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Abstract We devise models and algorithms to estimate
the impact of current and future patient demand for
examinations on Magnetic Resonance Imaging (MRI)
machines at a hospital radiology department. Our work
helps improve scheduling decisions and supports MRI
machine personnel and equipment planning decisions.
Of particular novelty is our use of scheduling algo-
rithms to compute the competing objectives of maxi-
mizing examination throughput and patient-magnet
utilization. Using our algorithms retrospectively can
help (1) assess prior scheduling decisions, (2) iden-
tify potential areas of efficiency improvement and
(3) identify difficult examination types. Using a year
of patient data and several years of MRI utilization
data, we construct a simulation model to forecast MRI
machine demand under a variety of scenarios. Under
our predicted demand model, the throughput calcu-
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lated by our algorithms acts as an estimate of the
overtime MRI time required, and thus, can be used to
help predict the impact of different trends in examina-
tion demand and to support MRI machine staffing and
equipment planning.
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1 Introduction

In this paper, we devise models and algorithms to
support decision makers at Seattle Children’s Hospital
(SCH) with the resource allocation and planning prob-
lems faced by the Radiology Department concerning
MRI examinations. SCH serves pediatric inpatients and
outpatients with over 50 specialty clinics. MRI is an
imaging modality which uses magnetic fields to help
diagnose a wide variety of conditions including tumors,
infections, cardiac conditions and musculoskeletal dis-
orders. MRI machines are differentiated by magnet
strength, measured in Tesla, and we subsequently re-
fer to MRI machines as magnets. SCH owns one 1.5
Tesla (1.5 T) and one 3 Tesla (3 T) magnet, which
are typical diagnostic strength magnets. Since stronger
magnets generate finer detail but also more artifacts,
some examination types are best done on the 1.5 T
magnet, others on the 3 T magnet, and still others can
be done on either. In addition, each examination type
consists of a certain number of mandatory sequences
and an additional number of discretionary sequences.
Typically, multiple images comprise each sequence.
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SCH performs MRI examinations on inpatients and
outpatients, who might be in an urgent care situation
and require an expedited MRI examination.

A critical resource planning question at SCH has
been when to increase magnet resources, due to both
increasing patient needs, and the high expense of the
magnets and support staff. In addition, an important
goal is to increase magnet utilization during the normal
working day (7 AM–7 PM at SCH) while reducing the
overtime pay required to meet the patient demand.

Based on interviews with multiple doctors, technol-
ogists, and schedulers at SCH we learned the following
about the current situation:

• The current process for scheduling MRI patients
was effective and flexible, and would be difficult
to change due to both medical and logistical chal-
lenges. In particular, SCH uses process-oriented
improvement strategies and a flexible inpatient
scheduling policy that allows sensible rescheduling
of patients as needed throughout a given day.

• There was considerable skepticism that mathemat-
ical modeling could address the interest of both
the patients and SCH with respect to scheduling
due to the complexity and uniqueness of individual
medical conditions. In addition, there was a reluc-
tance to use reimbursement rates as a metric in
determining magnet utilization.

• Although automated data collection of magnet uti-
lization and examination type is already in place,
the information was not being used to assess
magnet utilization or to identify possible areas
of scheduling improvement.

Therefore, we provide SCH with a descriptive analysis.
In particular, we use optimization models and simula-
tion techniques to identify possible areas of improve-
ment in the current scheduling practices and also to
predict the impact of patient examination trends on
magnet utilization.

In order to balance both the concerns of the hospital
and the patient, we modeled the scheduling problem
faced by SCH as having two competing objectives,
magnet overtime versus a fairness metric, which we
call fairtime, that measures the magnet time patients
receive and is unbiased by the particular examination
type that the patient requires. We devise an algorithm
to compute tradeoff curves between the two competing
objectives. Since there are several other objectives of
importance (e.g., revenue), our model and algorithm
are meant to be used in conjunction with other infor-
mation that the decision maker possesses.

Our contributions are as follows:

(1) Design a decision support tool to help assess cur-
rent scheduling practices and to identify potential
areas of improvement. In particular, our tool is
meant to work in conjunction with the process-
oriented improvement system in place.

(2) Design a simulation based on current data that, in
conjunction with the decision support tool, can be
used to perform scenario analysis of varying MRI
examination demands. The results of the analysis
can then be used to aid in decisions about both
personnel and magnet planning.

We provide theoretical and practical evidence that
our algorithm performs well. Our algorithm is provably
efficient, but is an approximation of the true optimal
solution. Since our problem is computationally difficult
to approximate, we derive resource augmentation guar-
antees in order to measure the theoretical performance
of our algorithm. Practical experience from both real
and simulated data support that our algorithm finds
solutions that are close to optimality.

We ran the algorithm on a calendar year of patient
data from SCH. The data includes demographic infor-
mation about the patients, examination start times,
MRI examination type & duration, inpatient versus
outpatient status and magnet type.1 Based on an analy-
sis of the patient data we designed a Monte Carlo sim-
ulation to work with the algorithm to predict solutions
to the stochastic variant of the scheduling problem. The
results of this stochastic optimization problem are then
used as predictions for the impact of scenarios, which
then lend support for resource planning decisions.

We emphasize that our decision support tool is not
meant to make scheduling or purchasing decisions.
Instead, the tool is designed to provide support for
decision makers who wish to identify potential areas
of improvement in scheduling or analyze predicted out-
comes from possible future trends in MRI examination
demand.

