Using FPGASs to Supplement Ray-Tracing
Computations on the Cray XDt1

Charles B. Cameron
Department of Electrical Engineering
United States Naval Academy
105 Maryland Avenue, Stop 14B
Annapolis, Maryland 21402-5025
cameronc@usna.edu

June 7, 2007

Abstract

Optical ray tracing simulations in lens design commonly employ six major
computations: the point of intersection of a ray and an optical surfadeeek to
see whether the ray is inside a restrictive aperture, calculation of a whitrveor-
mal to the surface at the point of intersection, the result of reflectioefoaation
of the ray at the surface, and coordinate conversions of the new starting po-
sition and direction to facilitate repetition of the calculations at succeeding bptica
elements. Because the rays are independent of one another, iag taic benefit
greatly from parallel processing, especially when there are billionsysf tabe
traced. The efficiency of using 839 AMD Opteron processors for hieation
has been shown to be 97.9%. This means that adding additional poxéess
highly effective strategy for increasing the rate of ray tracing, thusaieg the
time of simulation. Using field-programmable gate arrays (FPGA) is actfe
strategy for further increasing the rate of ray tracing.

In this paper we describe key aspects of implementing deeply pipelinedgpro
sors within an FPGA to perform scientific computations, using them to sujgplem
the ray tracing provided by the sequential Opteron processors in tlyeXDrdl.
The discussion includes how to schedule the use of the FPGA's intesmairees,
synchronize the interaction between the FPGA and the Opterons, arss dsse
fraction of time that each major computational resource within the FPGA isdan u
We discuss a method that guarantees 100 % efficiency of the criticairoesathe
resource needed most often for a specific computation. We also eohsid to in-
crease the efficiency of the non-critical computational resources vifieifPGA
and what the side effects of such changes can be.

*Approved for public release; distribution is unlimited.

The Ray-Tracing Problem

Itis common both in lens design as well as in computer-geioeraf digital images to
rely on the formulations of ray tracing to describe the pgaeon of light. When ray
tracing theory is applied to lens design, a typical objects/to discover where each
ray strikes the image plane, if it does so at all. The lensesystesigner can then assess
the acceptability of the result, modify the lens design asseindicated, and repeat
the ray-tracing simulation.

There are six main computational tasks in this kind of ragitrg that must be
performed repetitively, once for each ray as it encountach esurface in the system.
For each optical surface within a lens system, we begin wikaging point and the
initial direction of a particular ray. We then need to peniicthe following steps.

1. Find the point where the ray strikes the next optical sgrfa

2. Check to see whether the ray has fallen outside or insiggariure associated
with that optical surface.

3. Find the unit vector normal to the surface at the intersegioint.

4. Compute the direction of the new ray (or rays) resultirgrfrreflection or re-
fraction when the old ray strikes this optical surface.

5. Convert the intersection point from the local coordinatetem associated with
the previous optical surface into that associated with tag pptical surface.
This entails a rotation and a translation in three dimerssion

6. Convert the direction of the new ray from the local cooatinsystem associ-
ated with the previous optical surface into that associatital the next optical
surface. This just entails a rotation in three dimensions.

The four broad classes of surfaces encountered in typicimgy lens systems are
planes, spheres, conicoids, and aspherics. While planespueides can be described
as special cases of conicoids, the problem of determiningrevh ray strikes one of
these surfaces can be accomplished more quickly by takivenéage of their simpler
mathematical descriptions. In this paper we do not tredterspsurfaces.

Figure 1 is a schematic drawing of a particular lens system we have usex-
ploring the application of parallel processing technigigethe problem of ray tracing.
It is the Moderate Resolution Imaging SpectroradiometeDMS), currently in the
two, low-orbit, earth-observing satellites Terra and AquaThis system incorporates
a pinhole attenuator that limits the amount of solar powat émters the system during
the calibration of the instrument once each orbital penduch is about 90 minutes in
length. It also includes a solar diffuser, likewise used/ahiring calibration. Its effect
is to spread the solar illumination evenly on the image plangermit the determina-
tion of a suitable level of amplification in each of the optidatectors in the image
plane. This is necessary to offset variability in the eartistance from the sun.

