we have enlarged it.

Downsampling is extremely smple. It conssts of decimation of the upsampled

waveform in the time domain by an appropriate factor,k . This means that the upsampled
aray issampled at every k' vaue. By upsampling an array and then downsampling the
resultant array, the original sampling rate has been effectively multiplied by the retiond
factor n/k, thusvirtudly resampling the origind waveform. Asindicated earlier, this
virtua resampling must be done for every possible, specific frequency that is to be tested
from the narrow range of possible frequencies given by the results of Bartlett's

smoothing.

Implementation: The FFT code used in our agorithm was written in assembly language
by Andog Devices, the maker of the ADSP-21060 SHARC DSP, and isfredy available
on their webgte [3]. It isamogt efficient, complex, radix-2 FFT implementation on the
SHARC DSP. This program was dtered in only minor ways to make it callable from
another program which aso runs on the DSP, written in the C programming language.
The essentid operation of the program itself was not changed at dl. The most Sgnificant
addition to this assembly code was a context saving routine that enabled it to be called by
a C program on the DSP. The code for both of these programs isincluded in the
Appendix. This second program aso generates the sine and cosine factors used in the

10

caculation of the FFT and is under the control of another program which runs on the PC.
The PC program and the DSP program interact through a two-way handshake scheme.

In order to implement the FFT on the DSP, a memory-mapping file specific to the
SHARC DSP cdled alinker definition file had to be cussom made. This code dlotsthe
internad memory of the DSP with very specific boundaries, specifying the addressesin
the internd memory of the DSP which each memory segment will occupy. Thisfile mugt
be customized for every different programthat is to run on the DSP, which meansthat it
aso must be customized for different lengths of the FFT. The code for the linker
definition filefor a 16k FFT isincluded in the Appendix.

The PC program, also written in C, controls the operation of the DSP through the
Blacktip PCI (rev. 3) board on which it is mounted. It uses a series of pre-defined
functions provided by Bittware, the maker of the Blacktip PCI board. These functions
alow the PC to write and read datato and from any register in the DSP s memory, as
well as give the DSP many other commands. The PC program smply downloads the red
and imaginary arguments of the FFT and the length of the FFT to the specific locationsin
memory where the DSP will look for them and then cals the DSP program to performthe
FFT. Inthisimplementation, 1k of datais downloaded to the DSP which then
automatically zero pads the data to alength of 16k, because the default value of alotted
yet unfilled internd memory blocks on the SHARC is zero. Therefore, the length of the
FFT that is performed has length 16k.

After the results of the FFT are returned to the C program, the PC program begins the
ensemble averaging portion of Bartlett’s smoothing. Only the first half (8192 data points,
or 8k) of theresults are utilized; the other half is redundant due to Hermitian symmetry.
In order to avoid the square root operation, which istoo costly in terms of processing
time, power spectrd dengties are used (the square of the magnitude of the FFT.)
Because of this, the results of the ensemble averaging must be scaled when they are
andyzed. After determining the power spectra dendty (PSD) from the results of one
FFT, that PSD is summed into an array called the ensemble, which also has alength of
8k.

An important item to note is that the words “sum” and “average’” are being used
interchangesbly, because dthough the theoreticd dgorithms cdl for averaging to be
performed, only sums are actually performed in this implementation in order to avoid the
divison operation. The god of this research isto prove that the Bartlett’ s smoaothing
agorithm can be performed in red time, so processing time must be conserved wherever
possble. By using sumsingtead of true averages, the results are scaled by an integer
factor.

After the ensembleis updated with the results of an arbitrary number of power spectral
dengties (100 in the code example in the Appendix), the ensemble’s signd-to-noise ratio
is checked. Thefirgt gep in this processis to determine the maximum vaue present in the
ensamble and the array index corresponding to that maximum. After the maximum is
found, the average of the noise floor is computed (the true average, thet is; Sncethis

11

cdculaion is performed on ardatively infrequent bads, divison can be afforded). In
this calculation, the pointsin the array that are close to the maximum are omitted,
because their values are not indicative of the noise. From this average, the standard
deviation of the noise floor is computed. Note that the C language square root function is
used here; this can be afforded, because it is performed so relatively infrequently. If the
difference between the maximum vaue in the array and the noise floor average is greater
than or equd to thirty-Sx times the standard deviation of the noise floor, then atarget has
been detected with greater than 99% confidence, and the frequency of the target is
computed. This same method of checking the Sgnal-to-noise ratio is used to check the
super ensemble. The super ensemble is the average of an arbitrary number of ensembles
in the same way that the ensemble isthe average of individud PSD’s. The super
ensamble indicates the long term sgnd-to-noise ratio, while individual ensembles
indicate the short-term signd-to-noise ratio.

MATLAB offers a convenient festure caled MEX which dlows MATLAB mfilesto
cdl C program asif they were MATLAB functions[14, 4, 6]. Although MEX was
initidly used to call the PC program, this method turned out to be severdy limited in its
ability to be implemented in red time. The primary reason for thisisthat MATLAB isa
angle-threaded application and is not currently capable of multi-threading. This means
the only way for aMATLAB mfileto utilize the PC program which, in turn, controls the
DSP was through an explicit function cdl. The only information that could be exchanged
was by MATLAB passing the PC program arguments and receiving argumentsin return
from the function call.

MATLAB offers severa desirable features, data collection and data plotting, that warrant
its use in the development of this agorithm. It performs data collection through a
MATLAB program which reedsin audio datainput to the PC’s sound card through the
microphone jack and storesthat datain a.wav filee MATLAB dso hasasmplefunction
caled “wavread” which converts .wav filesto array data suitable for digital sgnd
processing. At the end of the Bartlett’ s smoothing agorithm, MATLAB’ s data plotting
capability to display discernable results. Another feature caled the MATLAB Compiler
was used call the “wavread” function from the PC program. The MATLAB Compiler is
the opposite of MEX;; it dlows the user to cal m-files from C programs as if they were C
functions. Thisfunctiondity was used to get input data from .wav files of periodic

sggnds hidden in noise that had been previoudy recorded, generated using arandom
noise generator and a function generator in the |aboratory.

The PC program was written in C using Microsoft Visua C++ 6.0, and the DSP program
(written in both C and assembly language) was created using the Analog Devices

Visud DSP Software Development Tools verson 2.2. Visual DSP produces an executable
program file that can be downloaded to and run by the DSP.

The greatest possible length of our radix-2 FFT on the ADSP-21060 is 16,384 (16k)
because of the Sze of the internd memory. A greeter length could be achieved if

externd memory were utilized, but the extra time those external memory accesses would
take is unacceptable for our purposes. The ADSP-21060 has 4 Mbits of internal memory

into which the program code must be stored dong with the red and imaginary input and
output data arrays, and the arrays of sne and cosine factors (used for computing the

FFT.) Each snusoidd array is hdf the length of the FFT, so the totad number of 16,384
eement arrays that must be stored is effectively five. Each dement of each array isa 32-
bit number in IEEE sngle-precison, floating-point format. Multiplying

16384" 32" 5 yieldsatotd data storage of 2.62 Mbits. Since we are using the radix-2
FFT for the sake of speed, the FFT length can only be powers of two. It is apparent, then,
that 16,384 isthe greatest possible length of the FFT, because the next greatest length,
32,768, would require more internal memory than is available on the ADSP-21060, and
as noted above, we eected to use only internal memory.

To obtain an accurate measurement of the time required for the DSP to compute asingle
FFT (seetablel), the programs were configured to compute the same FFT 1,000 times.
This was done without the MATLAB program, and the input data were read by the PC
program from data files. A stopwatch was used to time the completion of these 1,000
FFT’ swith consstent results. Because of the significant amount of time required by the
caculation of 1,000 FFT’ s, the human error induced by the use of the stopwatch was
deemed inggnificant. The stopwatch was started smultaneoudy with the keyboard
command which started the calculation and was stopped by visua cue from the computer
screen, the disappearance of the execution window indicating that the PC program had
finished working. Also, because of the large number of FFT’s, the error from the other
parts of the program besides the FFT itsalf was deemed to be within acceptable limits.