The literature on medical appointment scheduling
is extensive and we describe only a small sample of
work in this area. Further references can be found
in the surveys by Cayirli and Veral [2] and Gupta
and Denton [7]. The work of Vermuelen et al. [15]
also uses a multicriteria objective where minimum re-
source allocation metrics similar to our own fairness
metric are used. In their work, they are considering

1Our data was collected and analyzed with the approval of the
SCH Institutional Review Board.
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problems across hospital departments, so their metrics
are not directly applicable to our problems. Work by
Green et al. [6] also analyze the problem of scheduling
MRI magnets. They focus on the two related problems
of serving waiting patients and outpatient scheduling.
They show that a particular dynamic policy is opti-
mal under some structural assumptions and provide
outpatient scheduling heuristics that perform well in
computations. Our work departs from theirs in sev-
eral respects. Their methods seek to maximize profit
whereas our methods seek to simultaneously maximize
both regular-hour utilization and a patient fairness met-
ric. They also categorize patients into three categories,
outpatients, inpatients, and emergency, whereas we use
these categories in addition to the over 100 examination
types performed on the MRI magnets. In particular,
their model assumes that patients all require the same
magnet time (one appointment slot) to obtain their ana-
lytical results whereas our model takes into account the
substantial variability in magnet time. They do provide
a simulation analysis of their online policy performance
against different examination times. They also deal with
the more difficult problem of determining an optimal
online policy whereas we focus on an offline optimal
schedule for evaluative purposes. In part, the latter
difference highlights their focus on a prescriptive model
versus our focus on a descriptive model. Because our
goal was an offline algorithm to evaluate a schedule
and predict impacts of resource allocation decisions, we
do not incorporate wait lists (an online policy concern)
into the model.

Also relevant to our problem is the work of Patrick
and Puterman [11], who use scheduling techniques
to determine a scheduling policy for outpatient CT-
scanner examinations in order to minimize the amount
of overtime used, which is equivalent to our utilization
objective. Our work differs from Patrick and Puterman
as they focus solely on developing models and algo-
rithms to improve resource utilization, whereas our
models and algorithms help to improve resource plan-
ning in addition to resource utilization. In addition,
our methods also consider a second objective which
measures the time allocated to each patient. Kolisch
and Sickinger [9] also consider CT-scanner examina-
tion scheduling where they use a Markov Decision
Process model to analyze priority policies in order to
maximize a revenue-based objective which takes into
account the same patient groups as in [6]. The same
authors also show that a generalization of the classical
Bailey–Welch priority rule [1, 17] works well when
scheduling two CT-scanners [13]. Vermeulen et al. [16]
describe a CT-scanner examination scheduling algo-

rithm that adapts to current and future demands within
five patient groups through the use of heuristics and
simulation.

We describe a mixed-integer programming formula-
tion and our algorithm in Section 2. In Section 3, we de-
scribe our data and simulation for generating predicted
future data. In Section 4, we provide results from our
algorithm when used on the real and simulated data
from Section 3. We discuss our results in Section 5.

2 Calculating a fair resource plan

In this section, we describe an algorithm that deter-
mines the trade-off between additional overtime mag-
net hours required and allocating each patient as much
time as possible within the schedule. We use this
algorithm to both evaluate past scheduling decisions
and to construct forecasts by scheduling simulated
data. Because we use simulation to handle uncer-
tainty, we assume all the input data to the algorithm
is deterministic.

Mathematical formulation We now describe a mathe-
matical programming formulation of our problem. We
make the following assumptions.

1. The schedulers at SCH currently allocate examina-
tions into 45-min time slots. However, the technol-
ogists use such schedules as guidelines and make
decisions throughout the day to accommodate pa-
tients’ actual varying examination times. Therefore,
the schedule used at SCH is actually flexible and
the optimization tool only schedules to the day,
rather than in 45-min time slots. For non-emergent
patients, we allow the optimizer to reschedule the
appointment to any day within two days of their
simulated scheduled appointment. We assume
emergent patients must be seen on the day they
arrive into the system.

2. We assume that the magnet strength (1.5 T vs. 3 T)
scheduled for the patient is fixed because such a
decision also involves diagnostic, as well as logistic,
determinations.

3. For a given MRI examination on a given magnet,
there are also a number of discretionary sequences
that can be performed in addition to those required
by the examination type. Therefore, we assume that
each exam has a magnet-specific minimum amount
of operation time required and a magnet-specific
maximum amount of operation time that could also
be used.
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Minimizing magnet operation-time involves deter-
mining the operation-time allocated for a specific exam
conducted on a specific magnet. If all SCH wished
to do was maximize the throughput of examinations,
the scheduling algorithm should allocate every patient
the minimum magnet time required. However, such an
allocation ignores the diagnostic value of the discre-
tionary sequences, and so we also create a second objec-
tive in order to maximize the minimum normalized time
each exam-magnet combination receives. Let T denote
the set of examinations. For a given examination j ∈ T ,
let �j and uj denote the minimum and maximum of
magnet time required, respectively, and pj be the de-
cision variable indicating the amount of magnet time
allocated. Thus, �j ≤ pj ≤ uj. We define

ϕj = pj − �j

uj − �j
(1)

as the fairtime of examination j and define fairtime
as the minimum fairtime over all examinations, i.e.,
ϕ = min j ϕj. The use of a minimum resource allocation
to patients is not new, e.g., see [15] where the mini-
mum service level for each hospital department is used
as an objective when scheduling block appointments
for patients.

Below is an exact formulation to schedule examina-
tions on one magnet while simultaneously minimizing
the maximum extra magnet time required over all days
and maximizing the fairtime.

min/max {F, ϕ}
subject to

∑

t
xjt = 1 ∀ j (a)

∑

j
pjxjt ≤ b + Ft, ∀t (b)

Ft ≤ F, ∀t (c)

�j ≤ pj ≤ uj ∀ j (d)

ϕj = 1
uj−�j

(pj − �j) ∀ j (e)

ϕj ≥ ϕ ∀ j (f)

xjt = 0 t �∈ {rj, . . . , dj} (g)

F, Ft, pj ≥ 0, xjt ∈ {0, 1}, ∀ j, t,

(2)

where the problem parameters are

rj, dj the earliest and latest day examination j can be
conducted,

b the minutes each magnet is available for each
day,

and the decision variables are

pj the minutes allocated to examination j,
xjt indicates that examination j is on day t,
Ft the extra minutes allocated to the magnet on day t,
F the maximum amount of minutes allocated over

all days.