A single ray in optical ray tracing simulations of this syatgenerates a very large
number of rays when it strikes the solar diffuser. This tetodsiake the simulations

Attenuator

Rays
from Sun
Detector

Rotating
Mirror

Figure 1: The Moderate Resolution Imaging Spectroradienygrforms a calibration
once during every orbit. This entails attenuating the sdirsct rays with a pinhole
attenuator. Multiple diffuse images of the sun then fallmpdiffuser, producing more
or less even illumination on the detector and permittingisishent of the gain of each
detector element. Views of the earth use neither the pirdité®uator nor the diffuser.

very lengthy, about two weeks long when performed on a Digitaipment Corpora-
tion (DEC) Alpha 3000 series model 800 computé}. [

By performing the simulations on a parallel computer systin@ Naval Research
Laboratory’s (NRL) Cray XD-1 computer, we managed to redhedr duration to less
than 27 s. Figur@ shows the rate of ray tracing as a function of the number afgso
sors cooperating in the simulation. From the fact that the i§ straight it is evident
that adding more processors is very effective in achievimgroved performance. The
program uses the Message Passing Interface (MPI) to ceatedine efforts of the mul-
tiple processors assigned to it.

The Cray XD-1 groups its processors into collections of fmacessors, each group
known collectively as a single node. Of the 840 availableasad the NRL Cray XD-1,
576 of them contain a Field Programmable Gate Array (FPGAg d@ata shown in
Figure2 were collected without using any FPGAs at all. We are inteces using the
FPGAs to perform a subset of the ray-tracing computatiorsdier to trace a higher
number of rays per unit time.

Kumaret al. [3] define the efficiency of a parallel system by

_'p
Ny

wherer is the rate of execution when a single processor tacklesrtitdgm,n is the
number of processors actually assigned to work coopehativethe problem, and,p

is the rate of execution whemprocessors work on it. Whenever adding another pro-
cessor actually gives a good return on the investnteapproaches 100 %. Whenever
adding another processor yields little improvement in@anince E approaches 0 %.
By this measure of efficiency, we achievied= 97.9% withn = 839.

It would be hard to achieve much greater efficiency than tHiswever, it is quite
feasible to consider improving both andrnp together and, because the efficieriey
is so high, it is also quite reasonable to consider assigstiignore processors to the
problem in order to achieve faster execution.

Modern FPGAs such as those in the Cray XD-1 contain a largéoeunf hardware
devices. Their interconnections can be changed on the flginga feasible to alter

Ray tracing rate / (106 rays/ s)

j g S S S
0.2F i PO e o Toeoi Lo Least Squares Fit ||
: : : : : ® Measured values
i i 1 1 1

i i i
2 5 10 20 50 100 200 500 1000
Number of processors

Figure 2: Ray tracing benefits greatly from the presence ditiadal processors be-
cause individual rays are independent of each other.

the hardware design inside an FPGA partway through the eioplof a processing
job. This provides another avenue for improving the perfomoe of a parallel task
such as ray tracing. By offloading some of the computatiomakvrom the sequential
processors of the Cray XD-1 into the inherently paralleldinaare of the FPGA, we
expect to achieve significant gains in processing speeautitiequiring any additional
sequential processors to be included.

Depth-first v. breadth-first ray tracing

It is reasonable in a sequential ray-tracing program tocs@lesingle ray and trace it
from beginning to end. This requires repeated calculatiddmstercept point, aperture,
unit normal vector, interaction, and coordinate transfation as the ray transits the
system, as described earlier. Such an approach could beh#dgsas a depth-first
simulation: one ray is followed throughout its history agribceeds deeper and deeper
into the optical system. Because programs are stored iroraratcess memory, it is
equally costly to access any part of the program at any tirtleofagh cache systems
can affect the costs in ways that are hard to predict.)

