SIAM J. OPTIM. (© 2011 Society for Industrial and Applied Mathematics
Vol. 21, No. 1, pp. 231-268

APPROXIMATING SEMIDEFINITE PACKING PROGRAMS*

G. IYENGART, D. J. PHILLIPS!, AND C. STEIN?

Abstract. In this paper we define semidefinite packing programs and describe an algorithm to
approximately solve these problems. Semidefinite packing programs arise in many applications such
as semidefinite programming relaxations for combinatorial optimization problems, sparse principal
component analysis, and sparse variance unfolding techniques for dimension reduction. Our algorithm
exploits the structural similarity between semidefinite packing programs and linear packing programs.

Key words. semidefinite programming, combinatorial optimization, approximation algorithms,
primal-dual methods, nonsmooth optimization

AMS subject classifications. 90C22, 49M29

DOI. 10.1137/090762671

1. Introduction. In this paper we are concerned with solving semidefinite pro-
grams (SDPs) of the form

max (C,X)
(1) subject to (s.t.) ¢;(X)<b;, i=1,...,m,
X >0,

where C € R™ "™ is a symmetric, positive semidefinite matrix, X € R™*™ is the
decision variable, and g;(X) are packing functions. The class of packing functions is
formally defined in Definition 1 and includes as special cases g(X) = (A, X), where

1
A>x0, gX)= (Zf:1(<Ai,X>)2)2, and g(X) = 377", [ Xyj]. The Frobenius inner
product (A, B) between symmetric matrices A and B is defined as

(A,B) =Tr(A'B) = i i aijbij.

i=1 j=1

The constraint X > 0 indicates that the matrix X is symmetric and positive semidefi-
nite; i.e., X is symmetric and has nonnegative eigenvalues, or, equivalently, v Xv > 0
for all v € R™. We refer to semidefinite optimization problems of the form (1) as pack-
ing SDPs. Packing SDPs arise naturally in many applications, including semidefinite
programming relaxations for combinatorial optimization problems, sparse principal
component analysis, and sparse variance unfolding techniques for dimension reduc-
tion. See section 2.1 for a detailed discussion of optimization problems that can be

*Received by the editors June 22, 2009; accepted for publication (in revised form) October 25,
2010; published electronically January 20, 2011. An extended abstract of this paper appeared in the
Proceedings of the Eleventh Conference on Integer Programming and Combinatorial Optimization
(IPCO XI), Lecture Notes in Comput. Sci. 3509, Springer, Berlin, 2005, pp. 152-166.

http://www.siam.org/journals/siopt/21-1/76267.html

TThe Department of Industrial Engineering & Operations Research, Columbia University New
York, NY 10027 (garud@ieor.columbia.edu). This author was supported in part by NSF grants CCR-
00-09972 and DMS-01-04282 and ONR grant N000140310514

fMathematics Department, The College of William & Mary, Williamsburg, VA 23185 (phillips@
math.wm.edu). This author was supported in part by NSF grants CCF-0728733, DMS-0703532,
DGE-0086390, and DMI-9970063.

8The Department of Industrial Engineering & Operations Research, Columbia University, New
York, NY 10027 (cliff@ieor.columbia.edu). This author was supported in part by NSF grants CCF-
0728733 and DMI-9970063.

231



232

G. IYENGAR, D. J. PHILLIPS, AND C. STEIN

reformulated as packing SDPs. The term packing SDP is derived from the fact that
(1) is a packing problem, as defined in [24]. We believe the first published reference
to an SDP in the context of packing was by Klein and Lu [17] in reference to the
MaxcuT and coloring SDPs.

Our contributions in this paper are as follows.

(a)

(b)

In section 2 we define the class of packing SDPs, and in section 2.1 we show
that SDPs arising in many important optimization problems can be refor-
mulated as packing SDPs. Using our algorithm we are able to solve all the
packing SDPs in a unified manner.

We propose a new technique for solving a packing SDP to an absolute error e.
Our solution approach relies on Lagrangian relaxation. We dualize the hard
packing constraints to construct a relaxation where the primal feasible set is
defined as X = {X : X = 0, Tr(X) < w, }. In section 3, we show how to recover
an e-optimal feasible solution from the optimal solution of the Lagrangian
relaxation of the packing SDP. Unlike usual Lagrangian approaches which are
only able to compute a bound for the optimal value, we produce a feasible
solution. The results in this section apply to all packing SDPs.