I'er:getg Z,'\la)l:slzggze a Tablel: Speed of the FFT on
Processor: ADSP-21060 SHARC DSP the SHARC DSP
Number of FFT's: 1,000
Time/s
Trial 1 40.7
Trial 2 40.7
Trial 3 40.6
Trial 4 40.8
Trial 5 40.7
Average of Trials 40.7
Standard Deviation of Trials 0.0632
Average Time per FFT 0.0407,

Theresults of the Bartlett’ s smoathing implementation proved that it can be donein red
time. Figure 7 shows the results of Bartlett’s smoothing, both the ensemble (M=100) and
the super ensemble (M=700, or 7 ensembles.) The program calculated a sgnd-to-noise
ratio of 284.108993 for the ensemble, and the detected frequency was 98.632813 Hz.
The origind sgnd-plus-noise waveform consisted of a 100 Hz, 100 mV, Snewave
hidden in 300 mVhshoise. To obtain an accurate measurement of the tota time required
for the Bartlett' s smoothing agorithm, a stopwatch method similar to the method used to
time the FFT was used. The results of thesetimetrids areintable |1, and they clearly
show that the FFT is by far the most time-consuming process in Bartlett’ s smoothing
agorithm. The rest of the process besides the FFT takes only an additional 5 ms per 1k

13

data segment. Thistiming measurement includes the time to form 7 ensembles, check the
ggnd-to-noise ratio of each one, update the super ensemble each time a new ensemble
was formed, aswell as check the sgna-to-noise ratio of the super ensemble each time.

¥ 10 Shornt-Term Average: Ensemble

Power

i i
a 50 100 150 200 250
Frequency, Hz

¥ 1IZIE Long-Term Average: Super Ensemble

Poweer

1 1
0 a0 100 150 200 250
Freguency, Hz

Figure 7: Experimental Results of Bartlett’s Smoothing, M=100 (top), M=700 (bottom)

Concluson: The mos chdlenging problem in the signa recongtruction dgorithmisto
perform it in red time without introducing gaps in the acquired data. The question is, can
the sgnas be processed as fast as they are recorded? Thanks to the relatively recent
advances in DSP technology, the answer is“yes.” Modeling the ocean asa4 kHz
bandwidth limited acoustic channel requires datato be sampled at 8 kHz in order to avoid
diasng, according to Nyquist theorem [15]. Using this 8 kHz sampling rete, the time
required to gather 1024 samples of acoustic datais 1,024/8,000 s, or 128 ms. Each set of
1,024 samplesis zero-padded to alength of 16,384. Since each 16,384-point FFT takes
approximately 41 ms of computation time, 87 ms are left each cycle to complete the

14

remander of the dgorithm. The rest of the Bartlett’ s smoothing procedure takes up an
amog negligible amount of additiond time, and therefore can be implemented in redl
time by the SHARC DSP.

One savere limitation of the ADSP-21060 isthe size of itsinternal memory which limit
the size of the FFT. It wasfound that this limited size posed the most problems to the
virtud resampling process, because the size limit of the FFT determines the limit on the
upsampling factor, n. With only a 16k FFT, the resolution between possible test
frequencies obtained from Bartlett’'s smoothing is very poor and could pose a significant
barrier to accurate target characterization.

In order to carry out the entire detection and characterization algorithm in redl time,
paradld DSP s must be used so that when atarget is detected using Bartlett’ s smoothing,
the target characterization task can be handed off to other processors which can
smultaneoudy take on that task. Each processor could take one test frequency and
perform time-domain periodic averaging for that one frequency. The processors working
smultaneoudy on what could potentialy be along list of frequencies would increase the
Speed at which target characterization happens. Also, DSP swith greater internd
memory than 4Mbits should be used in order to incresse the possible length of the FFT.

Time Trials for Bartlett's Smoothing
Length of FFT: 16,384 (1024 data + 15360 zeros)
Number of FFT's: 700
FFT Processor : ADSP-21060 SHARC DSP
Timels
i S [Tablen: geeta
Trial 3 2 Bartlett’s Smoothing
Trial 4 32
Trial 5 32
Average of Trials 32
Standard Deviation of Trials 0
Average Bartlett's Smoothing Time per FFT 0.0457|
Average Time for FFT Alone 0.0407,
Average Time Added by Bartlett's Smoothing 0.005

15

Refer ences

1.

10.

11.

12.

13.

14.

Julius S. Bendat and Allan G. Fiersol, "Engineering Application of Correlation and
Spectra Andysis’, John Wiley and Sons, 1980.

G. D. Bergland, "A Guided Tour of Fast Fourier Transform”, |EEE Spectrum July
1969, pages 41-52.

Steven Cox, et d., “fftrad2.asm,” http://mwww.anal ogdevices.com, accessed 26
October 2002.

Duane Hansedman and Bruce Littlefidd, “ The Student Edition of MATLAB, Verson
4" 1995, Prentice-Hdl Inc., ISBN: 0-13-184979-4.

Manson H. Hayes, “Statistical Digitd Signa Processng and Modding”, John Wiley
& Sonsinc., 1996, | SBN: 0-471-59431-8

Vinary K. Ingle, John G. Proakis, “Digitd Signd Processng Usng MATLAB V .47,
PWS Publishing Company, 20 Park Plaza, Boston, MA 02116-4324, Copyright 1997,
| SBN: 0-534-93805-1.

Jenkins and Watts, " Spectrd Andyssand its Applications', Holden - Day, 1968.

David F. Mix, “Random Signd Processing”, Prentice-Hall Inc., 1995, | SBN: 0-20-
381852-2.

Alan V. Oppenheim and Ronadd W. Schaer, "Digitd Signa Processng’, Prentice-
Hdll, Inc. 1975.

Peyton Z. Peebles, Jr., “Probability, Random Variables, and Random Signa
Principles’, 3rd Ed., McGraw-Hill Book Co., 1993, | SBN: 0-07-049273-5.

Boaz Porat, “A Coursein Digitd Signd Processing”, 1. Edition, John Wiley &
Sons, Inc., 1997, | SBN: 0-471-14961-6.

John G. Proakis, Dimitris G. Manolakis, “Digitd Signal Processing, Principles,
Algorithms and Applications’, 3" Edition, Prentice-Hall Inc., 1996, | SBN: 0-13-
373762-4.

Lawrence R. Rabiner and Berndd Gold, "Theory and Applications of Digitd Signd
Processing”, Prentice-Hall, Inc. 1975.

Virginia Stonick and Kevin Bradley, “Labsfor Signds and Sysems Using
MATLAB”, PWS Publishing Company, 20 Park Plaza, Boston, MA 02216-4324,
Copyright 1996, | SBN: 0-534-93808-6.

16

15. Ferrd G. Stremler, "Introduction To Communication Sysems’, 3rd. ed., Addison+
Wedey Publishing Co., 1990, |SBN: 0-201-18498-2

17

Appendix: Code Listings

18

The PC Program
Subfinder3.c

/* Author: Samuel Peterson
Advi sors: Prof essor Antal Sarkady, CDR Charles Caneron, USN
Dat e: 07 May 2003
Organi zation: United States Naval Acadeny El ectrical and Conputer
Engi neeri ng Depart ment
Title: SubFi nder 3. ¢
Descri ption: This programperfornms Bartlett's snmoothing on audio
data extracted froma .wav file. Bartlett's snoothing
processes a periodic signal masked in noise and deternines
t he approxi mate frequency of the signal.
*/

#i ncl ude <stdi o. h>

#include <stdlib. h>

#i ncl ude "dsp21k. h"

#i ncl ude "math. h"

#include "nex.h" /* mex.h enables this programto be called by MATLAB */

[/ *These three are included for the MATLAB conpil er*/
#i ncl ude " SamMavreedl i b. h"

#i ncl ude "matl ab. h"

#include "matrix. h"

#defi ne ADSP1_NUM 0 /* assume ADSP nunber 0 */

#defi ne CHUNK 100 /* Number of 1k pieces in the chunk */
#def i ne SUPERCHUNK 7 /* Nunber of chunks in the superchunk */
#def i ne DSP2106x_PROGNAMVE " SUBFI NDERDSP. dxe" [/* dsp executable */

