
Using FPGAs to Supplement Ray-Tracing Computations on the Cray XD-1

Charles B. Cameron
Department of Electrical Engineering, US Naval Academy (USNA), Annapolis, MD

cameronc@usna.edu

Abstract

 Optical ray tracing simulations in lens design
commonly employ six major computations: the point of
intersection of a ray and an optical surface, a check to see
whether the ray is inside a restrictive aperture,
calculation of a unit vector normal to the surface at the
point of intersection, the result of reflection or refraction
of the ray at the surface, and coordinate conversions of
the new ray’s starting position and direction to facilitate
repetition of the calculations at succeeding optical
elements. Because the rays are independent of one
another, ray tracing can benefit greatly from parallel
processing, especially when there are billions of rays to
be traced. The efficiency of using 839 AMD Opteron
processors for this application has been shown to be 97.9
%. This means that adding additional processors is a
highly effective strategy for increasing the rate of ray
tracing, thus reducing the time of simulation. Using field-
programmable gate arrays (FPGA) is an effective
strategy for further increasing the rate of ray tracing.
 In this paper we describe key aspects of
implementing deeply pipelined processors within an
FPGA to perform scientific computations, using them to
supplement the ray tracing provided by the sequential
Opteron processors in the Cray XD-1. The discussion
includes how to schedule the use of the FPGA’s internal
resources, synchronize the interaction between the FPGA
and the Opterons, and assess the fraction of time that
each major computational resource within the FPGA is in
use. We discuss a method that guarantees 100 %
efficiency of the critical resource, the resource needed
most often for a specific computation. We also consider
how to increase the efficiency of the non-critical
computational resources within the FPGA and what the
side effects of such changes can be.

1. The Ray-Tracing Problem

 It is common both in lens design as well as in
computer-generation of digital images to rely on the
formulations of ray tracing to describe the propagation of

light. When ray tracing theory is applied to lens design, a
typical objective is to discover where each ray strikes the
image plane, if it does so at all. The lens systems
designer can assess the acceptability of the result, modify
the lens design if needed, and repeat the ray-tracing
simulation.
 There are six main computational tasks in this kind of
ray tracing that must be performed repetitively, once for
each ray as it encounters each surface in the system. For
each optical surface within a lens system, we begin with a
starting point and the initial direction of a particular ray.
We then need to perform the following steps.

1. Find the point where the ray strikes the next
optical surface.

2. Check to see whether the ray has fallen outside
or inside an aperture associated with that optical
surface.

3. Find the unit vector normal to the surface at the
intersection point.

4. Compute the direction of the new ray (or rays)
resulting from reflection or refraction when the
old ray strikes this optical surface.

5. Convert the intersection point from the local
coordinate system associated with the previous
optical surface into that associated with the next
optical surface. This entails a rotation and a
translation in three dimensions.

6. Convert the direction of the new ray from the
local coordinate system associated with the
previous optical surface into that associated with
the next optical surface. This just entails a
rotation in three dimensions.

 The four broad classes of surfaces encountered in
typical imaging lens systems are planes, spheres,
conicoids, and aspherics. While planes and spheres can
be described as special cases of conicoids, the problem of
determining where a ray strikes one of these surfaces can
be accomplished more quickly by taking advantage of
their simpler mathematical descriptions. In this paper we
do not treat aspheric surfaces.
 Figure 1 is a schematic drawing of a particular lens
system we have used in exploring the application of
parallel processing techniques to the problem of ray

HPCMP USERS GROUP CONFERENCE 2007 (HPCMP-UGC 2007)
0-7695-3088-5/07 $25.00 © 2007

tracing. It is the Moderate Resolution Imaging
Spectroradiometer (MODIS), currently in the two, low-
orbit, earth-observing satellites Terra and Aqua[1]. This
system incorporates a pinhole attenuator that limits the
amount of solar power that enters the system during the
calibration of the instrument once each orbital period,
which is about 90 minutes in length. It also includes a
solar diffuser, likewise used only during calibration. Its
effect is to spread the solar illumination evenly on the
image plane to permit the determination of a suitable level
of amplification in each of the optical detectors in the
image plane. This is necessary to offset variability in the
earth’s distance from the sun.