In section 4 we consider the problem of computing an optimal solution of
a Lagrangian relaxation for (1). We show that the resulting nonlinear La-
grangian objective function, which has form (C,X) — > | v;(¢:(X) — 1), can
be linearized if we restrict the packing functions to the form

k
9(X) = max{z,zi (A;,X):Pz<d,z> O},
i=1

where the symmetric matrices A; € R™*", matrix P € R***_ and vectors
d € R’ are such that g(X) > 0 for all X > 0. The packing functions arising
in the examples discussed in section 2.1 are all of this form. Note also that
this set of functions is much larger than just functions of the form g(X) =
maxi<i<m (Aj, X). We show that Nesterov’s first-order procedure [22] can be
used to efficiently compute a feasible, e-optimal solution for the Lagrangian
relaxation of the packing SDP where all functions are of the form (2). Our
algorithm is able to take advantage of any sparsity in the problem, i.e., sparsity
in C or sparsity in computing the packing functions g;(X). Since our method
is based on the Nesterov procedure, the method computes an approximate
solution even when the gradients are only approximately computed [§]. In
addition, after reading in the problem data, the complexity of our method is
logarithmic in the number of constraints.

In section 5 we describe the complexity results for the specific instances dis-
cussed in section 2.1. We show that an e-optimal solution to the SDP relaxation
to the MAXCUT problem can be computed in O(nr?log(n) - ¢ 'log®(e™?))
time, where r denotes the number of nonzero elements in the Laplacian ma-
trix of the graph. The previous best-known result for a first-order technique is
O(nrlog®(n)-e~2) by Klein and Lu [17]. Recently, a result by Trevisan [29] has
allowed a randomized algorithm of Arora and Kale [1] to be extended to gen-
eral MAXCUT and runs in O(r log®(n)-e % log®(e~1)) time [15]. Thus, we have
a trade-off—for moderate € the Klein-Lu and Arora-Kale-Trevisan bounds
are superior, but as € decreases our approach is faster and is more suited for
applications where one requires fairly accurate solutions of the MAXCUT re-
laxation.



APPROXIMATING SEMIDEFINITE PACKING PROGRAMS 233

We show that an e-optimal solution to the semidefinite relaxation for the
graph coloring problem can be computed in O (n?rlog(n)-e~*log®(e™1)) time.
The Klein-Lu bound [17] for graph coloring is O(nrlog®(n) - e=*), which is
significantly slower than their bound for MAXCUT.

Our algorithm can compute e-approximations of the Lovész-1} function [18]
and Szegedy number [28] in O(n?rlog(n) - e 'log®(e71)) (i.e., the same as
coloring) compared to the O(n-°(n3 + 73) - log(¢~!)) runtime of the barrier
method [21]. Thus, our tradeoff works in an opposite direction. For moderate
€ our bound is better for all graphs, and for dense graphs and moderate €
our bound is much better. Chan, Chang, and Raman [5] extend the results
of [1] to compute the Lovdsz-0 function in O(n® - €~2). Their method does
compute a feasible solution to the SDP for the Lovéasz-9 function SDP, while
our method does not.

We also show that our methods compute an e-optimal solution to the sparse
principal component analysis (PCA) problem in (’)(n4 log(n) - e’l) which
matches the best-known previous result for this problem [7]. Unlike the method
in [7], our method always returns a feasible solution.

(d) In section 6.3, we show our solution algorithm actually runs Q(n) faster than
the theoretical bounds predict on test cases from sparse PCA. We are able to
solve SDPs with over 107 variables and constraints (i.e., problems where X is
of dimension up to 6000 x 6000).

In [23] Nesterov describes how to extend the smoothing technique that he proposed
in [22] to minimizing the maximal eigenvalue and the spectral radius of symmetric
matrices. Nesterov establishes that one can efficiently compute an e-optimal solution to
the nonsmooth semidefinite optimization problem by solving a sequence of penalized
gradient descent problems where the step is penalized by an appropriately chosen
smooth, strongly convex function. In the method proposed in [22, 23], the penalized
gradient descent step has to be solved over the feasible set of the original nonsmooth
problem. This restriction limits one to nonsmooth problems where the constraint set is
“simple” [22, 23]. Note that computing a penalized gradient step over the feasible set
of the packing SDP, as would be required by the method proposed in [23], is, in fact,
as hard as solving the packing SDP. Thus, the method proposed in [22, 23] cannot be
directly used to solve packing SDPs. A main contribution of our paper is that we show
one can dualize the packing constraints and compute the smoothed gradient step for
a large class of packing SDPs over the “simple” set X = {X : X = 0, Tr(X) < w,}
and still converge to an e-optimal feasible solution to the packing SDP in O(e™1)
operations.

