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Abstract

 Optical ray tracing simulations in lens design 
commonly employ six major computations:  the point of 
intersection of a ray and an optical surface, a check to see 
whether the ray is inside a restrictive aperture, 
calculation of a unit vector normal to the surface at the 
point of intersection, the result of reflection or refraction 
of the ray at the surface, and coordinate conversions of 
the new ray’s starting position and direction to facilitate 
repetition of the calculations at succeeding optical 
elements.  Because the rays are independent of one 
another, ray tracing can benefit greatly from parallel 
processing, especially when there are billions of rays to 
be traced.  The efficiency of using 839 AMD Opteron 
processors for this application has been shown to be 97.9 
%.  This means that adding additional processors is a 
highly effective strategy for increasing the rate of ray 
tracing, thus reducing the time of simulation.  Using field-
programmable gate arrays (FPGA) is an effective 
strategy for further increasing the rate of ray tracing.   
 In this paper we describe key aspects of 
implementing deeply pipelined processors within an 
FPGA to perform scientific computations, using them to 
supplement the ray tracing provided by the sequential 
Opteron processors in the Cray XD-1.  The discussion 
includes how to schedule the use of the FPGA’s internal 
resources, synchronize the interaction between the FPGA 
and the Opterons, and assess the fraction of time that 
each major computational resource within the FPGA is in 
use.  We discuss a method that guarantees 100 % 
efficiency of the critical resource, the resource needed 
most often for a specific computation.  We also consider 
how to increase the efficiency of the non-critical 
computational resources within the FPGA and what the 
side effects of such changes can be.

1.  The Ray-Tracing Problem 

 It is common both in lens design as well as in 
computer-generation of digital images to rely on the 
formulations of ray tracing to describe the propagation of 

light.  When ray tracing theory is applied to lens design, a 
typical objective is to discover where each ray strikes the 
image plane, if it does so at all.  The lens systems 
designer can assess the acceptability of the result, modify 
the lens design if needed, and repeat the ray-tracing 
simulation.   
 There are six main computational tasks in this kind of 
ray tracing that must be performed repetitively, once for 
each ray as it encounters each surface in the system.  For 
each optical surface within a lens system, we begin with a 
starting point and the initial direction of a particular ray.  
We then need to perform the following steps.   

1. Find the point where the ray strikes the next 
optical surface.   

2. Check to see whether the ray has fallen outside 
or inside an aperture associated with that optical 
surface.

3. Find the unit vector normal to the surface at the 
intersection point.   

4. Compute the direction of the new ray (or rays) 
resulting from reflection or refraction when the 
old ray strikes this optical surface.   

5. Convert the intersection point from the local 
coordinate system associated with the previous 
optical surface into that associated with the next 
optical surface.  This entails a rotation and a 
translation in three dimensions.   

6. Convert the direction of the new ray from the 
local coordinate system associated with the 
previous optical surface into that associated with 
the next optical surface.  This just entails a 
rotation in three dimensions.   

 The four broad classes of surfaces encountered in 
typical imaging lens systems are planes, spheres, 
conicoids, and aspherics.  While planes and spheres can 
be described as special cases of conicoids, the problem of 
determining where a ray strikes one of these surfaces can 
be accomplished more quickly by taking advantage of 
their simpler mathematical descriptions.  In this paper we 
do not treat aspheric surfaces.   
 Figure 1 is a schematic drawing of a particular lens 
system we have used in exploring the application of 
parallel   processing   techniques   to  the  problem  of  ray 
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tracing.  It is the Moderate Resolution Imaging 
Spectroradiometer (MODIS), currently in the two, low-
orbit, earth-observing satellites Terra and Aqua[1].  This 
system incorporates a pinhole attenuator that limits the 
amount of solar power that enters the system during the 
calibration of the instrument once each orbital period, 
which is about 90 minutes in length.  It also includes a 
solar diffuser, likewise used only during calibration.  Its 
effect is to spread the solar illumination evenly on the 
image plane to permit the determination of a suitable level 
of amplification in each of the optical detectors in the 
image plane.  This is necessary to offset variability in the 
earth’s distance from the sun.   

Figure 1. The Moderate Resolution Imaging 

Spectroradiometer performs a calibration once during every 

orbit.  This entails attenuating the sun’s direct rays with a 

pinhole attenuator.  Multiple diffuse images of the sun then 

fall upon a diffuser, producing more or less even illumination 

on the detector and permitting adjustment of the gain of each 

detector element.  Views of the earth use neither the pinhole 

attenuator nor the diffuser. 

