
Using FPGAs to Supplement Ray-Tracing
Computations on the Cray XD-1∗

Charles B. Cameron
Department of Electrical Engineering

United States Naval Academy

105 Maryland Avenue, Stop 14B

Annapolis, Maryland 21402-5025

cameronc@usna.edu

June 7, 2007

Abstract

Optical ray tracing simulations in lens design commonly employ six major
computations: the point of intersection of a ray and an optical surface, acheck to
see whether the ray is inside a restrictive aperture, calculation of a unit vector nor-
mal to the surface at the point of intersection, the result of reflection or refraction
of the ray at the surface, and coordinate conversions of the new ray’s starting po-
sition and direction to facilitate repetition of the calculations at succeeding optical
elements. Because the rays are independent of one another, ray tracing can benefit
greatly from parallel processing, especially when there are billions of rays to be
traced. The efficiency of using 839 AMD Opteron processors for this application
has been shown to be 97.9 %. This means that adding additional processors is a
highly effective strategy for increasing the rate of ray tracing, thus reducing the
time of simulation. Using field-programmable gate arrays (FPGA) is an effective
strategy for further increasing the rate of ray tracing.

In this paper we describe key aspects of implementing deeply pipelined proces-
sors within an FPGA to perform scientific computations, using them to supplement
the ray tracing provided by the sequential Opteron processors in the Cray XD-1.
The discussion includes how to schedule the use of the FPGA’s internal resources,
synchronize the interaction between the FPGA and the Opterons, and assess the
fraction of time that each major computational resource within the FPGA is in use.
We discuss a method that guarantees 100 % efficiency of the critical resource, the
resource needed most often for a specific computation. We also consider how to in-
crease the efficiency of the non-critical computational resources withinthe FPGA
and what the side effects of such changes can be.

∗Approved for public release; distribution is unlimited.

1

The Ray-Tracing Problem

It is common both in lens design as well as in computer-generation of digital images to
rely on the formulations of ray tracing to describe the propagation of light. When ray
tracing theory is applied to lens design, a typical objective is to discover where each
ray strikes the image plane, if it does so at all. The lens system designer can then assess
the acceptability of the result, modify the lens design as seems indicated, and repeat
the ray-tracing simulation.

There are six main computational tasks in this kind of ray tracing that must be
performed repetitively, once for each ray as it encounters each surface in the system.
For each optical surface within a lens system, we begin with astarting point and the
initial direction of a particular ray. We then need to perform the following steps.

1. Find the point where the ray strikes the next optical surface.

2. Check to see whether the ray has fallen outside or inside anaperture associated
with that optical surface.

3. Find the unit vector normal to the surface at the intersection point.

4. Compute the direction of the new ray (or rays) resulting from reflection or re-
fraction when the old ray strikes this optical surface.

5. Convert the intersection point from the local coordinatesystem associated with
the previous optical surface into that associated with the next optical surface.
This entails a rotation and a translation in three dimensions.

6. Convert the direction of the new ray from the local coordinate system associ-
ated with the previous optical surface into that associatedwith the next optical
surface. This just entails a rotation in three dimensions.

The four broad classes of surfaces encountered in typical imaging lens systems are
planes, spheres, conicoids, and aspherics. While planes andspheres can be described
as special cases of conicoids, the problem of determining where a ray strikes one of
these surfaces can be accomplished more quickly by taking advantage of their simpler
mathematical descriptions. In this paper we do not treat aspheric surfaces.

Figure1 is a schematic drawing of a particular lens system we have used in ex-
ploring the application of parallel processing techniquesto the problem of ray tracing.
It is the Moderate Resolution Imaging Spectroradiometer (MODIS), currently in the
two, low-orbit, earth-observing satellites Terra and Aqua. [1] This system incorporates
a pinhole attenuator that limits the amount of solar power that enters the system during
the calibration of the instrument once each orbital period,which is about 90 minutes in
length. It also includes a solar diffuser, likewise used only during calibration. Its effect
is to spread the solar illumination evenly on the image planeto permit the determina-
tion of a suitable level of amplification in each of the optical detectors in the image
plane. This is necessary to offset variability in the earth’s distance from the sun.