Figure 1. The Moderate Resolution Imaging

Spectroradiometer performs a calibration once during every

orbit. This entails attenuating the sun’s direct rays with a

pinhole attenuator. Multiple diffuse images of the sun then

fall upon a diffuser, producing more or less even illumination

on the detector and permitting adjustment of the gain of each

detector element. Views of the earth use neither the pinhole

attenuator nor the diffuser.

 A single ray in optical ray tracing simulations of this
system generates a very large number of rays when it
strikes the solar diffuser. This tends to make the
simulations very lengthy, about two weeks long when
performed on a Digital Equipment Corporation Alpha
3000 series model 800 computer[2].
 By performing the simulations on a parallel computer
system, the Naval Research Laboratory’s (NRL’s) Cray
XD-1 computer, we managed to reduce their duration to
less than 27 s. Figure 2 shows the rate of ray tracing as a
function of the number of processors cooperating in the
simulation. The straight line shows that adding more
processors is very effective in achieving improved
performance. The program uses the Message Passing
Interface (MPI) to coordinate the efforts of the multiple
processors assigned to it.

Figure 2. Ray tracing benefits greatly from the presence of

additional processors because individual rays are

independent of each other

 The Cray XD-1 groups its processors into collections
of four processors, each group known collectively as a
single node. Of the 840 available nodes in the NRL Cray
XD-1, 576 of them contain a Field Programmable Gate
Array (FPGA). The data shown in Figure 2 were
collected without using any FPGAs at all. We are
interested in using the FPGAs to perform a subset of the
ray-tracing computations in order to trace a higher
number of rays per unit time.
 Kumar et al.[3] define the efficiency of a parallel
system by

p

np

r
E

nr

where rp is the rate of execution when a single processor
tackles the problem, n is the number of processors
actually assigned to work cooperatively on the problem,
and rnp is the rate of execution when n processors work
on it. Whenever adding another processor actually gives
a good return on the investment, E approaches 100%.
Whenever adding another processor yields little
improvement in performance, E approaches 0%. By this
measure of efficiency, we achieved E = 97.9% with n =
839.
 It would be hard to achieve much greater efficiency
than this. However, it is quite feasible to consider
improving both rp and rnp together and, because the
efficiency E is so high, it is also quite reasonable to
consider assigning still more processors to the problem in
order to achieve faster execution.
 Modern FPGAs such as those in the Cray XD-1
contain a large number of hardware devices. Their
interconnections can be changed on the fly, making it
feasible to alter the hardware design inside an FPGA

HPCMP USERS GROUP CONFERENCE 2007 (HPCMP-UGC 2007)
0-7695-3088-5/07 $25.00 © 2007

partway through the completion of a processing job. This
provides another avenue for improving the performance
of a parallel task such as ray tracing. By offloading some
of the computational work from the sequential processors
of the Cray XD-1 into the inherently parallel hardware of
the FPGA, we expect to achieve significant gains in
processing speed without requiring any additional
sequential processors to be included.