 A single ray in optical ray tracing simulations of this 
system generates a very large number of rays when it 
strikes the solar diffuser.  This tends to make the 
simulations very lengthy, about two weeks long when 
performed on a Digital Equipment Corporation Alpha 
3000 series model 800 computer[2].
 By performing the simulations on a parallel computer 
system, the Naval Research Laboratory’s (NRL’s) Cray 
XD-1 computer, we managed to reduce their duration to 
less than 27 s.  Figure 2 shows the rate of ray tracing as a 
function of the number of processors cooperating in the 
simulation.  The straight line shows that adding more 
processors is very effective in achieving improved 
performance.  The program uses the Message Passing 
Interface (MPI) to coordinate the efforts of the multiple 
processors assigned to it.   

Figure 2. Ray tracing benefits greatly from the presence of 

additional processors because individual rays are 

independent of each other 

 The Cray XD-1 groups its processors into collections 
of four processors, each group known collectively as a 
single node.  Of the 840 available nodes in the NRL Cray 
XD-1, 576 of them contain a Field Programmable Gate 
Array (FPGA).  The data shown in Figure 2 were 
collected without using any FPGAs at all.  We are 
interested in using the FPGAs to perform a subset of the 
ray-tracing computations in order to trace a higher 
number of rays per unit time.   
 Kumar et al.[3] define the efficiency of a parallel 
system by  

p

np

r
E

nr

where rp is the rate of execution when a single processor 
tackles the problem, n is the number of processors 
actually assigned to work cooperatively on the problem, 
and rnp is the rate of execution when n processors work 
on it.  Whenever adding another processor actually gives 
a good return on the investment, E approaches 100%.  
Whenever adding another processor yields little 
improvement in performance, E approaches 0%.  By this 
measure of efficiency, we achieved E = 97.9% with n =
839.   
 It would be hard to achieve much greater efficiency 
than this.  However, it is quite feasible to consider 
improving both rp and rnp together and, because the 
efficiency E is so high, it is also quite reasonable to 
consider assigning still more processors to the problem in 
order to achieve faster execution.   
 Modern FPGAs such as those in the Cray XD-1 
contain a large number of hardware devices.  Their 
interconnections can be changed on the fly, making it 
feasible to alter the hardware design inside an FPGA 
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partway through the completion of a processing job.  This 
provides another avenue for improving the performance 
of a parallel task such as ray tracing.  By offloading some 
of the computational work from the sequential processors 
of the Cray XD-1 into the inherently parallel hardware of 
the FPGA, we expect to achieve significant gains in 
processing speed without requiring any additional 
sequential processors to be included.   

2.  Depth-First vs. Breadth-First Ray Tracing 

 It is reasonable in a sequential ray-tracing program to 
select a single ray and trace it from beginning to end.  
This requires repeated calculations of intercept point, 
aperture, unit normal vector, interaction, and coordinate 
transformation as the ray transits the system, as described 
earlier.  Such an approach could be described as a depth-
first simulation: one ray is followed throughout its history 
as it proceeds deeper and deeper into the optical system.  
Because programs are stored in random-access memory, it 
is equally costly to access any part of the program at any 
time (although cache systems can affect the costs in ways 
that are hard to predict.)  
 In contrast, appreciable overhead is incurred when 
the hardware design within an FPGA is replaced with a 
different design.  The space within an FPGA is limited, so 
it is not feasible for the FPGA to hold a large enough 
hardware design to perform all the calculations it needs to 
do.  In a ray-tracing system the hardware design loaded 
into the FPGA needs to be replaced repeatedly as the ray 
advances, in order to accomplish different phases of the 
computation.  In order to minimize the effect of this 
overhead on the performance of the system, it is 
preferable to do a breadth-first tracing of the rays.  This 
means that rather than tracing one ray at a time through 
the whole system, it is preferable instead to trace a large 
collection of rays through a single stage of the system and 
then change the FPGA’s function by loading a different 
design into it.   
 In the calculation of the point at which a ray 
intersects an optical surface, this would entail loading the 
intersection-calculating hardware design into the FPGA 
and then calculating the intersection point for a large 
number of rays at the next optical surface.  (A different 
design would apply according to whether the surface was 
a plane, sphere, or general conicoid.)  
 Next, determine if another hardware design is needed 
to check if the rays are inside or outside the aperture 
associated with the surface.   
 The system would need to calculate the unit normal 
to the optical surface.  In the case of a planar surface, this 
step is unnecessary because the unit normal vector is 
constant throughout the plane and known in advance.   