[* Qutput Argunents */

#def i ne SUPERENSEMBLE pl hs[0]

#defi ne ENSEMBLE pl hs[1]

/* ___ */
static void subfinder(float Ensenble[], float SuperEnsenble[])

{

PDSP21K processor 1;

fl oat ReFFTbuf |l Nchunk[102400] ;
float ReFFTbuf | N[1024] ;
float ol dest Ensenbl e[8192] = {0};

float ensenbl el[8192] = {0}; /* Latest Ensenble */
float ensenbl e2[8192] = {0};
float ensenbl e3[8192] = {0};
fl oat ensenbl e4[8192] = {0};
float ensenbl e5[8192] = {0}; /* A dest Ensenble */

float PSD[8192];
fl oat ReFFTbuf QUT[16384], | nFFTbuf QUT[16384] ;
float maxVal ue = 0;

19

int N= 1024,

int maxl ndex = 0O;

fl oat noi seFl oor Average = 0;
float variance = 0;

float StdDev = O;

fl oat SEmaxVal ue = 0;

i nt SEmaxl| ndex = O;

fl oat SEnoi seFl oor Average = O;
fl oat SEvari ance = 0;

float SEstdDev = 0;

float x = 0;

float xSE = 0;

float targetFrequency = 0;
float SNR

int Fftcount = O;

int a, b, ¢, d, e, f, g, h, i, j, k, I, m, n2, n, p, q, r, s, z
int kSE, gSE, fSE, dSE, nSE, mlSE, n2SE;

unsigned int eN = (unsigned int)(N16); /* Length of FFT */
unsigned int heN = (unsigned int)N, /*Length of unpadded data segment*/

mXKArray *x_ptr;
mxKArray *y ptr;
doubl e *y;
doubl e ret;

/**/

/* Read in data froma .wav file using a MATLAB program */

/**/

/* Create an nxArray to input into mfSamAavreed */
x_ptr = mkCreateString("100sec-100nv-si n- 100Hz- 300nVr ns- Noi se. wav") ;

/* Call the library initialization function */
SamMvreedliblnitialize();

/* Call the inplementation function */
y_ptr = nm f Samnavr eed(x_ptr);

/* Call the library termnation function */
SamMvr eedl i bTerm nate();

/* The return value fromm f SamMavreed is an nxArray so we nust extract the
data fromit */

y = nxGetPr(y_ptr);

ret = *y;

/**/

/*************/

/* DSP setup */

/*************/

/* Open the DSP processor */
if ((processorl = dsp21lk_open(ADSP1_NUM) == NULL)
{

printf("probl em openi ng processor nunber ADSP#%\n", ADSP1_NUM ;
exit(1l);
}

/* Reset the board. */
dsp21k_reset _bd(processorl);

20

/* Configure the processor.*/
dsp21k_cfg proc(processorl);

/* downl oad the dsp program on processor #1 */
if(!dsp2lk_dl _exe(processorl, DSP2106x_PROGNAME))

printf("probl em downl oadi ng %\ n", DSP2106x_PROGNAME) ;
exit(1);
}

/*Start the DSP progrant/
dsp21k_start(processorl);

/***/

/* Break up 500k data superchunk into 100k pieces.
Process the superchunk, creating a super ensenble. */
for(z=0; z < SUPERCHUNK; z++)({

for(g=0; g < 102400; qg++){

ReFFTbuf I Nchunk[gq] = (float)y[(q+(102400*2))];
/* Copy 100k of data into*/
} [* appropriate array */

/*Break up the 100k data chunk into 1k pieces
Process the chunk, creating an ensenble.*/
for(j=0;j<CHUNK; j ++) {

for(i=0;i<1024;i++){

ReFFTbuf IN[i] = ReFFTbuf | Nchunk[(i +(1024*j))];
}

/******************************/

/* interact with processor #1 */
/******************************/

/*Downl oad input arrays to the processor nenory.*/
dsp21k_dl _flts(processorl, dsp2lk_get addr(processorl,

_redata"),
heN, ReFFTbuflIN);

/****************** T\I\D_My '_Bndshakes *****************/

/* Set PCflag. */

dsp21k_dl _int(processorl, dsp2lk_get_addr(processorl, "_PCflag"), 1);

/* Wait for the DSPflag to be set true. */

whil e (!dsp21k_ul _int (processorl, dsp2lk_get_addr (processorl,
"_DSPflag”)));

/* Lower the PCflag in response. */

dsp21k_dl _int(processorl, dsp2lk_get addr(processorl, " _PCflag"), 0);

/* Wait for the DSPflag to be | owered. */

whil e (dsp21lk_ul _int(processorl, dsp2lk_get_addr(processorl,
"_DSPflag”)));

/* Two-way Handshake conpl eted. */

/* Wait for DSPdone flag to be set true */
whil e (!dsp21lk_ul _int(processorl, dsp2lk_get_addr (processorl,
" _DSPdone")));

21

*/

/* Set the PCdone flag in response. */
dsp21k_dl _int(processorl, dsp2lk_get addr(processorl, " _PCdone"), 1);
/* Wait for the DSPdone flag to be | owered. */
whil e (dsp21lk_ul _i nt(processorl, dsp2lk_get addr(processorl

" _DSPdone")));
/* Lower the PCdone flag in response. */
dsp21k_dl _int(processorl, dsp2lk_get addr(processorl, " _PCdone"), 0);
/* Anot her Two-way handshake conpl eted. */

/* upload the results */

dsp21k_ul _flts(processorl, dsp2lk_get addr(processorl, " refft"), eN
ReFFTbuf QUT) ;

dsp21lk_ul _flts(processorl, dsp2lk_get_addr(processorl, "_infft"), eN
I nFFTbuf QUT) ;

/* done interacting with processor */
/***********************************/

/ *Ensenbl e Aver agi ng*/
for(h=0; h < 8192 ; h++){

/*Cal cul ate Power Spectral Density*/
PSD[h] = (ReFFTbuf QUT[h]) * (ReFFTbuf QUT[h]) +
(1 nFFTbuf QUT[h]) * (I nFFTbuf QUT[h]) ;

/*Add the PSD to the running sum The division operation in
ensenbl e averaging will be omtted, because it is too costly in
terns of processing tine. */

Ensenbl e[h] = Ensenbl e[h] + PSO h];

}

Ff t count ++;

/* 1If every 1k piece of the chunk has been anal yzed,
set the exit flag so that the FFT stops repeating*/
i f(j==(CHUNK)){

dsp21k_dl _int(processorl, dsp2lk_get_ addr(processorl, "_exitFlag"),
1);

/**

/* Check the signal-to-noise ratio of the Ensenble. */

/**

/* Determ ne max val ue and find frequency index corresponding to max val ue.

maxVal ue
max| ndex

Ensenbl e[0] ;
0;

for(k=1; k < 8192; k++){

i f (Ensenbl e[k] > maxVal ue) {

22

maxVal ue
max| ndex

Ensenbl e[K] ;
k

}

/* Calculate upper and lower limts of range of frequency indeces. The val ue
16 is equal to 2.048 x 7.8125. The value 2.048 is equal to 8192/ (8000/2),
assunming that 8 KHz is the sanpling rate of the original data. The val ue
7.8125 is equal to 1/.128, where .128 is the sanpling w ndow i n seconds for
1024 data points assunming a sanpling rate of 8 KHz. */

L max| ndex - 16

n max| ndex + 16

/* If the max frequency index is |less than 16, then | ess than 32 sanpl es need
to be excluded fromthe noise floor average. The noise floor average wll
include those sanples after n2, so only sanples fromnR and below will be
excluded in the average. */

i f (maxl ndex < 16){

for(r=n2; r < 8192; r++){

noi seFl oor Aver age = noi seFl oor Average + Ensenbl e[r];

}

noi seFl oor Aver age = noi seFl oor Aver age/ (8192 - nR);

}el se{

/* Determ ne noise floor average val ue (excluding val ues close to the
max.) */
for(g=0; g < nml; g++){

noi seFl oor Aver age = noi seFl oor Average + Ensenbl e[9] ;