Constraints (a) ensure that each examination is con-
ducted. Constraints (b) ensure that the magnet is allo-
cated enough minutes on a given day t to conduct all
examinations. Constraints (c) ensure that the maximum
Ft is being minimized. Constraints (d) enforce the up-
per and lower bound on the examination time allocated
to examination j. Constraints (e) calculate the fairtime
for examination j. Constraints (f) ensure the minimum
fairtime is allocated and constraints (g) ensure that
examinations are only scheduled on feasible days. Note
that Eq. 2 is a quadratic mixed-integer bicriteria pro-
gram and is generally difficult to solve as modelled.
However, the following proposition simplifies the prob-
lem. In particular, the following proposition shows that
if an optimal solution exists for Eq. 2, then an optimal
solution exists where ϕj are all the same.

Proposition 1 For every feasible solution (xjt, pj, ϕj,

ϕ, Ft, F) to Eq. 2 there exists another feasible solution
with equal fairtime and the same objective value.

Proof Let (xjt, pj, ϕj, ϕ, Ft, F) denote a feasible solu-
tion vector to Eq. 2. The solution, (xjt, pj, ϕj, ϕ, Ft, F)

is also feasible where

pj = �j + ϕ(uj − �j), ∀ j,

and

ϕj = ϕ, ∀ j.

Note that the objective values are identical for both
solutions. Therefore, we need only show that the con-
straints are satisfied for the new solution. Constraints
(a), (c), (d), (e) and (f) are all satisfied by definition
because the variables in the new feasible solution have
not changed on these constraints. To see that constraint
(b) is satisfied, note that ϕj = ϕ ≤ ϕj for all j, which
implies pj ≤ pj. Because xjt ≥ 0,

∑

j

pjxjt ≤
∑

j

pjxjt ≤ bt + Ft, ∀t.

Thus, all constraints are satisfied. ��



Health Care Manag Sci

So, to make the problem linear, we can instead con-
sider the following two families of (linear) integer
programs (IP).

G(ϕ) = min F

subject to
∑

t
xjt = 1 ∀ j (aϕ)

∑

j
pjtxjt ≤ b + Ft, ∀t (bϕ)

Ft ≤ F, ∀t

xjt ∈ {0, 1} ∀ j, t,

(3)

where for all j and t,

pjt =
{

�j + ϕ(uj − �j), t ∈ {rj, . . . , dj},
M, otherwise.

Our approach The optimization problems (Eq. 3) are
NP-Hard, which indicates that it is unlikely for efficient,
exact algorithms to exist (see, e.g., [5]). Moreover,
commercial solvers could not solve the mixed-integer
programs to a reasonable accuracy even after several
hours of computation. To develop effective methods to
solve our problems, we consider techniques from ap-
proximation algorithms. For β ≥ 1, a β-approximation
algorithm for a minimization problem with optimal
objective v∗ efficiently finds a solution with objec-
tive value v such that v ≤ βv∗. However, because the
optimization problems we consider can have v∗ = 0,
finding a β-approximation algorithm is as difficult as
finding an exact algorithm. We address this differently
by employing resource augmentation techniques [8].
For γ ≥ 1, we define a γ -speed scheduling algorithm
to be one which finds a solution with objective v ≤ v∗
assuming all process times were scaled by γ , e.g., if
pij represent the processing time required by a job j
on machine i, then a γ -speed algorithm sets pij ← pij

γ
,

i.e., all machines were “sped up” by a factor of γ .
Such an approach is natural in our situation because
we are interested in minimizing the amount of overtime
magnet time required. Note that 1-approximation algo-
rithms find the exact optimal solution, as do 1-speed
algorithms.

Because solving Eq. 3 is NP-Hard, we relax the inte-
grality constraints xjt ∈ {0, 1} to 0 ≤ xjt ≤ 1 to create
a solvable model. We attempted to solve Eq. 3 using
CPLEX 11 on two dual-core Opteron 2.6 Ghz proces-
sors with 8 GB of memory but did not close the integral-
ity gap to within 10% even after 24 h of computation.

Once the LP relaxation of G(ϕ) is solved we can then
solve the LP relaxation of the following IP.

H(ϕ) = min
∑

j,t
txjt

subject to
∑

t
xjt = 1 ∀ j (aϕ)

∑

j
pjtxjt ≤ b + G(ϕ), ∀t (bϕ)

xjt ∈ {0, 1} ∀ j, t.

(4)

We denote GLP(ϕ) and HLP(ϕ) as the LP relaxations of
G(ϕ) and H(ϕ) respectively. Note that GLP(ϕ) ≤ G(ϕ)

and HLP(ϕ) ≤ H(ϕ). Also, all optimal solutions to
G(ϕ) are also feasible to H(ϕ) and all optimal solutions
to GLP(ϕ) are feasible to HLP(ϕ). Also, in HLP(ϕ),
the objective is equivalent to minimizing the average
f lowtime for all examination, i.e., the average number
of days from the release day to the day when the exam-
ination is completed. For a given ϕ, holding all pjt to the
“minimum” ϕ for permissible days is without loss due to
Proposition 1. Note that solving for G(ϕ) is the compu-
tational bottleneck of the FindTradeoff algorithm (see
Algorithm 1). By considering each day as “machine,”
Eq. 3 is actually a problem of minimizing the maximum
tardiness where all jobs have an identical due date of
b and the machines are unrelated. However, such a
scheduling problem is at least as hard as finding the
minimum makespan2 on identical parallel machines,
which is NP-Hard [4]. Such scheduling problems are
also known to be difficult for integer programming soft-
ware to solve. Moreover, for our problem, if b is set to
the optimal makespan i.e., the minimum maxt

∑
j pjxjt

possible for any schedule, then the optimum maximum
tardiness is zero. Thus, no β-approximation algorithm
exists if P �= N P because any β-approximate solution is
identical to the true optimum. Thus, we focus on finding
a γ -speed scheduling algorithm. We use an algorithm
of Shmoys and Tardos [12] that converts solutions of
the LP relaxation of G(ϕ) into integral solutions by
solving a minimum cost matching problem on an associ-
ated bipartite network. The key theorem regarding the
objective guarantee is as follows.