 The fourth phase would entail calculating the effect 
of refraction or relection at the surface.  Again, this would 
be done for a large number of rays.  Since it is known in 
advance whether a particular surface is a reflector or a 
refractor, it is straightforward to load whichever design is 
appropriate.
 Finally, the coordinates that specify the position and 
direction of the rays in the local coordinate system for the 
next surface would be calculated by loading two further 
hardware designs into the FPGA one at a time and 
converting the coordinates for a large number of rays.   

3.  Modulo Scheduling of FPGA Resources

 Rau and Glaeser[4] described an optimal means of 
scheduling generalized vector computations, of which ray 
tracing is an example.  Because modern FPGAs can hold 
a large amount of hardware, it now is feasible to apply 
this method to the scheduling of deeply pipelined 
scientific computations in FPGAs.  To do this we must 
make a suitable specification of resources and their 
interconnections within an FPGA.   
 As an example of this, we outline three approaches to 
scheduling the use of resources in pipelined hardware that 
compute the intersection of a light ray with a conicoid 
surface.  Of the six main computations in the ray-tracing 
application, this calculation is the most involved.  Such 
schedules are suitable in designs based on the floating-
point hardware modules available, for example, with the 
Xilinx ISE software suite[5].  These pipelined modules 
permit a new floating-point operation to be initiated every 
cycle, even though the latency of any single calculation 
may be many cycles.   
 Four equations are sufficient for calculating the 
distance u a ray must traverse before striking a conicoid 
surface[6]:
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where the starting point of the ray is P0 =(x0, y0, z0); its 
starting direction is given by the unit vector 

0ˆ , ,L M N ; k is the conic constant that specifies 
whether the conicoid is a sphere (k = 0), an oblate 
ellipsoid (k > 0), a prolate ellipsoid ( 1 < k < 0), a 
paraboloid (k = 1), or a hyperbolid (k < 1); and c is the 
curvature of the conicoid surface.   
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 Once u is known, the coordinates of the intersection 
point P1 =(x1, y1, z1) can be calculated using the vector 
expression 1 0 ˆu 0P P .
 These calculations entail 19 multiplications, 13 
additions, a division, and the extraction of one square-
root.   
 In considering our first schedule we include four 
floating-point units: an adder, a multiplier, a divider, and 
a square-root extractor.  The latency of these units—the 
number of cycles it takes for the result to be calculated—
is 11, 6, 27, and 27, respectively.   
 When performing modulo scheduling, the modulus is 
equal to the highest number of operations required of any 
functional unit.  In the first design we discuss below, this 
number is 19.  Using the chain of dependences of one 
calculation on the results of preceding calculations, the 
cardinal rule is to make sure that the starting cycle taken 
modulo 19 does not correspond to any cycle (also taken 
modulo 19) when that unit has already been scheduled.  In 
any case where this condition is violated, we add enough 
delays to force it to be met.  These delays correspond to 
the insertion of buffers in the pipeline to hold the result 
from the time it is available until the time it is needed.  To 
determine the schedule, we start with the last calculation 
performed and work backwards to the earliest calculation.  
Once the pipeline is full, a new result appears after every 
interval t = m , where m is the modulus and  is the clock 
period.  With large numbers of rays available, the pipeline 
is full most of the time.   
 The multiplier is the critical unit in the first schedule 
we consider because there are more multiplications than 
any other operation.  Modulo scheduling permits 100 % 
utilization of the critical unit.  The utilization of the 
adder/subtractor in this example is 13/19 = 68%, that of 
the divider and the square-root extractor is 1/19 = 5%.  
The critical unit also determines the throughput.  One 
computation is completed every 19 cycles in this case.   
 Consider the result if we add a second multiplier to 
the system and arrange for one of the multipliers to do 10 
multiplications and for the other to do the remaining nine 
multiplications.  This will cause the adder/subtractor to 
become the critical unit because it will have 13 additions 
to do, more than any other unit.  A new suitable schedule 
will yield 100% utilization for the adder.  The utilization 
of the two multipliers will be 10/13 = 77% and 9/13 = 
69%, respectively; that of the divider and the square-root 
extractor will climb to 1/13 = 8%.  The throughput now 
will be one computation every 13 cycles.  This will 
represent an increase in throughput of 46% due to the 
introduction of a second multiplier unit.   
 If we could include both a second adder as well as a 
second multiplier, we could schedule seven additions on 
one adder and six on the other.  The multiplier with 10 
multiplications scheduled on it would then become the 
critical unit.  The utilization of the multiplier with nine 