A single ray in optical ray tracing simulations of this system generates a very large
number of rays when it strikes the solar diffuser. This tendsto make the simulations

2

Attenuator

Diffuser

Rotating
Mirror Lens

System

Detector

Rays
from Sun

Figure 1: The Moderate Resolution Imaging Spectroradiometer performs a calibration
once during every orbit. This entails attenuating the sun’sdirect rays with a pinhole
attenuator. Multiple diffuse images of the sun then fall upon a diffuser, producing more
or less even illumination on the detector and permitting adjustment of the gain of each
detector element. Views of the earth use neither the pinholeattenuator nor the diffuser.

very lengthy, about two weeks long when performed on a Digital Equipment Corpora-
tion (DEC) Alpha 3000 series model 800 computer. [2]

By performing the simulations on a parallel computer system, the Naval Research
Laboratory’s (NRL) Cray XD-1 computer, we managed to reducetheir duration to less
than 27 s. Figure2 shows the rate of ray tracing as a function of the number of proces-
sors cooperating in the simulation. From the fact that the line is straight it is evident
that adding more processors is very effective in achieving improved performance. The
program uses the Message Passing Interface (MPI) to coordinate the efforts of the mul-
tiple processors assigned to it.

The Cray XD-1 groups its processors into collections of fourprocessors, each group
known collectively as a single node. Of the 840 available nodes in the NRL Cray XD-1,
576 of them contain a Field Programmable Gate Array (FPGA). The data shown in
Figure2 were collected without using any FPGAs at all. We are interested in using the
FPGAs to perform a subset of the ray-tracing computations inorder to trace a higher
number of rays per unit time.

Kumaret al. [3] define the efficiency of a parallel system by

E =
rp

nrnp

whererp is the rate of execution when a single processor tackles the problem,n is the
number of processors actually assigned to work cooperatively on the problem, andrnp

is the rate of execution whenn processors work on it. Whenever adding another pro-
cessor actually gives a good return on the investment,E approaches 100 %. Whenever
adding another processor yields little improvement in performance,E approaches 0 %.
By this measure of efficiency, we achievedE = 97.9% with n = 839.

It would be hard to achieve much greater efficiency than this.However, it is quite
feasible to consider improving bothrp andrnp together and, because the efficiencyE
is so high, it is also quite reasonable to consider assigningstill more processors to the
problem in order to achieve faster execution.

Modern FPGAs such as those in the Cray XD-1 contain a large number of hardware
devices. Their interconnections can be changed on the fly, making it feasible to alter

3

1 2 5 10 20 50 100 200 500 1000
0.1

0.2

0.5

1

2

5

10

20

50

100

200

Number of processors

R
ay

 tr
ac

in
g

ra
te

 /
(1

06 r
ay

s
/ s

)

Least Squares Fit
Measured values

Rate of ray tracing: 6.6 × 106 rays ⋅ surfaces / (s ⋅ processor)

Figure 2: Ray tracing benefits greatly from the presence of additional processors be-
cause individual rays are independent of each other.

the hardware design inside an FPGA partway through the completion of a processing
job. This provides another avenue for improving the performance of a parallel task
such as ray tracing. By offloading some of the computational work from the sequential
processors of the Cray XD-1 into the inherently parallel hardware of the FPGA, we
expect to achieve significant gains in processing speed without requiring any additional
sequential processors to be included.

Depth-first v. breadth-first ray tracing

It is reasonable in a sequential ray-tracing program to select a single ray and trace it
from beginning to end. This requires repeated calculationsof intercept point, aperture,
unit normal vector, interaction, and coordinate transformation as the ray transits the
system, as described earlier. Such an approach could be described as a depth-first
simulation: one ray is followed throughout its history as itproceeds deeper and deeper
into the optical system. Because programs are stored in random-access memory, it is
equally costly to access any part of the program at any time (although cache systems
can affect the costs in ways that are hard to predict.)