1.1. Notation and preliminaries. We denote vectors in lowercase bold (e.g.,
x), scalars in italics (e.g., = or X), matrices in uppercase bold (e.g., X), and sets
in uppercase calligraphic font (e.g., X'). We use 1,, and 0,, to denote n dimensional
vectors of all ones and zeros, respectively, and we omit the subscript n when the
dimension is clear. We follow the same convention with the identity matrix, I,,, and
the matrix of all ones, J,,. When the dimension is clear, we define 0 as the matrix
of all zeros and for all i, we define e; as the ith column of the identity matrix. We
use 8™ to denote the set of symmetric n x n matrices and S% to denote the cone of
symmetric, positive semidefinite matrices, i.e., symmetric matrices with nonnegative
eigenvalues. We denote the partial order on 8" induced by the cone ST by =; i.e.,
A > 0 indicates that the matrix A is symmetric and positive semidefinite, and A > B
indicates that A — B = 0.



234 G. IYENGAR, D. J. PHILLIPS, AND C. STEIN

For a given vector v € R™, we let ||v|[, = >, |vi], [v]|, = maxi=1,.. ., |vi], and
vl = />_i_, vZ denote the {1, {o,, and ¢5 norms, respectively. We define the L1, Lo,
and Lo norms for a symmetric matrix A as follows. Let

Nl=

1AL =D INX)]L (Al = max {IA(A)]}, ||A||2:(Z/\2 )
=1

.....

where {\;(X) :i=1,...,n} denote the eigenvalues of A.
We call a differentiable, convex function f strongly convex with convexity param-
eter o if

F(¥) 2 £+ VF60T(y =) + o lly — I

or equivalently if V2f exists for all x and z, z' V2f(x)z > o ||z||*. Note that the value
of the convexity parameter o depends on the particular norm ||-||.

For Z C R", we say that z, € Z is e-optimal in the absolute sense for the
optimization problem max,cz{f(z)} if f(Z,) is within an additive error € to the
optimal value, i.e., if the inequality f(z,) > f* — € is satisfied, where we define
f* = max,ecz{f(z)}. We say that z, € Z is e-optimal in the relative sense if f(z,) >
(L—e)f*, ie., f(z,)is within a (1 — €) multiplicative factor of the optimal value. Note
that the relative error measure has meaning only if f* > 0. Suppose 0 < C' < f* and
Z, is e-optimal in the absolute sense. Then Z, is ¢/C optimal in the relative sense
since the definitions imply that f(z,) > f* —e= f*— C(e/C) > (1 — ¢/C) f*.

We use G = (N, &) to denote an undirected graph with n = |N/| nodes and

= |€] edges. We assume all graphs are connected which implies that m = Q(n).

2. Packing SDP. We begin by formally defining the packing SDP. Next, we
show that many important optimization problems arising in combinatorial optimiza-
tion, principal component analysis, and maximum variance unfolding can be reformu-
lated as packing SDPs.

DEFINITION 1. A function g : 8™ — R is called a packing function if

1. (convexity) g is convex.

2. (positive homogeneity on ST ) g(8X) = Bg(X) for all 3 >0, and X = 0.

3. (nonnegativity on ST ) g(X ) >0 for all X = 0.
Packing functions are similar to gauge functions (see page 28 of [25] and [9])—
note that unlike gauge functions we require only nonnegativity and positive
homogeneity on S%; e.g., g(X) = Tr(X) is a packing function but not a
gauge function. Also, Minkowski functions of convex subsets of S™ are packing
functions but not necessarily gauge functions. Examples of packing functions
include

9(X) =(A,X),A =0,
g(X) = Z | X5 = max { (X, Z) : |Z;| <1Vi,j},

0,9

=1

A17
9(X) = = max Zzz (A, X) ||Z||2 < 1}'
Ak7



APPROXIMATING SEMIDEFINITE PACKING PROGRAMS 235

The previous three packing functions are all special cases of the packing
function

k
(3) g(X):maX{Zzi<Ai,X>:zEPCR’j_},

=1

where the A; € 8™ for i =1,...,n and convex P are such that g(X) > 0 for
all X > 0.
4. g(X) = [JNX)]|, where A(X) denotes the vector of eigenvalues of X and |||
is any vector norm.
The positive homogeneity condition (see list item 2 in Definition 1) is restrictive; it
essentially restricts g to norm-like functions. For example, the function

h(X) = (A, X) +b

is not a packing function for any A € §" and b € R — {0} since it violates positive
homogeneity. General symmetric functions of eigenvalues are not packing functions;
e.g., 9(X) = >, Ai(X) In(A;(X)) is not a packing function [23].