}
for(l=n2; | < 8192; |++){

noi seFl oor Aver age = noi seFl oor Average + Ensenbl e[l];

}

noi seFl oor Aver age = noi seFl oor Aver age/ 8160; /*8192 - 32 = 8160 There
are 32 points around

and i ncludi ng the naxVal ue
that are not including
in this calculation.*/

/* Cal cul ate standard devi ati on of noise floor. */
for(s=0; s < ml; s++){

X = Ensenbl e[s] - noi seFl oor Aver age

variance = vari ance + X*Xx;

}
for(n=n2; n < 8192; n++){

X = Ensenbl e[n] - noi seFl oor Aver age
variance = variance + X*Xx;

23

}

vari ance = vari ance/ 8160

St dDev

/*

= (float)sqrt(variance);

G ve the user the SNR based on the current ensenble */

SNR = (nmaxVal ue - noi seFl oor Aver age)/ (St dDev)
printf("Signal-to-Noise Ratio is % (Peak Power/Mean Noi se Power)\n", SNR)

/* 1If the difference between the nmax value and the noise floor average is
greater than or equal to 36x the standard deviation of the noise floor, then
stop and identify target. (if the square of the difference is at |east 1296
tines the variance. 1296 = 3672)*/

i f((maxVal ue - noi seFl oor Average) >= 36*(StdDev)){

/* Stop and identify target. The nunber 0.48828125 is equal to the

sanpling frequency (8 kHz) divided by 2, then divided by the | ength of
the Ensenble. This is the way to correlate the frequency with the
frequency index, and it is described in the paper with the equation in
the Bartlett's Snoothing bl ock diagram */
t ar get Frequency = maxl| ndex* (0. 48828125);
mexPrintf("Target Detected in Ensenble.\nTarget Frequency: % Hz\n",
t ar get Fr equency) ;

mexPrintf("Signal-to-Noise Ratio is % (Peak Voltage/ RVE Noise)\n",

SNR) ;
mexPrintf("Nurmber of FFT's: % \n", Fftcount);)

/* Update the Super Ensenbl e by subtracting out the ol dest ensenbl e and
addi ng in the newest one.*/
for(p=0; p<8192; p++){

Ensenbl e[p] ;

}

Super Ensenbl e[p] = (SuperEnsenbl e[p] - ol dest Ensenbl e[p]) +

/* Update the list of recent ensenbles */

for(a=0; a < 8192; a++){

ol dest Ensenbl e[a] = ensenbl e5[a] ;

for(b=0; b < 8192; b++){

}

ensenbl e5[b] = ensenbl e4[b] ;

for(c=0; c < 8192; c++){

}

ensenbl e4[c] = ensenbl e3[c];

for(d=0; d < 8192; d++){

ensenbl e3[d] = ensenbl e2[d];

24

*/

*/

and
maxVal ue
i ncl uded

for(e=0; e < 8192; e++){

ensenbl e2[e] = ensenbl el[e];

for(f=0; f < 8192; f++){

ensenbl el[f] = Ensenbl e[f];
}

/*****'k*******'k***************'k***************************/

/* Check the signal-to-noise ratio of the Super Ensenble */

/***/

/* Determ ne max val ue and find frequency index corresponding to max val ue.

SEmaxVal ue = Super Ensenbl e[0] ;
SEnmax| ndex = O;

for(kSE=1; kSE < 8192; kSE++){
i f (Super Ensenbl e[KSE] > Super Ensenbl e[kSE-1]) {

SEnmaxVal ue
SEmax| ndex

Super Ensenbl e[kKSE] ;
kSE;

}

/* Calcul ate upper and lower limts of range of frequency indeces. The val ue
16 is equal to 2.048 x 7.8125. The value 2.048 is equal to 8192/ (8000/2),
assuming that 8 KHz is the sanpling rate of the original data. The val ue
7.8125 is equal to 1/.128, where .128 is the sanpling w ndow in seconds for
1024 data points assuming a sanpling rate of 8 KHz. */

mLSE = SEmax| ndex - 16;

nM2SE = SEmax| ndex + 16;

/* Determine noise floor average val ue (excluding values close to the max.)
for(gSE=0; gSE < nlSE;, gSE++){

SEnoi seFl oor Aver age = SEnoi seFl oor Aver age + Super Ensenbl e[gSE] ;

}
for(fSE=nRSE, fSE < 8192; fSE++){

SEnoi seFl oor Aver age = SEnoi seFl oor Aver age + Super Ensenbl e[f SE] ;

}

SEnoi seFl oor Aver age = SEnoi seFl oor Aver age/ 8160; /*8192 - 32 = 8160 There
are 32 points around
including the

that are not

inthis calculation.*/

/* Cal cul ate standard devi ation of noise floor. */
for(dSE=0; dSE < nlSE;, dSE++){

XSE = Super Ensenbl e[dSE] - SEnoi seFl oor Aver age;

25

SEvari ance = SEvari ance + XSE*xSE;

}
for(nSE=n2SE, nSE < 8192; nSE++){

XSE = Super Ensenbl e[nSE] - SEnoi seFl oor Aver age;
SEvari ance = SEvariance + xSE*XSE;

}

SEvari ance = SEvari ance/ 8160;
SEst dDev = (fl oat)sqrt(SEvari ance);

/* 1f the difference between the nmax value and the noise floor average is
greater than or equal to 36x the standard deviation of the noise floor, then
stop and identify target. (if the square of the difference is at |east 1296
tines the variance. 1296 = 3672)*/

i f ((SEnmaxVal ue - SEnoi seFl oor Aver age) >= 36*(SEst dDev)) {

/* Stop and identify target. The nunber 0.48828125 is equal to the
sanpling frequency (8 kHz) divided by 2, then divided by the | ength of
the Ensenble. This is the way to correlate the frequency with the
frequency index, and it is described in the paper with the equation in
the Bartlett's Smoot hing bl ock diagram */
t ar get Frequency = SEmax| ndex* (0. 48828125);
printf("Target Detected in Super Ensenble.\nTarget Frequency: %
Hz\ n",
t ar get Frequency) ;

}

/* close the processors * [
dsp21k_cl ose(processorl);

[*This function is required, by name, in a mex file with the exact argunents shown.*/
voi d mexFuncti on(

int nlhs,

nxArray *plhs[],

int nrhs,

const nxArray *prhs[])

/*Declare all of the arguments passed into the subfinder function.*/
float *SuperEnsenbl e, *M/Ensenbl e;

/*Check for the correct nunber of input and output argunents.*/
if (nrhs '=0)

mexErr MsgTxt (" Subfi nder requires no input arguments.");

else if (nlhs '= 2)

mexErr MsgTxt (" Subfinder requires five output argunents.");

M/Ensenbl e = nxCal | oc(8192, si zeof (mxSI NGLE_CLASS)) ;

/* Create a matrix for the return argunents.*/

26

}

ENSEMBLE = nmxCreat eNunericMatrix(1, 8192, nxSI NGLE_CLASS, nxREAL);
SUPERENSEMBLE = nxCreat eNunerichMatrix(1, 8192, nxSI NGLE_CLASS, nxREAL);

/* Assign pointers to the various paraneters */

mxFr ee(nxGet Dat a(ENSEMBLE)) ;
nxSet Dat a(ENSEMBLE, M/Ensenbl e) ;
Super Ensenbl e = (fl oat *)nxGet Dat a(SUPERENSEMBLE) ;

/* Do the actual conputations in the subfinder program */
subf i nder (M/Ensenbl e, Super Ensenbl e);
return;

/* END OF SUBFI NDER3. C */

27

MATLAB M -file
RunSubfinder3.m

% RunSubfi nder 3. m

% This programplots the data fromthe Bartlett’s snoothing al gorithmperformed on the
% PC and SHARC DSP.

% Prof. Antal A Sarkady, Dec, 10,2002

% M dshi pman Sanuel P. A Peterson, 07 May 2003

%

TheEnsenbl e = singl e(zeros(1, 8192));

Super Ensenbl e = singl e(zeros(1, 8192));

%his is a MEX function call. The MEX file is Subfinder3.c
[Super Ensenbl e, TheEnsenbl e] = Subfi nder 3;

%

Ts = 1/8000; % Sanpl i ng Peri od.