In contrast, appreciable overhead is incurred when the hardware design within an
FPGA is replaced with a different design. The space within anFPGA is limited, so
it is not feasible for the FPGA to hold a large enough hardwaredesign to perform all
the calculations it needs to do. In a ray-tracing system the hardware design loaded into
the FPGA needs to be replaced repeatedly as the ray advances,in order to accomplish
different phases of the computation. In order to minimize the effect of this overhead
on the performance of the system, it is preferable to do a breadth-first tracing of the
rays. This means that rather than tracing one ray at a time through the whole system,

4

it is preferable instead to trace a large collection of rays through a single stage of the
system andthen change the FPGA’s function by loading a different design into it.

In the calculation of the point at which a ray intersects an optical surface, this
would entail loading the intersection-calculating hardware design into the FPGA and
then calculating the intersection point for a large number of rays at the next optical
surface. (A different design would apply according to whether the surface was a plane,
sphere, or general conicoid.)

Next would come another hardware design to check to see if therays are inside or
outside the aperture associated with the surface.

Following this the system would need to calculate the unit normal to the optical
surface. In the case of a planar surface, this step is unnecessary because the unit normal
vector is constant throughout the plane and known in advance.

The fourth phase would entail calculating the effect of refraction or relection at the
surface. Again, this would be done for a large number of rays.Since it is known in
advance whether a particular surface is a reflector or a refractor, it is straightforward to
load whichever design is appropriate.

Finally the coordinates that specify the position and direction of the rays in the
local coordinate system for the next surface would be calculated by loading two further
hardware designs into the FPGA one at a time and converting the coordinates for a
large number of rays.

Modulo Scheduling of FPGA Resources

Rau and Glaeser [4] described an optimal means of scheduling generalized vector com-
putations, of which ray tracing is an example. Because modern FPGAs can hold a large
amount of hardware, it now is feasible to apply this method tothe scheduling of deeply
pipelined scientific computations in FPGAs. To do this we must make a suitable spec-
ification of resources and their interconnections within anFPGA.

As an example of this, we outline three approaches to scheduling the use of re-
sources in pipelined hardware that compute the intersection of a light ray with a con-
icoid surface. Of the six main computations in the ray-tracing application, this cal-
culation is the most involved. Such schedules are suitable in designs based on the
floating-point hardware modules available, for example, with the Xilinx ISE software
suite. [5] These pipelined modules permit a new floating-point operation to be initiated
every cycle, even though the latency of any single calculation may be many cycles.

Four equations are sufficient for calculating the distanceu a ray must traverse before
striking a conicoid surface: [6]

f = c
(

1+ kN2)

g = N − c(x0L+ y0M +(1+ k)z0N)

h = c
(

x2
0 + y2

0 +(1+ k)z2
0

)

−2z0

u =
h

g+
√

g2
− f h

5

where the starting point of the ray isP0 = (x0,y0,z0); its starting direction is given
by the unit vectorω̂0 = (L,M,N); k is the conic constant that specifies whether the
conicoid is a sphere (k = 0), an oblate ellipsoid (k > 0), a prolate ellipsoid (−1< k < 0),
a paraboloid (k = −1), or a hyperbolid (k < −1); andc is the curvature of the conicoid
surface.

Onceu is known, the coordinates of the intersection pointP1 = (x1,y1,z1) can be
calculated using the vector expressionP1 = P0 +uω̂0.

These calculations entail 19 multiplications, 13 additions, a division, and the ex-
traction of one square-root.

In considering our first schedule we include four floating-point units: an adder, a
multiplier, a divider, and a square-root extractor. The latency of these units—the num-
ber of cycles it takes for the result to be calculated—is 11, 6,27, and 27, respectively.