2. Depth-First vs. Breadth-First Ray Tracing

 It is reasonable in a sequential ray-tracing program to
select a single ray and trace it from beginning to end.
This requires repeated calculations of intercept point,
aperture, unit normal vector, interaction, and coordinate
transformation as the ray transits the system, as described
earlier. Such an approach could be described as a depth-
first simulation: one ray is followed throughout its history
as it proceeds deeper and deeper into the optical system.
Because programs are stored in random-access memory, it
is equally costly to access any part of the program at any
time (although cache systems can affect the costs in ways
that are hard to predict.)
 In contrast, appreciable overhead is incurred when
the hardware design within an FPGA is replaced with a
different design. The space within an FPGA is limited, so
it is not feasible for the FPGA to hold a large enough
hardware design to perform all the calculations it needs to
do. In a ray-tracing system the hardware design loaded
into the FPGA needs to be replaced repeatedly as the ray
advances, in order to accomplish different phases of the
computation. In order to minimize the effect of this
overhead on the performance of the system, it is
preferable to do a breadth-first tracing of the rays. This
means that rather than tracing one ray at a time through
the whole system, it is preferable instead to trace a large
collection of rays through a single stage of the system and
then change the FPGA’s function by loading a different
design into it.
 In the calculation of the point at which a ray
intersects an optical surface, this would entail loading the
intersection-calculating hardware design into the FPGA
and then calculating the intersection point for a large
number of rays at the next optical surface. (A different
design would apply according to whether the surface was
a plane, sphere, or general conicoid.)
 Next, determine if another hardware design is needed
to check if the rays are inside or outside the aperture
associated with the surface.
 The system would need to calculate the unit normal
to the optical surface. In the case of a planar surface, this
step is unnecessary because the unit normal vector is
constant throughout the plane and known in advance.

 The fourth phase would entail calculating the effect
of refraction or relection at the surface. Again, this would
be done for a large number of rays. Since it is known in
advance whether a particular surface is a reflector or a
refractor, it is straightforward to load whichever design is
appropriate.
 Finally, the coordinates that specify the position and
direction of the rays in the local coordinate system for the
next surface would be calculated by loading two further
hardware designs into the FPGA one at a time and
converting the coordinates for a large number of rays.

3. Modulo Scheduling of FPGA Resources

 Rau and Glaeser[4] described an optimal means of
scheduling generalized vector computations, of which ray
tracing is an example. Because modern FPGAs can hold
a large amount of hardware, it now is feasible to apply
this method to the scheduling of deeply pipelined
scientific computations in FPGAs. To do this we must
make a suitable specification of resources and their
interconnections within an FPGA.
 As an example of this, we outline three approaches to
scheduling the use of resources in pipelined hardware that
compute the intersection of a light ray with a conicoid
surface. Of the six main computations in the ray-tracing
application, this calculation is the most involved. Such
schedules are suitable in designs based on the floating-
point hardware modules available, for example, with the
Xilinx ISE software suite[5]. These pipelined modules
permit a new floating-point operation to be initiated every
cycle, even though the latency of any single calculation
may be many cycles.
 Four equations are sufficient for calculating the
distance u a ray must traverse before striking a conicoid
surface[6]:

2

0 0 0

2 2 2
0 0 0 0

2

1

1

1 2

f c kN

g N c x L y M k z N

h c x y k z z

h
u

g g fh

where the starting point of the ray is P0 =(x0, y0, z0); its
starting direction is given by the unit vector

0ˆ , ,L M N ; k is the conic constant that specifies
whether the conicoid is a sphere (k = 0), an oblate
ellipsoid (k > 0), a prolate ellipsoid (1 < k < 0), a
paraboloid (k = 1), or a hyperbolid (k < 1); and c is the
curvature of the conicoid surface.