Mft = 16; % Zer o- paddi ng factor.

Ngs = 1024, % Lengt h of each FFT before zero-padding.
df =(1/ M ft)*(1/Ts)/ Ngs; % Frequency i ncrenent

f=0:df :df *((Mft/2)*Ngs-1); % Frequency scale, Pos. freqg. only

% s=['S/Nv=",num2str(SNv),', M ,int2str(M,', Est f1=', nun@str(Fmax),' Hz'];

subpl ot (2,1,1); plot(f, TheEnsenble); axis([0 250 0 5000000]); x|l abel (' Frequency, Hz');
yl abel (" Power'); title('t_s"); grid;

subpl ot (2,1,2); plot(f, SuperEnsenble); axis([0 250 0 5000000]); xlabel (' Frequency,
Hz'); ylabel (" Power'); title('t_s'); grid;

% END OF RUNSUBFI NDER. M

28

DSP C Program
QubFinderDSP.c

/*
SubFi nder DSP. C

Interface programwhich is called by a C programon the PC and then calls
an assenbly routine.

*/

/*This header file is included for tw ddle factor generation.*/
#i ncl ude <nath. h>

/*Function protoype*/
void fftrad2(void);

/* dobal variables (and one macro) used in the conputation of the FFT*/
#define N 16384 /*Length of FFT*/

float extern sine[N 2];
float extern cosine[N 2];

i nt DSPdone = O;

i nt PCdone =0;

int PCflag, DSPflag;
int exitFlag = O;

/**/

int main(void)

{

[****x%%x Tyj ddl e Factor CGeneration, adapted from TW DRAD2. C, 18- FEB- 91,
Steven Cox, Anal og Devices DSP Diy. *******xkxxxx]

int k;
int n = N2;

29

float freq;
float pi;

/[* initialize pi */
pi = 4.0*atan(1.0);

freq=2. 0*pi *0. 5/ (fl oat) n;
for (k=0; k <= n-1; k++)

sine[k]l=sin((float)k * freq);
cosine[k]=cos((float)k * freq);

/* Done with twiddle factor generation*/

/* Do not stop doing FFT's until told so by the PC programwhich will set the
exitFlag when it's tinme. */
whi | e(!exitFl ag){

/***/
/*************************T\AD_V\ay '_b.ndshake*************************/

/*****'k*******'k*******'k*******'k*******'k*****************************/

/*Wait for the PCflag to be set*/

whi | e(! PCf I ag) ;

/*Set the DSP flag*/

DSPflag = 1;

/*Wait for the PCflag to be | owered*/
whi | e(PCf | ag) ;

/*Lower the DSP flag*/

DSPflag = 0;

/ *Two-way handshake conpl et ed*/

fftrad2(); /*Call the FFT*/

/***********Anot her TV\D-V\ﬁy handshake************/

/* The FFT is done, so set DSPdone flag. */
DSPdone = 1;

/* Wit for the PCdone flag. */

whi | e(! PCdone) ;

/* Lower the DSPdone flag. */

DSPdone = 0;

/* Wait for the PCdone flag to be | owered. */

whi | e(PCdone) ;

/* Anot her Two-way handshake conpl et e*/

}
exit(0);

//***

/1 End of file SubFi nder DSP. c

//***

30

DSP Assembly Program
QubFinderDSP.asm

/*
SubFi nder DSP. ASM ADSP- 21060 Radi x-2 DI T Conpl ex Fast Fourier Transform

Cal cul ates a radix-2 FFT. The FFT length (N nust be a power of 2 and a

m ni num of 32 points. Input data is not destroyed during the course of this
routine. The input and output arrays are nornal ordered. The real array is
stored in DM the imaginary array is stored in PM The real twi ddle factors
are inan N2 long Cosine table stored in PM and the inmaginary tw ddl e
factors are in an N2 long Sine Table in stored in DM The tw ddle factors
are generated by the program TW DRAD2.

To inplement a inverse FFT, one only has to (1) swap the real and imaginary
of the incom ng data, (2) take the forward FFT, (3) swap the real and
i magi nary of the outgoing data, and (4) scale the data by 1/ N

Aut hor: 10- SEP- 90, Kapriel Karagozian, Anal og Devices DSP Div.(617) 461-3672
Version: 25-APR-91, Ronnin Yee, Steven Cox
26- MAY-93, Steven Cox, in FSTAGE drain pipe without dummy dm access
14- DEC- 93, O eaned up format, added benchmarks

31

15-JUL- 01, M chael Hennerich, bitreversed addressi ng node for
DA® inpl enented, Last Stage usage of conpl ex
conjugated tw ddel pairs N4 apart inplenented

07- MAY-03, Sanuel Peterson, USNA, adapted code w th context
saving to be called froma C program

Cal l i ng Paraneters:
pm(cosine[N2]) - real twiddle factors from TWDRAD2 program

dm(sine[N 2]) - imaginary twi ddl e factors from TW DRAD2 program
dm(redata[N]) - real input array, bitreversed to a working array
pr(imdata[N|) - imaginary input array, bitreversed to a working array

(Note: Because the bhit reversed address node is used with the arrays
_refft and _infft, they nust start at addresses that are integer

multiples of the length (N) of the transform (i.e. O,N 2N, 3N, ...).

This is acconplished by specifing two segnents starting at those addresses
in the architecture file and placing the variables alone in their
respective segments. These addresses nust al so be reflected in the
preprocessor variables ORE and OMin bit reversed fornat.)

Return Val ues:
dm(_refft[N]) - real working array and out put
pr(_infft[N) - imaginary working array and out put

Al tered Registers:

Mbst |, M L, and Rregisters.
Three | evel s of |oop nesting.

Benchmar ks: Radi x-2, conplex with bit reversal

FFT Length cycles mn @25 Mz CLK ms @33 Mz CLK ns @40 Mz CLK

64 940 . 038 . 028 . 024
128 1946 . 078 . 059 . 049
256 4184 . 167 . 127 . 105
512 9142 . 366 . 277 . 229
1024 20052 . 802 . 608 . 501
2048 43890 1. 756 1. 330 1. 097
4096 95632 3.825 2.898 2.391
8192 207282 8.291 6. 281 5.182
First 2 Stages - 8 cycles per 4 (radix-2) butterflies
M ddl e Stages - 4 cycles per butterfly
2nd to Last Stage - 9 cycles per 2 butterflies
Last Stage - 9 cycles per 2 butterfly groups
Menmory Usage:

pm code = 176 words, pmdata = 2.5*N words, dmdata = 2.5*N words
*/

/* Include for synmbolic definition of systemregister bits */
#i ncl ude "def 21060. h"

#i ncl ude <asm sprt. h>

/* The constants bel ow nust be changed for different length FFTs
N = nunber of points in the FFT, nust be a power of 2
STAGES = log2(N

BRMODI FY_DM = bitrev(32 bit N 2)
BRMODI FY_PM = bitrev(24 bit N 2)
ORE = bitrev(32 bit addr of input real in dm, addr is O,N 2N 3N, ...
am = bitrev(24 bit addr of input imag in pm, addr is O, N 2N 3N, ...