DEFINITION 2. A (packing SDP) is an optimization problem of the form

p*= max (C,X)

(@) st. ¢(X)<1, i=1,...,m,
Tr(X) < wy,
X =0,

where C = 0 and the functions g;(X) are packing functions for all i =1,...,m. We
also allow the trace constraint Tr(X) < w, to be an equality.

The trace constraint Tr(X) < w, is equivalent to assuming the feasible region of
the packing SDP (4) is compact. This is almost always true in problems of practical
interest. The results in section 3 hold for all packing SDPs. In section 4 we restrict
ourselves to packing functions of the form (2); i.e., we have

k
9(X) = max{Zzi (A;,X):Pz<d,z> O} ,

=1

where A; € 8", P € R®** and d € R’ are such that g(X) > 0 for all X > 0. Note
that ¢ is a packing function in the form of (3) where the convex sets are polyhedral.
All the packing constraints arising in the applications discussed in section 2.1 belong
to this class of packing functions. The results in section 4 continue to hold for packing
functions of the form

k
(5) 9(X) = max {Z zi (A, X):z € Q} , @ is compact and convex,

i=1
provided there exists a smooth, strongly convex function d(z) such that min{c’z +

d(z) : z € Q} can be efficiently computed. We leave this extension to the reader.

2.1. Instances of packing SDP. Recall that G = (N, &) denotes a graph with
n = [N nodes and m = |€| edges.



236 G. IYENGAR, D. J. PHILLIPS, AND C. STEIN

2.1.1. The MAXcUT SDP. The SDP relaxation to the MAXCUT problem in-
troduced by Goemans and Williamson [11] is given by

max (L, X)
(6) s.t. <eie;.'—,X>:1, i=1,...,n,
X =0,

where L is the Laplacian of G and e; is the 7. column of the identity matrix. The
Laplacian of a weighted graph with nonnegative edge weights w;j, (i,5) € &, is a
symmetric matrix L = [L;;], where

—Wij, { 7& j7
(7) Lij e Z wik’ Z _ _]
k=1

We set w;; = 0 when (¢,j) € € and i # j. Then for any x € R”, (7) indicates that
x'Lx = %ZZ]’:I wij(z; — xj)Q > 0, i.e., L > 0. Recall that we assume that G is
connected, which implies that for all i = 1,...,n, there exists an index k such that
(i,k) € £ and wy, > 0. Then (7) implies that L;; = Z?Zl w;; >0foralli=1,... n.

Let D be a diagonal matrix with diag(L) as the main diagonal. Then the change
of variables X = (Tr(D)) - D=2 YD~ 2 implies that (6) is equivalent to

max (Lp,Y)
(8) s.t. <eie;r,Y> = T’iiii)ﬂ i=1,...,n,
Y -0,

where Lp = D~'/2LD~1/2 is the normalized Laplacian [26]. We claim that the pack-
ing SDP

max (Lp,Y)
) s.t. %f)<eie;r,Y>§1, i=1,...,n,
Tr(Y) <1,
Y>0

is equivalent to (8). Since the constraints, Y;; < %, for all ¢, imply Tr(Y) < 1,
the packing SDP (9) and the original SDP formulation (8) are equivalent unless there

exists an optimal solution Y* to (9) with an index ¢ such that Y} < ,If(%). Suppose

this is the case and define Y = Y* + (Tf(%) —Y;)eie/ . By construction, Y is feasible

for (8), and we have
D
Tr(D)

(Lp.Y) = (Lp, Y*) + < —Y;) > (Lo, Y").,

a contradiction. Thus, it follows that the packing SDP (9) is equivalent to the MAXcuUT
SDP (8).

2.1.2. The Lovéasz-9 function SDP. Lovész [18] defined the function 9(G) as
follows. Let

(10) G) = max (J,X)
s.t. my; = 0, (Z,]) eé,
Tr(X) =1,
X >0,



APPROXIMATING SEMIDEFINITE PACKING PROGRAMS 237

where J € R™*" with all entries equal to 1. For each (i,j) € &, define E(») =
I+eie] +ejef and F")) =1 (eje] +eje). It is easy to show that E(J) = 0 and
F(9) = 0 for all (4, ) € £. Using the fact that Tr(X) = 1, we can rewrite (10) as the
packing SDP

st. (B0 X) <1, (i,j) €€,
(11) (FO9) X) <1, (i,4) €E,
Tr(X) = 1,
X = 0.