HPCMP USERS GROUP CONFERENCE 2007 (HPCMP-UGC 2007)
0-7695-3088-5/07 $25.00 © 2007

 Once u is known, the coordinates of the intersection
point P1 =(x1, y1, z1) can be calculated using the vector
expression 1 0 ˆu 0P P .
 These calculations entail 19 multiplications, 13
additions, a division, and the extraction of one square-
root.
 In considering our first schedule we include four
floating-point units: an adder, a multiplier, a divider, and
a square-root extractor. The latency of these units—the
number of cycles it takes for the result to be calculated—
is 11, 6, 27, and 27, respectively.
 When performing modulo scheduling, the modulus is
equal to the highest number of operations required of any
functional unit. In the first design we discuss below, this
number is 19. Using the chain of dependences of one
calculation on the results of preceding calculations, the
cardinal rule is to make sure that the starting cycle taken
modulo 19 does not correspond to any cycle (also taken
modulo 19) when that unit has already been scheduled. In
any case where this condition is violated, we add enough
delays to force it to be met. These delays correspond to
the insertion of buffers in the pipeline to hold the result
from the time it is available until the time it is needed. To
determine the schedule, we start with the last calculation
performed and work backwards to the earliest calculation.
Once the pipeline is full, a new result appears after every
interval t = m , where m is the modulus and is the clock
period. With large numbers of rays available, the pipeline
is full most of the time.
 The multiplier is the critical unit in the first schedule
we consider because there are more multiplications than
any other operation. Modulo scheduling permits 100 %
utilization of the critical unit. The utilization of the
adder/subtractor in this example is 13/19 = 68%, that of
the divider and the square-root extractor is 1/19 = 5%.
The critical unit also determines the throughput. One
computation is completed every 19 cycles in this case.
 Consider the result if we add a second multiplier to
the system and arrange for one of the multipliers to do 10
multiplications and for the other to do the remaining nine
multiplications. This will cause the adder/subtractor to
become the critical unit because it will have 13 additions
to do, more than any other unit. A new suitable schedule
will yield 100% utilization for the adder. The utilization
of the two multipliers will be 10/13 = 77% and 9/13 =
69%, respectively; that of the divider and the square-root
extractor will climb to 1/13 = 8%. The throughput now
will be one computation every 13 cycles. This will
represent an increase in throughput of 46% due to the
introduction of a second multiplier unit.
 If we could include both a second adder as well as a
second multiplier, we could schedule seven additions on
one adder and six on the other. The multiplier with 10
multiplications scheduled on it would then become the
critical unit. The utilization of the multiplier with nine

scheduled multiplications would be 9/10 = 90%. The two
adders would have utilization 7/10 = 70% and 6/10 =
60%, respectively. The utilization of the divider and of
the square-root extractor would climb to 1/10 = 10%. The
throughput now would be one result every 10 cycles, an
improvement of 90% over the first design and of 30%
over the second design.

4. Interaction Between the Opterons and the
FPGAs

 There are 220 nodes of four Opteron processors
within NRL’s Cray XD-1. There is one Xilinx Virtex II
Pro FPGA in each of 144 of these nodes, making a total
of 576 of this type of FPGA. In a single node, any one of
the four Opteron processors can take control of the FPGA
at a time.
 In our design a single node can communicate with
any other node using MPI. Each node runs an identical
program, using OpenMP to implement multithreading.
The main() program uses MPI to discover the set of ray-
tracing tasks for which it has responsibility and
establishes a queue of such tasks. The main() program
also controls the node’s FPGA. One of the threads
running in parallel with main() loads an appropriate
hardware design into the FPGA whenever needed. It also
repeatedly selects a subset of the waiting ray-tracing
computations and dispatches that subset to the FPGA for
processing. This thread is then suspended until the FPGA
has finished the assigned task. At this point the FPGA
interrupts the program, reactivating the dormant thread.
 Meanwhile, additional threads spawned and
dispatched by main() using the capabilities of OpenMP
execute on one of the four sequential instruction
processors available in the node. Just as the thread
controlling the FPGA does, these threads also select
waiting ray-tracing computations, performing them with a
sequential program.
 The effect of these combined operations is that the
FPGA supplements the processing power of the Opteron
processors, accelerating the ray-tracing process.
 Each node of four sequential Opteron processors
operates largely independently of the others. One of the
nodes is designated as the master node. It is responsible
for reading the lens-description file at the outset and
broadcasting the description to all the other nodes sharing
in the work.
 The sequential threads use a depth-first ray-tracing
strategy. However, in order to minimize the overhead
incurred when a node replaces its FPGA design, the
FPGA thread forces the FPGA to trace rays using a
breadth-first approach.
 Once each node has finished its assigned tasks, it
reports its results independently to the designated master

HPCMP USERS GROUP CONFERENCE 2007 (HPCMP-UGC 2007)
0-7695-3088-5/07 $25.00 © 2007

processor, which collates the results as each node
completes its assigned ray-tracing tasks.