32

*/

#define N 16384

#defi ne STAGES 14

#defi ne BRMODI FY_DM 0x00040000

#defi ne BRMODI FY_PM 0x000400

#define ORE 0x0000c000

#define A M 0x000240

/* These constants are independent of the nunber of points */
#def i ne BFLY8 4 /*Nunmber of bttrfly in a group of 8*/
. SEGVENT/ DM seg_dnda;

. VAR _redata[N ; /* input real array */

.GLOBAL redata;

. VAR refft[N; /* real result */

.GLOBAL _refft;

. VAR _sine[N 2]; /*imag twiddle factors, from TWDRAD2 */
.GLOBAL _si ne;

. ENDSEG

. SEGVENT/ PM seg_pnda;

. VAR _imdata[N; /* input image array */

.GLOBAL _indata;

. VAR

_infft[N; /*imag resul t*/

CGLOBAL _infft;

. VAR _cosine[N 2]; /* real twiddle factors, from TW DRAD2 */
.GLOBAL _cosi ne;

. ENDSEG

. SEGVENT/ PM seg_pnto;

.G@.OBAL _fftrad2; /*SP: | saw this gl obal declaration in sanple progranms*/

/*

begi n FFT */

Start FFT: call _fftrad2;

st op:

idle;

_fftrad2: /* SP added underscore, which is necessary to interface with C*/

/*

*/

| eaf _entry;

Need to save all registers used by the FFT routine here. This section of
code inmtates the save_reg macro on page 2-88 of the VDSP C conpil er
Quide and reference. A so based on an exanple in EE-134, an engineer to
engi neer note published by Anal og Devices (p.2,3). That docunent tells
how to do G runtine stack context switching for the registers in DAGL by
first saving each register to a general purpose register.

put s=r 0;
r 0=b0;
put s=r0;
r 0=b1;
put s=r0;
r 0=b2;

33

put s=r 0O;
r0=b3;
put s=r0;
r 0=b4;
put s=r0;
put s=b8;
put s=b9;
put s=b10;
put s=b11;
put s=b12;
put s=b13;
put s=b14;

r 0=l 0;
put s=r0;
ro=l1;
put s=r0;
ro=l 2;
put s=r0;
r0=l 3;
put s=r 0O;
r 0=l 4;
put s=r0;
put s=I 8;
puts=Il 9;
put s=I 10;
put s=I 11;
put s=I 12;
put s=I 13;
put s=I 14;

r 0=no;
put s=r 0;
r0=nt,
put s=r0;
ro=ng;
put s=r 0;
r0=m;
put s=r0;
put s=n8;
put s=n®;
put s=n0;
put s=nl1;
put s=ml2;
put s=ml3;
put s=n4,

r0=i 0;
put s=r0;
ro=i 1,
put s=r 0O;
r0=i 2;
put s=r0;
r0=i 3;
put s=r0;
r0=i 4;
put s=r 0;
put s=i 8;
puts=i 9;
put s=i 10;
puts=i 11;
put s=i 12;
puts=i 13;

put s=i 14;

put s=f 0;
put s=f 1;
put s=f 2;
put s=f 3;
put s=f 4;
put s=f 5;
put s=f 6;
put s=f 7;
put s=f 8;
put s=f 9;
put s=f 10;
puts=f 11;
put s=f 12;
put s=f 13;
put s=f 14;
put s=f 15;

put s=r2;
put s=r 3;
put s=r4;
put s=r5;
put s=r9;
put s=r 10;
put s=r 13;
put s=r 15;

bit set nodel BRO; /* enable bit reverse of i0 */
bit set nodel BRS; /* enable bit reverse of i8 */

b8=A M /* Points to input imaginary array */
b0=CRE; /* Points to input real array to be read in */
| 8=0;
1 0=0;
m0=BRMODI FY_DM /* Modifier for bitreverse counter*/
n8=BRMCDI FY_PM /* Modifier for bitreverse counter*/
r0=_done;
r0=0; */

/* bit reversed order */
b2=refft;
| 2=N; [* Grc pointer limts |oopend pointer overflow */
nl=1; /* This loop increnents forward +1*/
b10=_infft;
1 10=N; /[* Grc pointer limts |oopend pointer overflow */
mL0=1;

/*Do the first two stages (actually a radi x-4 FFT stage)*/

f 0=f 0+f 2, f2=f0-f2, f 4=dn(i O, nD), f 5=pn(i 8, n8B) ;
f1=f 1+f 3, f3=f1-f3, f 6=dn(i O, nD), f 7=pm(i 8, n8B) ;
f 4=f 6+f 4, f6=f6-f4,;

f5=f5+f 7, f7=f5-f7;

f 8=f 0+f 4, f9=f0-f 4;

f 10=f 1+f 5, f11=f1-f5;

f 0=dn{(i 0, nD), f1=pn(i 8, n8B);
f2=dn(i 0, nD), f3=pn(i 8, nB);

35

lentr=N4-1, do FSTAGE until Ice; /* do N4 sinple radix-4 butterflies */

f12=f 2+f 7, f13=f2-f7, f O=dn(i 0, nD), f1=pn(i 8, nB);

f 14=f 3+f 6, f 15=f 3-f 6, f 2=dn(i 0, nD), f 3=pn(i 8, nB) ;

f 0=f 0+f 2, f2=f0-f2, f 4=dn(i O, nD), f 5=pn(i 8, nB) ;
f1=f 14f 3, f3=f1-f3, f 6=dn(i 0, nD), f 7=pn(i 8, nB);

f 4=f 6+f 4, f6=f6-f4, dm(i 2, nl) =f 8, pr(i 10, nl0) =f 10;
f5=f5+f 7, f7=f5-f7, dn(i 2, nl)=f12, pn(i 10, nl0) =f 14;
f 8=f 0+f 4, f9=f0-f 4, dm(i 2, nl) =f 9, pr(i 10, nlL0) =f 11;

FSTAGE: f10=f 1+f 5, f11=f1-f5, dm(i 2, 1) =f 13, pn(i 10, mlO) =f 15;

f12=f2+f 7, f13=f2-f7; /* change on 5/26/93, drain pipe*/

f 14=f 3+f 6, f15=f3-f6; /* without out of range dm xfer*/

dn(i 2, ml)=f8, pn(i 10, mL0) =f 10;
dm(i 2, ml)=f 12, pn(i 10, nLO) =f 14;
dm(i2, m)=f9, pn(i10, nLO)=f11;
dn(i 2, m)=f13, pn(i 10, ML) =f 15;

/*m ddl e stages | oop */

bit clr nodel BRO; /*finished with bitreversal */

bit clr nodel BRS; /*finished with bitreversal */

b8=_infft;

| 8=N;

b0=_refft;

1 0=N, /* Crc pointer limts | oopend pointer overflow */

bl= si ne;

| 1=@si ne;

b9= cosi ne;

| 9=@ cosi ne;

bll=_infft;

1 11=N; [* Grc pointer limts |oopend pointer overflow */

n0=- BFLYS;

ml=- N 8;

n2=- BFLY8- 1;

nd=-N 8;

mil=-1;

r2=2;

r 3=- BFLYS; /*initializes nD,10 - incr for butterf branches*/
r 5=BFLYS; [*counts # butterflies per a group */
r9=(-2*BFLY8) - 1; /*initializes m2 - wap around to next grp + 1*/
r10=- 2*BFLYS; /[*initializes nmB - incr between groups */

r13=- BFLY8- 1; /*initializes n2,13 - wap to bgn of 1st group */
r15=N8; /*# OF GROUPS I N TH RD STAGE*/

fl=dn(i 1, nl), f7=pm(i9,nB); /*set pointers to tables to 1st coeff. */

| cntr=STAGES-4, do end_stage until lce; /*# OF STAGES TO BE HANDLED = LO&N- 4*/
n8=r 10;
mLO=r 3;
ml2=r9;
i0=_refft+N1;
i2=refft+N1;
i8=_infft+N1;
i10=_infft+N1;
i11=_infft+N1;
r15=r15-r2, ml3=r13; [*CALCULATE # OF CORE */
/*BFLI ES/ GROUP IN TH S STAGE*/

fo=dn(i 1, nt),

f 7=pn(i 8, n8) ;

f12=f 0*f 7, f6=dm(i 0,n0), fl=pn(i 9, nd);
f8=f 1*f 6, modi fy(i 11, m0) ;
f11=f 1*1 7, f 7=pn(i 8, n8) ;
f14=f0*f6, f12=f8+f 12, f 8=dn(i 0, nD) ;

f12=f0*f7, f13=f8+f12, f10=f8-f12, f 6=dn(i 0, n0) ;

/*Each iteration does another set of bttrflys in each group*/
lentr=r5, do end_group until Ice; /*# OF BUTTERFLI ES/ GROUP I N TH S STAGE*/