scheduled multiplications would be 9/10 = 90%.  The two 
adders would have utilization 7/10 = 70% and 6/10 = 
60%, respectively.  The utilization of the divider and of 
the square-root extractor would climb to 1/10 = 10%.  The 
throughput now would be one result every 10 cycles, an 
improvement of 90% over the first design and of 30% 
over the second design.   

4.  Interaction Between the Opterons and the 
FPGAs

 There are 220 nodes of four Opteron processors 
within NRL’s Cray XD-1.  There is one Xilinx Virtex II 
Pro FPGA in each of 144 of these nodes, making a total 
of 576 of this type of FPGA.  In a single node, any one of 
the four Opteron processors can take control of the FPGA 
at a time.   
 In our design a single node can communicate with 
any other node using MPI.  Each node runs an identical 
program, using OpenMP to implement multithreading.  
The main() program uses MPI to discover the set of ray-
tracing tasks for which it has responsibility and 
establishes a queue of such tasks.  The main() program 
also controls the node’s FPGA.  One of the threads 
running in parallel with main() loads an appropriate 
hardware design into the FPGA whenever needed.  It also 
repeatedly selects a subset of the waiting ray-tracing 
computations and dispatches that subset to the FPGA for 
processing.  This thread is then suspended until the FPGA 
has finished the assigned task.  At this point the FPGA 
interrupts the program, reactivating the dormant thread.   
 Meanwhile, additional threads spawned and 
dispatched by main() using the capabilities of OpenMP 
execute on one of the four sequential instruction 
processors available in the node.  Just as the thread 
controlling the FPGA does, these threads also select 
waiting ray-tracing computations, performing them with a 
sequential program.   
 The effect of these combined operations is that the 
FPGA supplements the processing power of the Opteron 
processors, accelerating the ray-tracing process.   
 Each node of four sequential Opteron processors 
operates largely independently of the others.  One of the 
nodes is designated as the master node.  It is responsible 
for reading the lens-description file at the outset and 
broadcasting the description to all the other nodes sharing 
in the work.   
 The sequential threads use a depth-first ray-tracing 
strategy.  However, in order to minimize the overhead 
incurred when a node replaces its FPGA design, the 
FPGA thread forces the FPGA to trace rays using a 
breadth-first approach.   
 Once each node has finished its assigned tasks, it 
reports its results independently to the designated master 
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processor, which collates the results as each node 
completes its assigned ray-tracing tasks.   

5.  Simulated Performance 

 Preliminary simulations show that one floating-point 
operation can be initiated every 4.931 ns.  The 
corresponding average ray-tracing rate is 5.350 × 106

rays·surfaces/s in the MODIS system .  This is somewhat 
less than the 6.95 × 106 rays surfaces/s we obtained using 
the Cray XD-1 alone[7].  Our experience shows, though, 
that the overhead associated with ray tracing is very 
small.  Using the assumption that the overhead associated 
with assigning work to the FPGA also is negligible in 
comparison to the computational work required, we can 
make a rough estimate of the combined performance by 
adding the two rates together, leading to a ray-tracing rate 
of 11.88 × 106 rays· surfaces/s.  This represents a 77 % 
speedup.   
 We can achieve still better performance, however, by 
increasing the number of adders and multipliers in the 
system.  In a system with one adder, one multiplier, one 
divider, and one square-root extractor, these devices use 
up less than 11% of the “slices” in a Xilinx Virtex II Pro 
Model 2vp50ff1148-7 FPGA.  Adding two adders and 
three multipliers (a 125% increase in floating-point units 
on the chip) would greatly increase the speed at which the 
ray tracing could proceed without exhausting the on-chip 
resources.  Our prediction is that such a system would 
yield a 267 % speedup compared to one that uses the 
Opteron processors alone.  There is a possibility of even 
greater improvements if we can fit additional floating-
point units on the FPGA.   
 We are currently engaged in completing the 
combined design, which includes a view to 
experimentally determine the actual speedup we can 
achieve.
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