5. Simulated Performance

 Preliminary simulations show that one floating-point
operation can be initiated every 4.931 ns. The
corresponding average ray-tracing rate is 5.350 × 106

rays·surfaces/s in the MODIS system . This is somewhat
less than the 6.95 × 106 rays surfaces/s we obtained using
the Cray XD-1 alone[7]. Our experience shows, though,
that the overhead associated with ray tracing is very
small. Using the assumption that the overhead associated
with assigning work to the FPGA also is negligible in
comparison to the computational work required, we can
make a rough estimate of the combined performance by
adding the two rates together, leading to a ray-tracing rate
of 11.88 × 106 rays· surfaces/s. This represents a 77 %
speedup.
 We can achieve still better performance, however, by
increasing the number of adders and multipliers in the
system. In a system with one adder, one multiplier, one
divider, and one square-root extractor, these devices use
up less than 11% of the “slices” in a Xilinx Virtex II Pro
Model 2vp50ff1148-7 FPGA. Adding two adders and
three multipliers (a 125% increase in floating-point units
on the chip) would greatly increase the speed at which the
ray tracing could proceed without exhausting the on-chip
resources. Our prediction is that such a system would
yield a 267 % speedup compared to one that uses the
Opteron processors alone. There is a possibility of even
greater improvements if we can fit additional floating-
point units on the FPGA.
 We are currently engaged in completing the
combined design, which includes a view to
experimentally determine the actual speedup we can
achieve.

Acknowledgements

 This work was supported by the National Aeronautics
and Space Administration Goddard Space Flight Center
(Code 586), the Applied Optics Branch (Code 5630) at
the NRL, the United States Naval Academy, and a grant
of computer time from the Department of Defense High
Performance Computing Modernization Program at NRL
(Code 5593). The author would also like to thank Xilinx,
Inc. for their generous donation of development software
used in the research described in this paper.

References

1. Waluschka, E., X. Xiong, B. Guenther, W. Barnes, and V.
Salomonson, “Modeling studies for the MODIS solar diffuser
attenuation screen and comparison with on-orbit
measurements.” Proceedings of SPIE, vol. 5542, no. 47, pp.
342–353, 2004.
2. Cameron, C. B., R.N. Rodriguez, N. Padgett, E. Waluschka,
S. Kizhner, G. Colon, and C. Weeks, “Fast optical ray tracing
using parallel DSPs.” IEEE Transactions on Instrumentation
and Measurement, vol. 55, no. 3, pp. 801–808, June 2006.
3. Kumar, V., Introduction to Parallel Computing: Design and
Analysis of Parallel Algorithms, Redwood City, CA:
Benjamin/Cummings Publishing Company, Inc., 1994.
4. Rau, B.R. and C.D. Glaeser, “Some scheduling techniques
and an easily schedulable horizontal architecture for high
performance scientific computing.” SIGMICRO Newsl., vol. 12,
no. 4, pp. 183–198, 1981.
5. Floating-Point Operator V3.0, Available online at
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/floating point
ds335.pdf, Xilinx, September 28 2006, product specification
DS335.
6. Mouroulis, P. and J. Macdonald, Geometrical Optics and
Optical Design, New York, New York: Oxford University Press,
Inc., 1997.
7. Cameron, C.B., “Parallel ray tracing using the message
passing interface (MPI).” 2006, submitted for publication to
IEEE Transactions on Instrumentation and Measurement on 19
September 2006.

HPCMP USERS GROUP CONFERENCE 2007 (HPCMP-UGC 2007)
0-7695-3088-5/07 $25.00 © 2007