Note that in reformulating (10) as the packing SDP (11) it was extremely important
that we allow trace equality constraints in packing SDPs (see Definition 2).
A related quantity to ¥(G) is Szegedy’s number [28], defined as

(12) 9 (G) =  max (J,X)
s.t. my <0, (Z,]) €€,
Tr(X) = 1,
X > 0.

Gvozdenovi¢ and Laurent [12] show that 9T is a part of a family of graph parameters
that approximate the clique and chromatic numbers. In particular, 9% (G) is a better
approximation to the clique number to G than 9(G). We can reformulate (12) as the
packing SDP

(13)

2.1.3. The coloring SDP. Karger, Motwani, and Sudan [16] describe the fol-
lowing SDP relaxation for the vertex graph coloring problem on G:

max (
st. zz=1, i=1,...,n,
X > 0.

For each (i,7) € £, define

G = 5 (eie;-r + eje;-r - (eie;r + eje;r)) = §(ei —ej)(e;—e;) = 0.

Then, for all X feasible to (14), we have that <G(i’j),X> = 1 — x;;. Therefore, it
follows that

C — min(i7j)€5 _a:’Lj = min(i,j)€5 { <G(Z>J)’X_> } —1

= min Z w(i,j) <G(i’j),X> : Z w(; ) = 13 —1.

(i,5)€€ (i,5)€€



238 G. IYENGAR, D. J. PHILLIPS, AND C. STEIN

From an argument similar to that used to show the equivalence of the MAxcuT SDP
to a packing SDP, it follows that (14) is equivalent to the max-min problem

max min Z Wi, 5) (Gij, X)
(15) (i,5)€E)
s.t. xnélv izla"'vna
X >0.

The optimization problem (15) is not a packing SDP. We compute an approximate
solution to a packing SDP by using a Lagrangian relaxation, i.e., by converting the
packing SDP into a max-min problem. In section 3, we describe this conversion and
show that our solution algorithm can be easily adapted to solve a max-min problem
of the form (15).

2.1.4. Single factor sparse PCA. PCA is a popular tool for data analysis and
dimensionality reduction. It has applications throughout science and engineering. In
essence, PCA finds linear combinations of the variables (the so-called principal compo-
nents) that correspond to the directions of maximal variance in the data. Sparse PCA
is concerned with computing principal components that are sparse, a highly desirable
feature when working with high-dimensional data.

The single factor sparse PCA problem reduces to

max x' Cx
st x| =1,
Card(x) < k.

Here, C € 87 is a given covariance matrix, Card(x) is a function that returns the
number of nonzero components of x, and 1 < k < n is a given parameter (k = 1
is the variable with maximum variance and k¥ = n is ordinary PCA, an eigenvalue
problem). Further details about sparse PCA can be found in d’Aspremont et al. [7],
who formulate the following SDP relaxation for the above nonconvex optimization
problem:

max (C,X)
s.t. % |X1J| < ].,
(16) j
Tr(X) =1,
X>0

The optimization problem (16) is a packing SDP. In [7] the authors approximately
solve (16) by dualizing the cardinality constraint }_,.|X;;| < k; however, they do
not guarantee that their solution is feasible. Our method computes feasible e-optimal
solutions for the packing SDP (16).

2.1.5. Maximum variance unfolding. Maximum variance unfolding (MVU)
(also called semidefinite embedding) is a technique introduced by Weinberger and
Saul [32] for computing low-dimensional representations that preserve distances be-
tween “local” points while seeking to maximize the overall distance between all points.

Suppose we are given n data points D = {y; : i = 1,...,n} C R, where the
dimension £ > 1. Let £ C {(4,7) : 1 <i < j < n} denote a set of tuples. We call a pair
(i,74) “local” with respect to each other if and only if (i, ) € £. The goal of the MVU



APPROXIMATING SEMIDEFINITE PACKING PROGRAMS 239

technique is to compute an m-dimensional representation of D that preserves distances
and minimizes the effective dimension of the resulting manifold, where m < ¢. To
formulate as a mathematical program, denote the m-dimensional representation by
{w; : ¢ =1,...,n} C R™. Weinberger and Saul [32] propose constructing such a
manifold by solving the optimization problem

max Y flw—wlf—v [ D (Jw - - diy)?