In contrast, appreciable overhead is incurred when thewseldesign within an
FPGA is replaced with a different design. The space withifFBRGA is limited, so
it is not feasible for the FPGA to hold a large enough hardvaesign to perform all
the calculations it needs to do. In a ray-tracing system #néware design loaded into
the FPGA needs to be replaced repeatedly as the ray advamoeder to accomplish
different phases of the computation. In order to minimize ¢fffect of this overhead
on the performance of the system, it is preferable to do adtinefirst tracing of the
rays. This means that rather than tracing one ray at a tinoeigtrthe whole system,

it is preferable instead to trace a large collection of rdysugh a single stage of the
system andhen change the FPGA's function by loading a different designo int

In the calculation of the point at which a ray intersects aticap surface, this
would entail loading the intersection-calculating hardsvdesign into the FPGA and
then calculating the intersection point for a large numiderags at the next optical
surface. (A different design would apply according to wieetthe surface was a plane,
sphere, or general conicoid.)

Next would come another hardware design to check to see ifweare inside or
outside the aperture associated with the surface.

Following this the system would need to calculate the unitmad to the optical
surface. In the case of a planar surface, this step is unsmgasecause the unit normal
vector is constant throughout the plane and known in advance

The fourth phase would entail calculating the effect ofaefion or relection at the
surface. Again, this would be done for a large number of r&jisce it is known in
advance whether a particular surface is a reflector or aateftat is straightforward to
load whichever design is appropriate.

Finally the coordinates that specify the position and dioecof the rays in the
local coordinate system for the next surface would be cated|by loading two further
hardware designs into the FPGA one at a time and convertimgdbrdinates for a
large number of rays.

Modulo Scheduling of FPGA Resources

Rau and Glaeset] described an optimal means of scheduling generalizedweotn-
putations, of which ray tracing is an example. Because nmoEBGAS can hold a large
amount of hardware, it now is feasible to apply this methathéoscheduling of deeply
pipelined scientific computations in FPGAs. To do this we nmuiake a suitable spec-
ification of resources and their interconnections withiF®GA.

As an example of this, we outline three approaches to scimegdtiie use of re-
sources in pipelined hardware that compute the intersedtia light ray with a con-
icoid surface. Of the six main computations in the ray-tigcapplication, this cal-
culation is the most involved. Such schedules are suitabléesigns based on the
floating-point hardware modules available, for examplehwhe Xilinx ISE software
suite.] These pipelined modules permit a new floating-point opengb be initiated
every cycle, even though the latency of any single calcutathay be many cycles.

Four equations are sufficient for calculating the distaneeay must traverse before
striking a conicoid surfacef]

f =c(1+kN?)
g=N-—c(xL+YyoM+ (1+Kk)zoN)
h=c(§+¥5+(1+K7) - 22

h

g++/0?>— fh

u=

where the starting point of the ray B = (Xo,Yo0,2); its starting direction is given
by the unit vectordoy = (L,M,N); k is the conic constant that specifies whether the
conicoid is a spheré&(= 0), an oblate ellipsoidk(> 0), a prolate ellipsoid{1 < k < 0),

a paraboloid = —1), or a hyperbolidK < —1); andc is the curvature of the conicoid
surface.

Onceu is known, the coordinates of the intersection pdétat= (x1,y1,21) can be
calculated using the vector expressin= P+ udy.

These calculations entail 19 multiplications, 13 add#ioa division, and the ex-
traction of one square-root.

In considering our first schedule we include four floatingapainits: an adder, a
multiplier, a divider, and a square-root extractor. Thena of these units—the num-
ber of cycles it takes for the result to be calculated—is 12,76 and 27, respectively.