When performing modulo scheduling, the modulus is equal to the highest number
of operations required of any functional unit. In the first design we discuss below this
number is 19. Using the chain of dependences of one calculation on the results of
preceding calculations, the cardinal rule is to make sure that the starting cycle taken
modulo 19 does not correspond to any cycle (also taken modulo19) when that unit has
already been scheduled. In any case where this condition is violated, we add enough
delays to force it to be met. These delays correspond to the insertion of buffers in the
pipeline to hold the result from the time it is available until the time it is needed. To de-
termine the schedule, we start with the last calculation performed and work backwards
to the earliest calculation. Once the pipeline is full, a newresult appears after every
intervalt = mτ, wherem is the modulus andτ is the clock period. With large numbers
of rays available, the pipeline is full most of the time.

The multiplier is the critical unit in the first schedule we consider because there
are more multiplications than any other operation. Modulo scheduling permits 100 %
utilization of the critical unit. The utilization of the adder/subtractor in this example
is 13/19= 68%, that of the divider and the square-root extractor is 1/19= 5%. The
critical unit also determines the throughput. One computation is completed every 19
cycles in this case.

Consider the result if we add a second multiplier to the system and arrange for one
of the multipliers to do 10 multiplications and for the otherto do the remaining nine
multiplications. This will cause the adder/subtractor to become the critical unit because
it will have 13 additions to do, more than any other unit. A newsuitable schedule will
yield 100 % utilization for the adder. The utilization of thetwo multipliers will be
10/13= 77% and 9/13= 69%, respectively; that of the divider and the square-root
extractor will climb to 1/13= 8%. The throughput now will be one computation every
13 cycles. This will represent an increase in throughput of 46 % due to the introduction
of a second multiplier unit.

If we could include both a second adder as well as a second multiplier, we could
schedule seven additions on one adder and six on the other. The multiplier with 10
multiplications scheduled on it would then become the critical unit. The utilization of
the multiplier with nine scheduled multiplications would be 9/10 = 90%. The two
adders would have utilization 7/10= 70% and 6/10= 60%, respectively. The utiliza-
tion of the divider and of the square-root extractor would climb to 1/10= 10%. The
throughput now would be one result every 10 cycles, an improvement of 90% over the

6

first design and of 30 % over the second design.

Interaction Between the Opterons and the FPGAs

There are 220 nodes of four Opteron processors within NRL’s Cray XD-1. There is
one Xilinx Virtex II Pro FPGA in each of 144 of these nodes, making a total of 576 of
this type of FPGA. In a single node, any one of the four Opteronprocessors can take
control of the FPGA at a time.

In our design a single node can communicate with any other node using MPI. Each
node runs an identical program, using OpenMP to implement multithreading. The
main() program uses MPI to discover the set of ray-tracing tasks forwhich it has re-
sponsibility and establishes a queue of such tasks. Themain() program also controls
the node’s FPGA. One of the threads running in parallel withmain() loads an appro-
priate hardware design into the FPGA whenever needed. It also repeatedly selects a
subset of the waiting ray-tracing computations and dispatches that subset to the FPGA
for processing. This thread is then suspended until the FPGAhas finished the assigned
task. At this point the FPGA interrupts the program, reactivating the dormant thread.

Meanwhile, additional threads spawned and dispatched bymain() using the capa-
bilities of OpenMP execute on one of the four sequential instruction processors avail-
able in the node. Just as the thread controlling the FPGA does, these threads also select
waiting ray-tracing computations, performing them with a sequential program.

The effect of these combined operations is that the FPGA supplements the process-
ing power of the Opteron processors, accelerating the ray-tracing process.

Each node of four sequential Opteron processors operates largely independently of
the others. One of the nodes is designated as the master node.It is responsible for
reading the lens-description file at the outset and broadcasting the description to all the
other nodes sharing in the work.

The sequential threads use a depth-first ray-tracing strategy. However, in order to
minimize the overhead incurred when a node replaces its FPGAdesign, the FPGA
thread forces the FPGA to trace rays using a breadth-first approach.