,JEV (i,5)€E
n
s.t. E u; =0,
i=1

where Y1 u; = 0 is a centering constraint. Since (17) is not a convex optimiza-
tion problem, Weinberger and Saul [32] approximately solve (17) by constructing a
semidefinite programming relaxation.

We present a slightly modified version of the relaxation developed in [32]. Let
U = [uy,...,u, 1] and set K = UTU. For each (i,j) € &, define ag;) € R(™1 ag
follows. Let

(17)

€; — €y, Zaj#na

n—1
e; — Z €, Jj=mn,
k=1
n—1
Z e, —e;, 1i=mn,
k=1

where e, denotes the kth column of I,_;. Then, for each ¢ # j, u; — u; = Ua;; and
2

Ju; — | = a/}Kai; = (aj;a},

problem (17) is equivalent to

e |iﬁ§21{<i§v%agx>_ 2 Zij(<aijaiTwK>—dij)}

(ij)€€
(18) s.t.  rank(K) = m,
Tr(K) <,
K >0,

>. In terms of the new variables, the optimization

where 7 = Y | |lyill. The semidefinite relaxation is obtained by relaxing the rank
constraint on K as in (16). The optimization problem (18) is a max-min problem
which has the same structure as the Lagrangian relaxation we use in our solution
algorithm for packing SDPs (see section 3).

2.1.6. Improving Laplacian eigenvalues and locally linear embedding
using MVU. Laplacian eigenmaps, locally linear embedding, and isomaps are dif-
ferent techniques for computing low-dimensional representations for high-dimensional
data that preserve proximity relations. Let

ul-:Vyi, i:l...,n,

where V € R™*¢ denote the m-dimensional representation for the set of /-dimensional
vectors {y; : 1 < i < n} computed by any data mining technique. Xiao, Sun, and
Boyd [33] propose that this representation can be further refined via MVU postpro-
cessing.



240 G. IYENGAR, D. J. PHILLIPS, AND C. STEIN

Recall that the MVU approach reduces to computing an appropriate Gram matrix
for the data vectors. Given the representation matrix V, the data vectors are now r-
dimensional vectors. In the Xiao, Sun, and Boyd [33] approach, the Gram matrix K
of the n vectors is approximated by K = V' QV, where Q € R"*" and Q > 0. The
MVU postprocessing step then reduces to the packing SDP

max (VVT, Q>
s.t. V(el — ej)(ei — ej)TVT, Q> < dij, (Z,]) S 5,
Q*>-0,

(19)

where 7 = 3" | |wl and d;;, (i,7) € £, denotes the bound on the distance between
the “local” node pair (1, j).

3. Lagrangian formulation and rounding. In this section, we show how to
construct an e-approximate solution for the packing SDP (4) using Lagrangian pe-
nalization on the packing constraints. Penalizing the packing constraints converts the
packing SDP into a primal-dual problem where both the primal and the dual feasible
sets are “simple,” i.e., sets over which optimization is easy. Since the dual sets we use
are bounded, the penalization results in a relaxation of the original packing SDP, and
in this section we show how to convert approximate solutions to the relaxation into
approximate solutions to the corresponding packing SDP. In section 4, we show that
the Lagrangian relaxation can be efficiently solved for the class of packing functions
defined in (2).

Define the Lagrangian function ¢ : ™ x R™ — R of the packing SDP (4) as
follows. For (X,v) € ™ x R™, let

m

#(X,v) =(C,X) — Zvi(gi(x) —1).

i=0
Consider computing a saddle-point (i.e., an exact solution) to the maximin problem

2 in (X
(20) max min ¢(X, v),

where we need to specify the sets X and V. Define
(21) X={X:X>0,Tr(X) <w,}.

Recall that we assume either the packing SDP (4) has the trace constraint Tr(X) < w,
or such a bound is implied by the packing constraints. When the trace constraint in the
packing SDP is an equality constraint, we set Tr(X) = w, in (21). If we let V = R,
then (20) would be the Lagrangian dual for (4). However, we require a compact, i.e.,
bounded, set for V. Thus, let

(22) V= v:vZO,ZUijU ,



APPROXIMATING SEMIDEFINITE PACKING PROGRAMS 241

We need the “diameter” w, of the dual set to be large enough to ensure that infeasible
solutions to (4) are sufficiently penalized. The proof of Theorem 3 demonstrates that
the bound w, in (23) is sufficiently large.