Theorem 2 [12] A solution, x, to HLP(ϕ) can be con-
verted into an integral solution, x, to H(ϕ) with

∑
jt tx jt =

HLP(ϕ) and constraint (bϕ) of Eq. 4 satisf ied so that
∑

j

x jt ≤ b + GLP(ϕ) + pmax,

where pmax = max j,t{pjt : t ∈ {rj, . . . , dj}}.

2The makespan is the maximum completion time over all jobs.



Health Care Manag Sci

Algorithm 1 The FindTradeoff algorithm

FindTradeoff
Inputs: �j, uj, bt, ε

Outputs: k = 1
ε

+ 1 pairs, {(F(i), ϕ(i))}
Set ϕ ← 0, i ← 1
while (ϕ ≤ 1)

do
Set pj ← �j + ϕ(uj − �j)

Solve G(ϕ) and set (F(i), ϕ(i)) ← (G(ϕ), ϕ)

Set ϕ ← ϕ + ε, i ← i + 1
end

return {(F(i), ϕ(i))}

As a corollary, we can state the following.

Corollary 1 There is an algorithm that can f ind an
integral solution x to G(ϕ) with

∑
j,t tx jt ≤ HLP(ϕ)

and objective F so that F ≤ G(ϕ) + pmax where pmax =
max j,t{pjt : t ∈ {rj, . . . , dj}}. Moreover, such a solution
can be found in time proportionate to solving the GLP

and HLP.

Proof Suppose that x is a solution to GLP(ϕ). Then
x is feasible to HLP(ϕ) and we can find the optimal
solution, x∗, to HLP(ϕ). We can then find an integral
solution x to H(ϕ) by Theorem 2 with

∑

j

x jt ≤ b + GLP(ϕ) + pmax.

Clearly, (x, F) is feasible to G(ϕ) with F ≤ GLP(ϕ) +
pmax. ��

With respect to our problem, the maximum exami-
nation length is known to be no more than some small
fraction of the daily magnetic availability. We denote
this fraction by α. Then we can state the following
theorem as a consequence of Theorem 2.

Theorem 3 Suppose there is some α ∈ (0, 1) so that
pmax ≤ αb. There is an (α + 1)-speed algorithm to f ind
integral solutions to G(ϕ).

Proof Let ϕ be given. Using Corollary 1, solving
GLP(ϕ), HLP(ϕ) and applying Shmoys–Tardos will
generate a solution (x, F, Ft) to G(ϕ). Let C denote the
makespan of the schedule generated by the Shmoys–
Tardos algorithm and C∗ denote the optimal makespan,

i.e., C = maxt{b + Ft} = b + F and C∗ = b + F∗. Then,
by Corollary 1, we have that

C = b + F ≤ b + F∗ + αb = C∗ + αb .

Now consider the same solution if each machine’s
“speed” was increased by a factor of (α + 1), which is
equivalent to setting all process times to 1

α+1 pjt. Thus,
at this speed, the approximate solution has comple-
tion time

C
S = 1

1 + α
C ≤ 1

1 + α
(C∗ + αb).

For a real number a ∈ R, let (a)+ = max{0, a}. Then the
objective on the faster machines is

F
S =

(
1

1 + α
C − b

)+
≤

(
1

1 + α
(C∗ + αb) − b

)+

=
(

1
1 + α

(C∗ − b)

)+
≤ (C∗ − b)+ = F∗. ��

So, in our implementation of FindTradeoff, we
solve G(ϕ) approximately. An interesting feature of our
method is that we also return a solution with optimal
average f lowtime. In particular, we have the following
corollary.

Corollary 2 The algorithm FindTradeoff, when imple-
mented via Theorem 3, is a (α + 1)-speed algorithm to
the bicriteria problem of G(ϕ) where both F and average
f lowtime are minimized.

We note that we could use Theorem 2 on the first LP
solution. In Section 4 we examine the benefit of using
the second over the first.

3 Simulating schedules

In this section, we describe our simulation model used
to generate inputs for FindTradeoff. Since we seek
to simulate the MRI examination demand at SCH, we
first conduct an analysis of our data sets. In this study,
we use both MRI patient data (the patient dataset) and
weekday examination counts (the trend dataset) from
SCH radiology department. We describe and analyze
the patient dataset in Sections 3.1 and 3.2 and the
trend dataset in Section 3.3 below. We describe our
simulation model in Section 3.4.

Our data analysis and simulation model was written
in S-Plus [14] and performed on two dual-core Operon
2.6 GHz processors with 8 GB of RAM.



Health Care Manag Sci

3.1 Collecting the patient data set

The patient data set is composed of 5,917 MRI exam-
inations conducted from July 1, 2007 to June 30, 2008
at SCH and consists of two basic types of examinations.
Not included in the data set were 17 records for rea-
sons described below. Patients who made examination
appointment times through the schedulers at SCH are
referred to as scheduled patients. Scheduled patients’
appointment times were recorded in the schedulers’
computer system. Patients who did not schedule exam-
ination appointment times and were added on an ad
hoc basis to the preexisting schedule by the technolo-
gists are referred to as unscheduled patients. Typically,
unscheduled patients had symptoms requiring urgent
exams.

Depending on their condition, previous examina-
tion history, and diagnosis, patients received varying
amounts of pre-examination preparation and were
examined on either the 1.5 T or 3 T magnets. Some
exams require that a patient receive intravenous con-
trast and/or anesthesia in order to receive a diagnostic
quality examination. In addition, preparation time for
both the patient and magnet was necessary prior to
each exam. The amount of patient and magnet prepara-
tion time required prior to an exam was not recorded,
although the need for intravenous contrast and anes-
thesia was.