Once each node has finished its assigned tasks, it reports itsresults independently
to the designated master processor, which collates the results as each node completes
its assigned ray-tracing tasks.

Simulated Performance

Preliminary simulations show that one floating-point operation can be initiated every
4.931 ns. The corresponding average ray-tracing rate is 5.350×106 rays·surfaces/s in
the MODIS system . This is somewhat less than the 6.95×106 rays·surfaces/s we
obtained using the Cray XD-1 alone. [7]. Our experience shows, though, that the
overhead associated with ray tracing is very small. Using the assumption that the
overhead associated with assigning work to the FPGA also is negligible in compari-
son to the computational work required, we can make a rough estimate of the com-
bined performance by adding the two rates together, leadingto a ray-tracing rate of

7

11.88×106 rays·surfaces/s. This represents a 77 % speedup.
We can achieve still better performance, however, by increasing the number of

adders and multipliers in the system. In a system with one adder, one multiplier, one di-
vider, and one square-root extractor, these devices use up less than 11 % of the “slices”
in a Xilinx Virtex II Pro Model 2vp50ff1148-7 FPGA. Adding two adders and three
multipliers (a 125 % increase in floating-point units on the chip) would greatly in-
crease the speed at which the ray tracing could proceed without exhausting the on-chip
resources. Our prediction is that such a system would yield a267 % speedup compared
to one that uses the Opteron processors alone. There is a possibility of even greater
improvements if we can fit additional floating-point units onthe FPGA.

We are currently engaged in completing the combined design with a view to exper-
imentally determining the actual speedup we can achieve.

References

[1] E. Waluschka, X. Xiong, B. Guenther, W. Barnes, and V. Salomonson, “Modeling
studies for the MODIS solar diffuser attenuation screen andcomparison with on-
orbit measurements,”Proceedings of SPIE, vol. 5542, no. 47, pp. 342–353, 2004.

[2] C. B. Cameron, R. N. Rodriguez, N. Padgett, E. Waluschka,S. Kizhner, G. Colon,
and C. Weeks, “Fast optical ray tracing using parallel DSPs,” IEEE Transactions
on Instrumentation and Measurement, vol. 55, no. 3, pp. 801–808, June 2006.

[3] V. Kumar, Introduction to Parallel Computing: Design and Analysis of Parallel
Algorithms. Redwood City, CA: Benjamin/Cummings Publishing Company,Inc.,
1994.

[4] B. R. Rau and C. D. Glaeser, “Some scheduling techniques and an easily schedula-
ble horizontal architecture for high performance scientific computing,”SIGMICRO
Newsl., vol. 12, no. 4, pp. 183–198, 1981.

[5] Floating-Point Operator V3.0, Available online at

http://www.xilinx.com/bvdocs/ipcenter/datasheet/floatingpoint ds335.pdf, Xil-
inx, September 28 2006, product specification DS335.

[6] P. Mouroulis and J. Macdonald,Geometrical Optics and Optical Design. New
York, New York: Oxford University Press, Inc., 1997.

[7] C. B. Cameron, “Parallel ray tracing using the message passing interface (MPI),”
2006, submitted for publication to IEEE Transactions on Instrumentation and Mea-
surement on 19 September 2006.

This work was supported by the National Aeronautics and Space Administration (NASA) Goddard Space

Flight Center (Code 586), the Applied Optics Branch (Code 5630) at the Naval Research Laboratory (NRL),

the United States Naval Academy, and a grant of computer time from the Department of Defense High

Performance Computing Modernization Program at NRL (Code 5593). The author would also like to thank

Xilinx, Inc. for their generous donation of development software used in the research described in this paper.

8

http://www.xilinx.com/bvdocs/ipcenter/data_sheet/floating_point_ds335.pdf

	The Ray-Tracing Problem
	 Depth-first v. breadth-first ray tracing
	Modulo Scheduling of FPGA Resources
	Interaction Between the Opterons and the FPGAs
	Simulated Performance