When performing modulo scheduling, the modulus is equaledcighest number
of operations required of any functional unit. In the firsside we discuss below this
number is 19. Using the chain of dependences of one caloalath the results of
preceding calculations, the cardinal rule is to make suaefttie starting cycle taken
modulo 19 does not correspond to any cycle (also taken md@)levhen that unit has
already been scheduled. In any case where this conditioiolsted, we add enough
delays to force it to be met. These delays correspond to gestion of buffers in the
pipeline to hold the result from the time it is available utite time it is needed. To de-
termine the schedule, we start with the last calculatiofopered and work backwards
to the earliest calculation. Once the pipeline is full, a meault appears after every
intervalt = mr, wheremis the modulus and is the clock period. With large numbers
of rays available, the pipeline is full most of the time.

The multiplier is the critical unit in the first schedule wenstder because there
are more multiplications than any other operation. Modualoesluling permits 100 %
utilization of the critical unit. The utilization of the addsubtractor in this example
is 13/19= 68%, that of the divider and the square-root extractor/is9t= 5%. The
critical unit also determines the throughput. One compartias completed every 19
cycles in this case.

Consider the result if we add a second multiplier to the sysiad arrange for one
of the multipliers to do 10 multiplications and for the othierdo the remaining nine
multiplications. This will cause the adder/subtractoréadme the critical unit because
it will have 13 additions to do, more than any other unit. A reitable schedule will
yield 100 % utilization for the adder. The utilization of th&o multipliers will be
10/13=77% and 913 = 69%, respectively; that of the divider and the square-root
extractor will climb to /13= 8%. The throughput now will be one computation every
13 cycles. This will represent an increase in throughputdddue to the introduction
of a second multiplier unit.

If we could include both a second adder as well as a secondptertwe could
schedule seven additions on one adder and six on the othermittiplier with 10
multiplications scheduled on it would then become theaaltunit. The utilization of
the multiplier with nine scheduled multiplications woule 8/10 = 90%. The two
adders would have utilizatioryZ0= 70% and §10= 60%, respectively. The utiliza-
tion of the divider and of the square-root extractor woulchblto 1/10=10%. The
throughput now would be one result every 10 cycles, an ingar@nt of 90% over the

first design and of 30 % over the second design.

Interaction Between the Opterons and the FPGAs

There are 220 nodes of four Opteron processors within NRt&/XD-1. There is
one Xilinx Virtex Il Pro FPGA in each of 144 of these nodes, ingka total of 576 of
this type of FPGA. In a single node, any one of the four Optgnmtessors can take
control of the FPGA at a time.

In our design a single node can communicate with any otheg nethg MPI. Each
node runs an identical program, using OpenMP to implemeritithmeading. The
main() program uses MPI to discover the set of ray-tracing tasksvfoch it has re-
sponsibility and establishes a queue of such tasks.nTdie() program also controls
the node’s FPGA. One of the threads running in parallel witlin() loads an appro-
priate hardware design into the FPGA whenever needed. dtrafgeatedly selects a
subset of the waiting ray-tracing computations and didpzt¢hat subset to the FPGA
for processing. This thread is then suspended until the FR&Ainished the assigned
task. At this point the FPGA interrupts the program, reating the dormant thread.

Meanwhile, additional threads spawned and dispatchedaiy() using the capa-
bilities of OpenMP execute on one of the four sequentiatirtston processors avail-
able in the node. Just as the thread controlling the FPGA doese threads also select
waiting ray-tracing computations, performing them witheggential program.

The effect of these combined operations is that the FPGAleommts the process-
ing power of the Opteron processors, accelerating thereayAg process.

Each node of four sequential Opteron processors operatgedyiandependently of
the others. One of the nodes is designated as the master ttadeesponsible for
reading the lens-description file at the outset and brogidgathe description to all the
other nodes sharing in the work.

The sequential threads use a depth-first ray-tracing giratéowever, in order to
minimize the overhead incurred when a node replaces its FBE€#gn, the FPGA
thread forces the FPGA to trace rays using a breadth-firsbaphp.