A magnet is considered to be in operation from the
time the first image is acquired (magnet on-time) until
the time the last image is acquired (magnet off-time).
Both magnet on-time and off-time were automatically
recorded by the computers used to operate the mag-
nets. The magnet operation-time was calculated as the
interval between magnet off-time and magnet on-time.
During the examination, the technologist recorded
additional information including the exact exam type
performed. After the completion of an exam, a radi-
ologist interpreted the results and dictated a report. A
radiologist and an undergraduate assistant combined
these separate computer records and encrypted any
personal patient information as per IRB specifications.

Throughout the course of the year-long period, the
Radiology Department performed 5,934 examinations,
of which 17 were omitted and 5,917 included in our
study. The 17 patient records omitted, lacked crucial
data fields (nine records), appeared to have incorrect
data fields (six records), or corresponded to patients
too old to be considered representative of the pediatric
population (two records). A complete list of the 17
omitted records with justifications is available from the
authors upon request.

3.2 Data analysis of the patient data set

The initial analysis of the patient data set yields several
trends in patient arrivals and magnet operation-times.

1. There is often a strong preference to perform
certain examination types on a specific magnet
strength (1.5 T vs. 3 T).

2. Magnet operation-time distributions differ depend-
ing on examination type, magnet type, and sched-
uled status.

3. The volume of unscheduled patients examined
varies throughout the day, exhibiting similar behav-
ior, but at different magnitudes, for each weekday
and magnet type.

SCH Radiology Department performed 112 different
types of MRI examinations during the study period.
The proportion of male to female patients was roughly
equal in the 5,917 examination records (51.7% male).
Unscheduled patients accounted for a significant frac-
tion of the examinations performed (19.7%). The 1.5 T
magnet was utilized approximately 50% more than
the 3 T magnet with respect to both the number of
examinations (59.0% on the 1.5 T) and the amount
of magnet operation-time (60.8% on the 1.5 T). The
vast majority of MRI examinations conducted were on
children (99.9% under age 18). The ages of patients in
the data ranged from one day to 25 years, with a median
age of 9.58 years.

For most examination types, the data indicates a
strong preference for a particular magnet. However
a magnet preference that is apparent for scheduled
examinations was not apparent among unscheduled
examinations.3

The amount of magnet operation-time required for
an examination is dependent upon the type of exam-
ination, the magnet on which the examination is per-
formed, and the scheduling status of the examination.
This implies that the median and variance of magnet
operation-time differs not only between examination
types, but also between magnet type and scheduled sta-
tus. These trends are graphically represented in Fig. 1.
Thus, the distribution of magnet operation-times for a
single examination type may exhibit different behavior
depending on scheduled status and magnet type.

To further analyze the magnet operation-time, we
performed a statistical analysis using a Cox Propor-
tional Hazards (CPH) model [3]. We examined a large

3We suspect magnet availability is a mitigating factor.
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Fig. 1 Magnet operation-times by magnet and examination type.
Shaded boxes represent the middle 50% of magnet operation-
times, with the white line demarcating the median. The whiskers
extend out from the 25th and 75th percentiles to the most ex-
treme value still within 1.5 times the range of the middle 50%
of the data. The examination types plotted above represent all

types with at least 50 examinations in an individual category. The
single zero magnet operation-time present is due to rounding.
The examination types are listed as follows: 1 abdomen without
contrast; 2 angio head without contrast; 3 brain limited; 4 brain
with and without contrast; 5 brain without contrast

subset of the patient data set (3,901 records) corre-
sponding to the five most common examination types,
so that the effects of examination type would be ac-
counted for with a sufficient number of observations.
Table 1 gives the results of our CPH analysis. In a
CPH model, a log-linear function is used to estimate the
covariates effect on the examination time. A positive
coefficient implies that as a single covariate changes
(and all others are held constant) from a lower to a
higher level, the magnet operation-time decreases on
average. Similarly, a negative coefficient implies that
examinations should take longer on average moving
from a lower to a higher level for an individual covari-
ate. The results in Table 1 are listed in decreasing order
of significance with covariates satisfying a p < .05 level
of significance, above the horizontal rule. The results of
the CPH analysis indicate that examination type plays
a significant role in determining magnet operation-

time, as does contrast, inpatient status, magnet type and
scheduled status.

Using the magnet on-times as estimates of daily
arrival rates,4 we found that the average arrival rates
of unscheduled patients vary depending on the day
of the week, with Mondays and Fridays having the
most unscheduled arrivals to both magnets. Also, as
shown in Fig. 2, the average arrival rates for the 1.5 T
magnet were consistently higher than for the 3 T mag-
net, both across individual weekdays and in aggre-
gate. Despite having the most unscheduled cases
on Mondays and Fridays (see Fig. 3), the Radiology

4Using magnet on-times as an estimate of arrival rates does not
take reneging into account. However, based on interviews with
technologists and doctors at SCH, the occurrence of reneging was
insignificant.
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Table 1 The results of the Cox Proportional Hazards model analysis of examination lengths on a large subsection of data (3,901
examinations)

Covariate (low value, high value) coef Exp (coef) SE (coef) z-score p-value

Brain without contrast −0.57106 0.565 0.0361 −15.827 0.0e+00
Spine total without contrast −0.39959 0.671 0.0436 −9.174 0.0e+00
Brain with and without contrast −0.45485 0.635 0.1071 −4.247 2.2e–05
Contrast dye status (used, not) 0.37663 1.457 0.1050 3.589 3.3e–04
Outpatient status (out, in) −0.08983 0.914 0.0293 −3.063 2.2e–03
Magnet type (1.5 T, 3 T) 0.04757 1.049 0.0182 2.618 8.8e–03
Spine total with and without contrast −0.26772 0.765 0.1111 −2.409 1.6e–02
Scheduled status (scheduled, unscheduled) −0.06495 0.937 0.0285 −2.280 2.3e–02
Repeat examination status (repeat, new) −0.02975 0.971 0.0175 −1.699 8.9e–02
Priority status (priority, not) −0.04411 0.957 0.0375 −1.175 2.4e–01
Gender (male, female) −0.01368 0.986 0.0162 −0.842 4.0e–01
Anesthesia status (used, not used) −0.01978 0.980 0.0244 −0.811 4.2e–01
Age (years) 0.00046 1.000 0.0040 0.114 9.1e–01