/*core butterfly | oop*/

lcntr=r15, do end_bfly until Ice; /*Do a butterfly in each group - 2*/
f 8=f 1*f 6, f14=f11-f 14, dn(i 2,) =f 10, f9=pn(i 11, n8);
f11=f1*f7, f3=f9+f 14, f9=f 9-f 14, dm(i 2, n0) =f 13, f7=pn(i8, nB);
f14=f0*f6, f12=f8+f12, f 8=dn{(i 0, nD), pn(i 10, nl0) =f 9;
end_bfly:
f12=f0*f7, f13=f8+f12, f10=f 8-f12, f 6=dm(i 0, n0), pn(i 10, nl0) =f 3;

/*finish up last bttrfly and set up for next stage*/

f 8=f 1*f 6, f14=f11-f 14, dn(i 2,) =f 10, f9=pn{(i 11, nB);
f11=f1*f7, f4=f9+f14, f9=f9-f 14, dm(i 2, n0) =f 13, f214=pn(i 8, ml);
f14=f0o*f6, f12=f8+f12, f 8=dn{(i 0, nR), pn(i 10, nLO) =f 9;
f13=f8+f 12, f10=f8-f12, fO=dn(i 1, mL),
f 7=pm(i 8, nB); /*dm si n*/

f14=f11-f 14, dn(i 2, nD) =f 10,

f9=pm(i 11, m.2) ;
/*start on next butterfly in each group*/

f12=fo*f7, f3=F9+f14, f9=f9-f14, f 6=dn(i 0, n0D), fl=pm(i 9, m);/*pm cos*/
f 8=f 1*f 6, dm(i 2, n2)=f 13, pn(i 10, mlLO) =f 4;
f11=f1*f7, pn(i 10, nl0) =f 9;
f14=fo*f6, f12=f8+f12, f 8=dm(i 0, nD), f7=pm(i 8, nB);
end_gr oup:
f12=fo*f7, f13=f8+f12, f10=f8-f12, f 6=dn{i 0, nD), pn(i 10, mL.3) =f 3;
r4=r 15+r2, i 1=b1; / *PREPARE R4 FOR #OF BFLIES CALCH/
r15=ashift r4 by -1; /*# OF BFLIES/ GRP | N NEXT STAGE*/
r4=-r15, i 9=h9;
ml=r 4; /*update inc for sin & cos */
nb=r 4,
rb=ashift r5 by 1, fi=dn(il, ml); /*update # bttrfly in a grp*/
r3=rb5; /* inc for bttrfly branch*/
ri3=r3-1, no=r 3; /* wap to 1st grp */
ril0=ashift r3 by 1, f7=pn(i9, m); /* i nc between grps */
end_stage: r9=r10-1, nR=r 13; /* wap to grp +1 */
/* next to |ast stage */
m=-2; /*nodifier to sine table pntr */
n8=r 10; /*incr between groups */
nmo=-2; /*modifier to cosine table pntr */
mlO=r 3; /*incr between bttrfly branches */
nl2=r9; /*wrap around to next grp + 1 */
nl3=r13; /*wrap to bgn of 1st group */
i0=_refft+N1;
i1=_sine+(N 2)-2; /*pntr to 1st sine coeff */
i2= refft+N1;
i8=_infft+N1;

37

i 9=_cosi ne+(N 2) -

i10=_infft+N1;
i11=_infft+N1;

f 7=pm(i 8, nB) ;

f12=f0*f 7,

f8=f 1*f 6,

f11=f1*f7,

f14=f0*f6, f12=f8+f12,
f12=f0o*f7, f13=f8+f12,

2; /*pntr to 1st cosine coeff */

fo=dn(i 1, m),

f 6=dn{(i 0, nD), f1=pn(i 9, nB);
nmodi fy(i 11, mLO);
f7=pm(i 8, m2);

f 8=dn{(i 0, nD) ;

f10=f 8-f12, f 6=dn{(i 0, nD) ;

/*Do the NV4 butterflies in the two groups of this stage*/

lcntr=N'4, do end_group2 until |ce;

f8=f 1*f 6, f14=f11-f 14, dm(i 2, n0)=f 10, f9=pn(i 11, nB);
f11=f1*f7, f3=f9+f 14, f9=f 9-f 14, dm(i 2, n0)=f 13, fl=pn(i9, nm);
f14=f0*f6, f12=f8+f12, f 8=dn(i 0, n2), pr(i 10, nl0) =f 9;
f13=f8+f 12, f10=f8-f12, fO=dm(i 1,),
f 7=pm(i 8, n8B) ;
f12=f 0*f 7, f14=f11-f 14, f 6=dn(i 0, n0D), f9=pm(i 11, m.2);
f8=f 1*f 6, f 3=f 9+f 14, f9=f 9-f 14, dm(i 2, n0)=f 10, pn(i 10, mlO) =f 3;
f11=f1*f7, dm(i 2, n2)=f 13, pm(i 10, nmlO) =f 9;
f14=f0*f 6, fl1l2=f8+f12, f 8=dm(i 0, n0), f7=pm(i 8, m.2);
end_gr oup2:
f12=f0*f7, f13=f8+f12, f10=f8-f12, f 6=dn(i 0, nD), pr(i 10, nl3) =f 3;
/* The | ast stage */
i 1=_sine; /*pntr to 1st sine coeff */
i 9=_cosi ne; /*pntr to 1st cosine coeff */
=N 2;
nO=(N 2) +1; /* modifier */
m=1;
nmL4=1;
i0=_refft+N 2; /*pntr to REAL X0, X1*/
i2=refft; /*pntr to REAL XO', X1'*/
i8=_infft+(N2); /*pntr to REAL X0, X1*/
i10=_infft; /*pntr to | MAG YO', Y1'*/
ill= infft; /[*pntr to | MAG YO*/
b3=refft;
bd=_refft;
bl12=_infft; /* base register for 2nd butterfly*/
b13=_infft;
bl4=_infft;

i3=_refft+(3*N 4); /*2nd bttrfly pntr to REAL X0, X1*/

i4=_refft+(N4);

/*2nd bttrfly pntr to REAL X0, X1*/

i12=_infft+(3*N4); /*2nd bttrfly pntr to REAL X0, X1*/

i13=_infft+(N 4);
il4=_infft+(N4);
| 3=N,

| 4=N;

| 12=N;

| 13=N;

| 14=N;

/*2nd bttrfly pntr to I MAG YO', Y1'*/
/*2nd bttrfly pntr to | MAG YO*/

[*start first bttrfly*/

f6=dn(i 0,) / *X1*/

,f7=pn(i 8, mL4) ; / *Y1*/

38

fO=dn(i 1, m)/* sin */ ,f1=pn(i 9, ml4);/* cos */
f8=f1*f 6, /*CX1*/ mLO=nD;

f12=F0*f 7, /*SY1*/ ml3=ne;

f11=F 1*f 7/ *CY1*/ ,f12=f8+f 12 /*CX1+SY1*/ ,f10=dn(i 0, D)/ *X0*/
,f9=pn(i 11, ml4); / * YO*/

f14=f 0*f 6/ *SX1*/ , f6=dn(i 3, nR)/*X1*/ ,f7=pn(i 12, ml4); /*Y1*/
f8=f0*f6, f15=f11-f14;

f12=f1*f7, f13=f10+f12 ,f4=f10-f12;

/*do two bttrflys in one loop with single twiddle fetch*/
/*use conpl ex conjugated tw ddel pairs N4 appart */
lcntr=N'4 , do last_stage until |ce;
f11=f 0*f 7, f 3=f 9+f 15, f2=f9-f 15, f 10=dn(i 3, n0D),
f 9=pm(i 14, mL4) ;
f14=f 1*f 6, f12=f8-f12, f6=dm(i 0, n2), f7=pn(i8, mM4);
/*singl e twi ddel fetch*/ fO=dm(i 1, n4),
f1=pm(i 9, m4);
f8=f 1*f 6, f 15=f 11+f 14, dn(i 2, n) =f 13,
pr(i 10, nL3) =f 3;

f12=f0*f7, f4=f10+f12 ,f13=f10-f12, dn(i 2, nD)=f4, pr(i 10, mL0) =f 2;

f11=f 1*f 7, f 2=f 9+f 15, f3=f9-f 15, f 10=dn(i O, nD),
f9=pm(i 11, nl4);

f 14=f 0*f 6, f12=f 8+f 12, f6=dn(i 3, nR2),
f7=pn(i 12, nl4);

f 8=f 0*f 6, f15=f 11-f 14, dn(i 4, n2) =f 13,
pr(i 13, nl3) =f 3;

| ast _stage: f12=f1*f7, f13=f10+f12 ,f4=f10-f12, dn(i 4, n0) =f 4,
pn(i 13, nl0) =f 2;