Once each node has finished its assigned tasks, it reporésiths independently
to the designated master processor, which collates thésesueach node completes
its assigned ray-tracing tasks.

Simulated Performance

Preliminary simulations show that one floating-point ogieracan be initiated every
4.931 ns. The corresponding average ray-tracing rate8B0< 10° rays surfacegs in
the MODIS system . This is somewhat less than tH56 10° rays surfacegs we
obtained using the Cray XD-1 alone/][Our experience shows, though, that the
overhead associated with ray tracing is very small. Usirggabsumption that the
overhead associated with assigning work to the FPGA alsedgigible in compari-
son to the computational work required, we can make a routim&® of the com-
bined performance by adding the two rates together, leairgray-tracing rate of

11.88 x 10° rays surfacegs. This represents a 77 % speedup.

We can achieve still better performance, however, by irgingathe number of
adders and multipliers in the system. In a system with onerdde multiplier, one di-
vider, and one square-root extractor, these devices ussspHan 11 % of the “slices”
in a Xilinx Virtex Il Pro Model 2vp50ff1148-7 FPGA. Adding twwadders and three
multipliers (a 125 % increase in floating-point units on thepg would greatly in-
crease the speed at which the ray tracing could proceedutitxdausting the on-chip
resources. Our prediction is that such a system would yi2ki7é speedup compared
to one that uses the Opteron processors alone. There is ibifitysef even greater
improvements if we can fit additional floating-point unitstbe FPGA.

We are currently engaged in completing the combined desitmawiew to exper-
imentally determining the actual speedup we can achieve.

References

[1] E. Waluschka, X. Xiong, B. Guenther, W. Barnes, and Vogainson, “Modeling
studies for the MODIS solar diffuser attenuation screen@mdparison with on-
orbit measurementsProceedings of SPIE, vol. 5542, no. 47, pp. 342—-353, 2004.

[2] C. B. Cameron, R. N. Rodriguez, N. Padgett, E. WaluscBk&izhner, G. Colon,
and C. Weeks, “Fast optical ray tracing using parallel DSHEEE Transactions
on Instrumentation and Measurement, vol. 55, no. 3, pp. 801-808, June 2006.

[3] V. Kumar, Introduction to Parallel Computing: Design and Analysis of Parallel
Algorithms. Redwood City, CA: Benjamin/Cummings Publishing Compaing,,
1994,

[4] B.R.Rau and C. D. Glaeser, “Some scheduling technignésa easily schedula-
ble horizontal architecture for high performance scientiéimputing,”"SIGMICRO
Newsl., vol. 12, no. 4, pp. 183-198, 1981.

[5] Floating-Point Operator V3.0, Available online at

http://www.xilinx.com/bvdocs/ipcenter/datheet/floatingpoint ds335.pdf Xil-
inx, September 28 2006, product specification DS335.

[6] P. Mouroulis and J. Macdonald;eometrical Optics and Optical Design. New
York, New York: Oxford University Press, Inc., 1997.

[7] C. B. Cameron, “Parallel ray tracing using the messagsipg interface (MPI),”
2006, submitted for publication to IEEE Transactions ottrlmeentation and Mea-
surement on 19 September 2006.

This work was supported by the National Aeronautics and Spatministration (NASA) Goddard Space
Flight Center (Code 586), the Applied Optics Branch (Codeé® @t the Naval Research Laboratory (NRL),
the United States Naval Academy, and a grant of computer tinta the Department of Defense High
Performance Computing Modernization Program at NRL (Cod&p5Bhe author would also like to thank
Xilinx, Inc. for their generous donation of development a@fte used in the research described in this paper.

http://www.xilinx.com/bvdocs/ipcenter/data_sheet/floating_point_ds335.pdf

	The Ray-Tracing Problem
	 Depth-first v. breadth-first ray tracing
	Modulo Scheduling of FPGA Resources
	Interaction Between the Opterons and the FPGAs
	Simulated Performance