For each binary, non-numerical covariate, we list our designations of the ‘high’ and ‘low’ settings. The entries are sorted in decreasing
level of significance. The excluded examination was MR Angio Head without Contrast

Fig. 2 Magnet-specific
cumulative arrival rates. The
cumulative arrival rates to
each magnet, by day, with
linear interpolation, with
associated 95% confidence
intervals. The vertical axes
represent the number of
patients arriving on average
while the horizontal axes
represent the time of day,
from midnight to midnight.
The larger marks represent
the average arrival rates
while the smaller marks
represent the bounds of the
95% confidence intervals
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Fig. 3 The cumulative arrival
rates by day. The first two
plots show the cumulative
arrival rates of unscheduled
examinations for the 1.5 T
magnet and the 3 T magnet,
respectively. The third plot
shows the cumulative arrival
rates of unscheduled
examinations for both
magnets, and the fourth plot
displays how the average
total number of examinations
increases over the course
of a day

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

1

2

3

0.0

0.5

1.0

1.5

0

1

2

3

4

0

5

10

15

20

C
um

ul
at

iv
e 

A
rr

iv
al

 R
at

es

Hour of Day

Unscheduled, 1.5T Arrivals

Unscheduled, 3T Arrivals

All Unscheduled Arrivals

All Examinations

Monday
Tuesday

Wednesday

Thursday
Friday

Department performed the highest number of exami-
nations on Wednesdays. This implies that Wednesdays
also have the most scheduled examinations on average.
The data also suggests a increasing trend across the
year in the average number of examinations performed
daily. We note that the trend is supported by regression
analyses on the trend data set, as described below in
Section 3.3 (see Fig. 4).

3.3 The trend data set analysis

The trend data set consisted of the total number of
examinations per weekday dating from January 1, 2003

to January 31, 2009. As of January 1, 2003, SCH oper-
ated a single 1.5 T magnet. On October 14, 2006 a 3 T
magnet was installed and the 1.5 T magnet was replaced
with a newer 1.5 T magnet. We removed 71 weekdays
from our data set on which the MRI magnets were not
fully operational, such as holidays, staff training days,
or days on which maintenance or installation occurred.
A detailed description of the days we removed are
available on request.

In order to determine the trend in MRI examina-
tions, we regressed the number of daily MRI exami-
nations on the weekdays elapsed in the trend data
set. Since the number and type of available magnets
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Fig. 4 The single magnet
data and regression line (left)
and the two-magnet data and
regression line (right). The
horizontal axis measures the
days in our trend data set
with day 0 representing June
30, 2008, the last day of the
patient data set. The single
magnet plot ends the day of
the installation of the 3 T
magnet, and the two-magnet
plot begins the day after
the installation
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changed, we performed two separate linear regressions.
One regression was performed on the weekdays from
January 1, 2003 to October 14, 2006, and the other was
performed on weekdays from October 14, 2006 until
January 31, 2009. The slope found on the first regres-
sion is 0.0048 (p < 0.001) and on the second regression
is 0.0114 (p < 0.001). The variance in the MRI exami-
nations explained by the weekdays elapsed is similar for
both regressions (r2 = 0.1565 for the first, r2 = 0.1738
for the second), although the overall variance is high.

3.4 The simulation model

In order to simulate the number of patients requiring
MRI examinations, we consider the arrival process of
unscheduled patients and the distribution of scheduled
patients. We assume that the unscheduled and sched-
uled patients are distributed independently and model
each population separately. Scheduled patients call the
scheduler’s office to obtain an appointment for their
MRI examination. The scheduler then allocates a time
in the schedule that is mutually acceptable to the hospi-
tal and the patient. Appointments such as these may be
scheduled months in advance. Examinations performed
on unscheduled patients, in contrast, are much harder
to plan for. Unscheduled patients may arrive to the
Radiology Department from other departments within
SCH or from outside clinics or hospitals with little
to no warning, and may require immediate attention.
Therefore, we also model the priority status for patients
which indicates how soon the patient must undergo an
MRI examination.

Modeling the unscheduled patient arrival process
relied heavily on the use of magnet on-times to approx-
imate arrival times. As shown in Fig. 3, unscheduled
patients do not arrive at a constant rate. Arrivals are
infrequent during the night and early morning hours,
increase dramatically during the afternoon, and sub-
sequently decrease to nighttime levels. Arrival rates
also differ by day of the week and magnet type (Figs. 2
and 3). Since SCH only records magnet on-time, and
no more than one examination can be performed at a
time on a given magnet, it is nearly impossible to deter-
mine the frequency with which groups of two or more
simultaneous patients arrive from our data. Anecdotal
evidence suggests that group arrivals are infrequent,
and so we assume that patients arrive singly. Given
this information, we model the arrival of unscheduled
patients as a non-homogeneous Poisson process. A
Poisson process assumes that the chance of an arrival
in a given time interval only depends on the average
arrival rate and length of the time interval. A non-
homogeneous Poisson process has time-dependent ar-
rival rates. Average arrival rates were calculated for
each hour of each weekday. For more information
about non-homogeneous Poisson processes, including
applications, see [10].

Once the arrival time of an unscheduled patient
had been generated, we independently and randomly
sample examinations from the data recorded from July
1, 2007 to June 30, 2008 to determine the examination
type, priority status, contrast and anesthesia require-
ments and magnet operation time. This method is a
simple way to incorporate the underlying correlations
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of exam traits to be represented in our simulated data.
By doing so, we are assuming that the examination type
required by unscheduled arrivals are independent of
time of day and day of week. Such an assumption was
reasonable in light of the small proportion of unsched-
uled arrivals.