Let v € V. Then for all X feasible to the packing SDP (4), ¢(X,v) > (C,X).
Thus, we have

> >

(24) max ¢(X, v) 2 max (C, X) > o,
where the last inequality follows since the feasible region of the packing SDP (4),
which is {X : ¢;(X) < 1,i=1,...,m, Tr(X) < w,, X = 0}, is a subset of X'. Thus, it
follows that

2) Ry VR OROY) =l papeltv) 2 e

where the equality follows from an appropriate saddle-point theorem applied to the
function ¢(X,v) and the inequality follows from (24). We refer to the max-min prob-
lem in (25) as the Lagrangian relazation of the packing SDP, the maximization prob-
lem in X as the primal problem, and the minimization problem in v as the dual
problem. We call a pair (X,v), X € X, ¥ € V, an e-saddle-point for (20) if the pair
satisfies

< ¥) — mi X <e.
(26) 0 < max¢(X,¥) —ming(X,v) <e

The main result in this section establishes that one can compute an e-optimal solution
of the packing SDP (4) by appropriately scaling the e-saddle-point X. We defer the
problem of computing the e-saddle-point (X, V) to section 4.

THEOREM 3. Fir e > 0. Let (X,V) denote any e-saddle-point to (20) with w,
defined as in (23). Define d = ,max {g:(X)} as the mazimum value of the packing

ooy

constraints. Then

(27) X:{ /X, d>1,

X, otherwise,

is an e-optimal solution for the packing SDP (4).
Proof. When d < 1, then g;(X) < 1 for all 4; thus, X = X is feasible. When d > 1,
the positive homogeneity property of the packing functions ¢;(X) implies that

1> (%)gi(f) = gz-(% X) = :(X).

Thus, X is always feasible to the packing SDP (4). Next, we show that X is e-optimal.
Consider the following two cases:
(a) d < 1. In this case,

(1 —g:(X)) s =0.
g {30 o

Thus,

<C,X> = <C,X —|—In1n{Zvl 1—g,(X } = min ¢(X, v),

veV veV



242 G. IYENGAR, D. J. PHILLIPS, AND C. STEIN

where the last equality follows from the definition of ¢. Since (X,¥) is an
e-saddle-point, it follows from (26) and (24) that

inp(X,v) > V)—e>p'—e
1316151¢(X,v)7%2§¢(x,v) e>p—e

(b) d> 1. Since C = 0, X = 0, and 1 > 1— (d—1) for all d > 0, we have that

(c.X) = % (¢, X)

> (C,X) — [@-1)(C,X)
(28) > (C,X) — (d - Dwy
(29) ~ (€. X) +miy {Zwu - ng))}
i=0
= min (X, v)

(30) > p* —¢,

where (28) follows from (23) since X € &, (29) follows from the fact that

wy(l—d) = melg {3, vi(1—gi(X))} whenever d > 1, and (30) follows from
(26) and (24).

Thus, we have that X is a feasible, e-optimal solution to (4). |

Lagrangian relaxations typically yield good bounds but do not yield feasible so-
lutions. Theorem 3 shows that by setting the “diameter” w, sufficiently large one can
recover a feasible e-approximate solution for any packing SDP (4) from an e-saddle-
point for (20). In the next section we show that for a restricted class of packing
functions one can compute an e-saddle-point efficiently.

Theorem 3 can be used to convert e-saddle-points to e-approximate solutions for
the packing SDPs for maximum variance unfolding and Laplacian eigenmaps (sections
2.1.5 and 2.1.6, respectively). However, Theorem 3 does not find feasible solutions for
packing SDPs with a trace equality constraint. In the case of MAXCUT, relaxing the
original trace equality constraint is equivalent to restricting the main diagonal to the
ones vector. However, the objective function in this case is nondecreasing in the main
diagonal, so a feasible, e-optimal solution can be calculated by just replacing the main
diagonal with ones.

LEMMA 4. Suppose f : 8" — R such that f(Y + ae;e] ) > f(Y) for all Y = 0,
a > 0, and all canonical basis vectorse;, i = 1,...,n. Let v* = max{f(X) : diag(X) =
1,X > 0}.

Suppose X = 0 such that diag(X) < 1 and f(X) > v* — € for € > 0; then
Y = X +1—Dx is a feasible e-optimal solution (where Dx is a diagonal matriz with
diag(X) along the main diagonal).

Proof. This follows directly from the fact that I — Dx > 0 and that f(Y) >
f(X). O

Note that Lemma 4 can be used for both the MAXCUT packing SDP (in conjunc-
tion with Theorem 3) and the max-min optimization problem (15) for coloring.