/*
Restore all registers used by the FFT.
*/

r15=get s(1);
ri3=gets(2);
r10=get s(3);
r9=get s(4);
r5=get s(5);
r4=get s(6);
r3=gets(7);
r2=get s(8);

f 15=get s(9);
f 14=get s(10) ;
f 13=get s(11);
f12=get s(12);
fll=gets(13);
f 10=get s(14);
f 9=get s(15);
f 8=get s(16);
f 7=get s(17);
f 6=get s(18);
f 5=get s(19);
f 4=get s(20);
f 3=get s(21);
f 2=get s(22);
f 1=get s(23);
f O=get s(24);

i 14=get s(25);
i 13=get s(26);
i 12=get s(27);
i 11=get s(28);

39

i 10=get s(29);
i 9=get s(30);
i 8=get s(31);
r0=get s(32);
i 4=r0;
r0=get s(33);
i 3=r0;
r0=get s(34);
i 2=r0;
r0=get s(35);
i 1=r0;
r0=get s(36);
i 0=r0;

nl4=get s(37);
ml3=get s(38);
ml2=get s(39);
nmll=get s(40);
nlO0=get s(41);
nmd=get s(42);
nB=get s(43) ;
r0=get s(44);
mi=r 0;

r0=get s(45);
m2=r 0;

r0=get s(46);
ml=r O;

r0=get s(47);
mo=r O;

14=get s(48);
13=get s(49);
12=get s(50);
| 11=get s(51);
| 10=get s(52);
| 9=get s(53);

| 8=get s(54);
r 0=get s(55);

| 4=r 0;

r0=get s(56) ;

| 3=r0;

r0=get s(57);

| 2=r0;

r0=get s(58);

1 1=r0;

r0=get s(59);

| 0=r0;

bl4=get s(60);
b13=get s(61);
bl2=get s(62);
bll=get s(63);
b10=get s(64);
b9=get s(65) ;
b8=get s(66) ;
r0=get s(67);
b4=r0;

r0=get s(68);
b3=r 0;

r0=get s(69);
b2=r 0;

r0=get s(70);
bl=r0;

40

r0=get s(71);
b0=r0
r0=get s(72)

alter(72); /*all context restored*/
| eaf _exit; [*fini shed*/

[* exit; */
/*

. ENDSEG

/* END OF SUBFI NDERDSP. ASM */

DSP Linker Definition File
SubFinderDSP_ADSP_21060.Idf

ARCHI TECTURE(ADSP- 21060)

/1

*/

41

/| ADSP-21060 Menory Map:

e

I Internal nenory 0x0000 0000 to 0x0007 ffff
e

I 0x0000 0000 to 0x0000 OOff |OP Regs

I 0x0000 0100 to 0x0001 ffff (reserved)

I Bl ock 0 0x0002 0000 to 0x0002 ffff Nornmal Wrd (32/48) Addresses
/1 (0x0002 0000 to 0x0002 9fff) 48-bit words

I (0x0002 0000 to 0x0002 ffff) 32-bit words

I Bl ock 1 0x0003 0000 to 0x0003 ffff Nornmal Wrd (32/48) Addresses
/1 (0x0003 0000 to 0x0003 9fff) 48-bit words

I (0x0003 8000 to 0x0003 ffff) 32-bit words

I Bl ock 0 0x0004 0000 to Ox0005 ffff Short Word (16) Addresses

I Bl ock 1 0x0006 0000 to Ox0007 ffff Short Word (16) Addresses
e

I Mil tiproc menmory 0x0008 0000 to OxO003f ffff
e

/1 0x0008 0000 to Ox000f ffff SHARC |ID=001 Internal menory
I 0x0010 0000 to 0x0017 ffff SHARC I D=010 Internal menory
I 0x0018 0000 to Ox001f ffff SHARC ID=011 Internal menory
/1 0x0020 0000 to 0x0027 ffff SHARC I D=100 Internal menory
I 0x0028 0000 to Ox002f ffff SHARC ID=101 Internal menory
I 0x0030 0000 to 0x0037 ffff SHARC ID=110 Internal nenory
/1 0x0038 0000 to Ox003f ffff SHARC ID=all Internal menory
e

I External nenmory 0x0040 0000 to Oxffff ffff
e

/1

/1 This architecture file allocates: no, it doesn't, | need to update this

I Internal 256 words of run-tine header in nmenory block 0

/1 256 words of initialization code in nenory bl ock 0

I 36K words of C code space in nmenmory block O

I 3.5K words of C PMdata space in nenory block 0

I 32K words of C DM data space in nenory block 1

/1 8K words of C heap space in menory block 1

I 8K words of C stack space in menory block 1

SEARCH DI R $ADI _DSP\21k\lib)

/1 The 1ib060.dl b nmust cone before libc.dl b because libc.dl b has sone 21020
/1 specific code and data
$LIBRARIES = i b060.dl b, libc.dlb

// Libraries fromthe command |ine are included i n COMWAND_LI NE_OBJECTS
$OBJECTS = 060_hdr.doj, $COMWAND LI NE_OBJECTS;

VEMORY
{
seg_rth { TYPE(PM RAM) START(0x00020000) END(0x0002008f) W DTH(48)
seg_rsti { TYPE(PM RAM) START(0x00020090) END(0x000200ff) W DTH(48)
seg_init { TYPE(PM RAM) START(0x00020100) END(0x0002010f) W DTH(48)
seg_pnmco { TYPE(PM RAM) START(0x00020110) END(0x00021fff) W DTH(48)
seg_pnda { TYPE(PM RAM) START(0x00024000) END(0x0002ffff) W DTH(32)

e S e A

seg_dmda { TYPE(DM RAM) START(0x00030000) END(0x0003bfff) W DTH(32) }
seg_heap { TYPE(DM RAM) START(0x0003c000) END(0x0003dfff) W DTH(32) }
seg_stak { TYPE(DM RAM) START(0x0003e000) END(0x0003ffff) W DTH(32) }

PROCESSCR p0O

LI NK_AGAI NST($COMMVAND LI NE_LI NK_AGAI NST)
OUTPUT($COVMAND LI NE_CUTPUT FI LE)

SECTI ONS
{
/1 .text output section
seg_rst
| NPUT_SECTI ONS($OBJECTS(seg_rsti) $LI BRARI ES(seg_rsti))
} >seg _rsti
seg_rth
{
I NPUT_SECTI ONS($OBJECTS(seg_rth) $LI BRARI ES(seg _rth))
} >seg_rth
seg_init
{
| NPUT_SECTI ONS($OBJECTS(seg_init) $LI BRARI ES(seg_init))
} >seg_init
seg_pnto
I NPUT_SECTI ONS($OBJECTS(seg_pnto) $LI BRARI ES(seg_pnto))
} >seg_pnto
seg_pnda
I NPUT_SECTI ONS($OBJECTS(seg_pnda) $LI BRARI ES(seg_pnda))
} >seg_pnda
seg_dnda
I NPUT_SECTI ONS($OBJECTS(seg_dnda) $LI BRARI ES(seg_dnda))
} > seg_dnda
st ackseg
{
// allocate a stack for the application
| df _stack_space = .;
| df _stack | ength = MEMORY_SI ZEOF(seg_st ak) ;
} > seg_stak
heap
{
// allocate a heap for the application
| df _heap_space = .;
| df _heap_end = | df _heap_space + MEMORY_SI ZEOF(seg_heap) -
1
| df _heap_l ength = | df _heap_end - | df _heap_space
} > seg_heap
}
}

/1 END OF SUBFI NDERDSP_ADSP_21060. LDF

43