We took a different approach in modeling the dis-
tribution of patients requiring scheduled examinations.
We do not have information regarding when patients
first contacted the scheduling office. Instead, we use
the magnet on-times and examination dates of sched-
uled examinations in order to model the distribution
of MRI examinations amongst the scheduled patients.
We generate the examination information for a day by
randomly selecting a weekday from the patient data
set, using the scheduled examinations from that day as
the examinations requiring scheduling. We also use the
actual magnet operation-time as simulated operation
time in order to account for codependencies in magnet
operation-time and the examination type.

Since the simulation is used to model future patient
load of the MRI magnets, we use the slope of the
second regression as the trend in increased MRI exam-
inations. Since schedulers can, ostensibly, control the
number of scheduled MRI examinations, we assume
that the increase in examinations was all in unscheduled
patients.5 Thus, each day of the simulation, the arrival
rate of unscheduled patients was increased by the slope
of the second regression (i.e., 0.0114).

Depending on what date we began our simulation
sampling, we scaled the arrival rate by this rate.

For the results reported, the simulation begins the
day after the end of our study period, July 1, 2008. For
each ten-year analysis, we generated enough replica-
tions so that the relative sample error was below 3%.
Each replication consisted of ten years of patient data.
The number of replications required to reduce the stan-
dard error below 3% varied but was always fewer 100
replications. Therefore, we generated 100 replications
for each analysis.

4 Results

Our tool can be used to help identify potential im-
provements in scheduling and/or resource allocation as
well as resource planning. In Section 4.1, we discuss
how the former can be done by running the scheduling

5We note that the increase could also be due to other factors
such as improved efficiency in conducting examinations or an
increased proportion of shorter MRI examinations required.

algorithm on the real data and making a comparison
to the actual schedule. In Section 4.2, we describe how
the algorithm and simulation models can be used to
help forecast and plan for additional magnet resources.
Since the utilization is higher on the 1.5 T magnet, we
present results only for this magnet. Our methods can
be used identically on the 3 T magnet.

For our aggregate measures, we focused on yearly
magnet overtime minutes. We define magnet overtime
as the amount of magnet time that occurred outside
normal operating hours, which were from 7 AM to
7 PM. When measuring the magnet overtime minutes
for a year, applying a statistic (e.g., average, median,
etc.) without removing the days where no magnet
overtime occurred artificially skews the statistic based
on the incidence of magnet overtime. For example,
suppose 2009 had two days with magnet overtime of
50 min in each day, and in 2010 there were 20 days with
magnet overtime of 50 min in each day. The ordinary
average overtime in 2009 (assuming 250 workdays) is
0.2 min and 4 min in 2010. However, this masks the
actual change: the conditional average magnet over-
time in both years was 50 min whereas the incidence
sharply rose from 2 days out of 250 to 20 days out
of 250. Therefore, we examined the incidence and the
quantity separately. Our chief metrics were to examine
the incidence of days with magnet overtime and the
conditional magnet overtime minutes, i.e., the average
magnet overtime minutes over days when an overtime
event occurred.

FindTradeoff predicts lower bounds on the amount
of overtime minutes for the following reasons.

• FindTradeoff works with magnet ontimes only—
thus, there are no setup times.

• FindTradeoff is allowed to schedule all sched-
uled patients within two days of their originally
simulated examination date and all unscheduled
patients in the same day as their original simulated
examination date.

• FindTradeoff is working with planned examina-
tion times, whereas in reality, some examinations
can take longer than planned for.

The predictions are therefore conservative predictions
of how many magnet overtime minutes occur, based on
what the fairtime, ϕ, is desired.

4.1 Real data

In this section we show how our algorithms and models
can be used as a decision support tool to determine time
periods where potential efficiency improvements exist.
We focus, as previously stated, on the scheduling for
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TRADEOFF CURVES BETWEEN FAIRTIME (   ) AND OVERTIMEϕ
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Actual 25th
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Fig. 5 These results were generated when FindTradeoff was
run on the real data for the 1.5 T magnet. The graph on the
left displays the tradeoff between fairtime (ϕ) and days with
overtime. The graph on the right displays the tradeoff between

percentage of allocated examination time and the quartiles of
the conditional overtime. The horizontal lines are the quartiles
from the actual overtime that occurred

the 1.5 T magnet. We examine which time periods con-
tained magnet overtime for the real schedule but none
or little for the algorithm. These periods are potential
areas of inefficiency that can be further examined by
the decision maker. By identifying these periods, the
aggregate amount of data that the decision maker has
to consider is reduced.

The actual overtime can be estimated from the data,
by adding up the magnet times that occurred outside
of the usual working day (i.e., beyond 7 AM to 7 PM).
We omitted weekend hours from our analysis since
these appointments were never scheduled. We then
ran FindTradeoff on the original data set by treat-
ing each of the magnet on times as their originally
scheduled times. We allowed the algorithm to resched-
ule their examinations within two days of their orig-
inal appointment. This allows the algorithm consid-

erably more flexibility than the actual schedule. The
resulting tradeoff curves are depicted in Fig. 5. Both
the incidence and conditional overtime are shown as
described above. From the tradeoff curves, we can
see that using a ϕ from 0.45 to 0.55 results in an
average overtime that is within the same amount of
conditional overtime experienced in reality. Based on
this observation, we then compared the overtime for
each day from the data to overtime the algorithm
attained for ϕ = 0.45 and ϕ = 0.55. The real sched-
ule had 94,465 minutes of magnet ontime versus the
algorithm which scheduled 118,294 minutes for ϕ =
0.45 and 131,592 minutes for ϕ = 0.55. These compar-
isons are shown in Fig. 6. As can be seen, the pe-
riod from August 20, 2007 to November 5, 2007 con-
tains days of overtime for the real schedule but none
for the algorithm, even as ϕ was increased.

DAILY COMPARISON BETWEEN OVERTIME MINUTES FROM THE ALGORITHM VS. THE ACTUAL SCHEDULE

ϕ = 0.45
actual
alg

100 min.

200

7/1/07 6/30/08

ϕ = 0.55
actual

alg

7/1/07 6/30/08

ϕ = 0.55, magnied
actual
alg

8/20/07 11/5/07

Fig. 6 The first two graphs compare the schedule from Find-
Tradeoff to actual schedule on the 1.5 T magnet when vary-
ing fairtime (ϕ) from 0.45 to 0.55, which increases the total
minutes scheduled from 118,294 to 131,592 over one year. The
original schedule contained 94,465 minutes of magnet ontime.

The comparison between the algorithmically generated schedule
and the actual schedule can be used to identify “hotspots” in
the scheduling as shown in the third graph, for a two-and-a-half
month interval. The vertical axis on all graphs are the same
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PREDICTED TRADEOFF CURVES 2009-2018
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0.2 0.4 0.6 0.8

Fig. 7 The two graphs show the tradeoff curves for 2009–2018
on the 1.5 T magnet assuming the trends described by the 2007–
2008 dataset. The graph on the left represents the average magnet
overtime among days that had magnet overtime. The graph on

the right represents the number of total weekdays with a magnet
overtime examination. The total number of weekdays in a year is
252 (excluding holidays)

4.2 Simulated results

In this section, we describe the results of our simula-
tion when combined with FindTradeoff. Moreover,
we describe how the results could be used to aid in
determining when examination demand will exceed the
capacity of magnet and personnel resources. As we
previously noted, we analyze data for the 1.5T magnet.

We generated simulated data for 2009 through 2018
and created schedules by using FindTradeoff with re-
sults shown in Fig. 7. As can be seen in the right graph,
given the current trends, the predicted incidence and

severity of magnet overtime steeply rises. By deter-
mining the desired ϕ as described in Section 4.1, the
decision maker can use the predicted results as a lower
bound (see above) on the amount of magnet overtime
incidence and minutes. Thus, the model can predict
when staffing or equipment changes would be required
to avoid exceeding some cutoff for overtime incidence
and minutes. For example, if ϕ = 0.3 were desired and
a threshold of 50 days of overtime were set, then un-
der current trends, FindTradeoff suggests increasing
1.5 T magnet resources in 2012, as can be seen in
Fig. 7.

PREDICTED      VS. INCIDENCE TRADEOFF CURVES: CASE ANALYSIS

2009 and 2010

ϕ

Default, 2009

Default, 2010

Card., 2009

Card., 2010

Low, 2009

Low, 2010

50 days

100

150

200

0.2 0.4 0.6 0.8

2014 and 2018

ϕ

Default, 2014

Default, 2018

Card., 2014

Card., 2018

Low, 2014

Low, 2018

0.2 0.4 0.6 0.8

ϕ

Fig. 8 These two graphs show a case analysis of the predicted
tradeoff curves for 2009, 2010, 2014 and 2018 on the 1.5 T magnet
between fairtime (ϕ) and the incidence of magnet overtime days.
Default is the case where the trends are as predicted by the data.
Card is the case where the number of cardiac patients increases
three-fold. Low is the case where the increase in examinations

predicted by the data is reduced by a third. The graph on the
left depicts the predictions for 2009 and 2010, and the graph on
the right predictions for 2014 and 2018. Both graphs have the
same y-axis. The graphs show the high sensitivity in overtime inci-
dence to examination demand, especially as the forecast horizon
is extended
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In addition to using the historical trends to generate
predictions, we can also perform case analysis. We
demonstrate this with two different scenarios. In the
first, we simulated increased cardiac examinations by a
factor of three. In the second, we decreased the overall
trend by a third. Both of these cases are shown in
Fig. 8, along with the original simulation for compari-
son. As shown, the impact of increasing the cardiac
examinations has a modest shift on the tradeoff curves,
whereas a reduction in the overall trend results in a
larger improving shift in the magnet overtime inci-
dence. Additional graphs displaying the results of case
analysis are available from the authors upon request.

5 Discussion

The use of technological devices has become ubiquitous
in modern medical diagnosis and care. Given the cost
and importance of their use, effective allocation of such
resources is an important problem facing healthcare
providers. In this paper, we have developed a tool that
can perform both retrospective analysis of previous
decision making as well as a case analysis of the impact
of varying trends in MRI examination demand.

Our results have demonstrated the following:

• Optimization models, which are typically used in
prescriptive modeling, can be used to great effect in
descriptive modeling. In particular, we showed how
optimization techniques can be used to evaluate
scheduling decisions, purchasing policies, and MRI
examination difficulty.

• Approximation algorithm techniques along with
Monte Carlo simulation can be used to successfully
find tradeoff curves for a bicriteria problem.

• The metric fairtime effectively measures the fair-
ness of magnet time allocation to patients that is
unbiased with respect to examination length. This
normalization also helps allow for multiple kinds of
examination types to be handled within the model.

Our results and methods come with limitations as
well. For example, revenue and costs were not ad-
dressed by our methods. In addition, given the difficulty
in using the past to predict the future, much of the
accuracy of our forecasting is dependent on the decision
maker having a good understanding of future trends
in patient demand and choosing accurate scenarios to
examine.

Response from SCH has been positive to our tool.
A future study has been planned where the impact of
increasing certain examination types will be analyzed

using our simulation and algorithm. In addition, since
the demand for MRI examinations is rising, interest
has been expressed in using the tool to analyze the
potential impact of purchasing an additional magnet
versus extending magnet operating hours. In particular,
the tool has helped demonstrate that extending magnet
operational hours is a viable option due to the sensitiv-
ity of overtime incidence to demand trends.

Our algorithm and simulation has been a positive
step towards developing an evaluation and predic-
tion tool for better resource allocation and planning
for medical technology. However, many challenges re-
main, including extending the tool to other treatment
and diagnosis modalities such as CT-scanner schedul-
ing. We are also interested in applying similar optimiza-
tion and simulation tools to other areas in medicine
where descriptive modeling is required.
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