Recall that the packing SDPs for the Lovasz ¥-function, Szegedy’s number, and
sparse PCA all have a trace equality constraint, so Theorem 3 does not apply. We
therefore provide a more general “additive rounding” when the packing SDP with a
trace equality constraint has a strictly feasible point.



APPROXIMATING SEMIDEFINITE PACKING PROGRAMS 243

THEOREM 5. Suppose Z is a strictly feasible solution to a packing SDP (4) with
the trace equality constraint

Tr(Z) = ws, ¢i(Z) <1Vi=1,....,m.

Define the dual set parameter

31 Wy = 57>
( ) 1- gmaX(Z)
where for X € X, we set
A
gmaX(X) - 1252471{91()()}

and py s any upper bound on p*; in particular, we can set p, = <9 Z). Suppose that
(X,¥) is an e-optimal saddle-point and assume that (C,Z) < (C,X) and gmax(X) >
1.1 Define

X =
where for X € X we set

é gmax(X) - ]-
ﬁ(X) B 1- gmax(z) '

Then X is a feasible e-optimal solution to (4) with Tr(X) = w,.

Proof. We first show that X is feasible. Since Z is strictly feasible, we have
gmax(Z) < 1. By assumption, gmax(X) > 1 so f(X) > 0. Thus, X is a convex com-
bination of X and Z. Then Z,X € X and the convexity of X imply that X € X,
i.e., X = 0 and Tr(X) = w,. Since each of the packing functions g;(X) are convex, it
follows that gmax(X) is also a convex function. Thus, we have

e (X) < Imax(X) + BX) gmax (Z)
s 1+ B(X) '

Substituting for 5(X) we get

g (X) < gmax(i)(l — gmax(z_)) + gmax(z)(gmax(x) _ 1)
max - gmax(X) - gmax(z)

Thus, ¢;(X) <1foralli=1,...,m.
We now show that X is e-optimal. Define

=1

U(X) = 1;%111}1 ?(X,v) = (C,X) — w, max{0, gmax(X) — 1},

where the last equality follows from the definition of the dual set V. We first show
that p* = max U(X). For a fixed X € X, define 8T = max{3(X),0} and

X+ 47

L & X+ B2 =(1+8M)Y.

LOtherwise, we just use Z or X as our solution.



244 G. IYENGAR, D. J. PHILLIPS, AND C. STEIN

Then Y is feasible for (4). Also, by the definition of 3(X), it follows that

U(X) = p* = (C,X) — wy max{0, gunax(X) — 1} —
= (C,X) — w, max{B(X)(1 — gmax(Z),0}) —

Since gmax(Z) < 1, we can factor and then substitute p, — (C,Z) for w, (1 — gmax(Z))
to obtain

U(X)—p* =(C, X+ BTZ) — BT p. — p*.
Now we can use the definition of Y to obtain
U(X)—p" = (1 +B+) (CY) - BFpu— pt=(1 +B+)(<Ca Y)-p") - BJr(pu —p*) <0,
where the inequality follows since Y is feasible for (4) and p, > p*. Then (25) implies
that

X =
ROV =0

SlIlCE (};7 ) 1s an € Sa’j:us I: :111t7
@ X = (Z)X V >|3X()X_V —€>l)*—6
( ) vey ( Y ) ~ Xecx ( Y ) -

Therefore, the definition of X implies that
(14 8X)((C.X) =) = (C.X) + BX) (C,Z) - (1 + BX))p’
= ((C.X) ~ wulgmax(X) = 1) = ")
(32) +8X)((C,2) + (1 = gmax(2))7")

(33) > —e+ (pu—p"),

where (32) follows from the definition of 3(X) and (33) follows from the definition of
wy in (31) and the fact that ¥(X) = (C,X) — wy(gmax(X) — 1) > p* — €. Thus, X is
a feasible, e-optimal solution since we have

<CX>7p —TZ(X)Z/)*—G. O

Theorem 5 can be used to “round” e-saddle-points to both the sparse PCA and
Szegedy’s number Lagrangian relaxations into feasible, e-optimal solutions to their
respective packing SDPs. A version of Theorem 5 was also established by Z. Lu,
Monteiro, and Yuan [19]. Note that the Lovdsz-¢ function cannot be rounded with
Theorem 5.

Recall that the semidefinite relaxation for graph coloring problem (15) and the
semidefinite relaxation for the maximum variance unfolding problem (18) are not
packing SDPs. However, the structure of the Lagrangian relaxation of these problems
is identical to that of a packing SDP. For instance, the Lagrangian relaxation for the
coloring problem

nmax min Z (4,7) GZJ’ X Z ZZ ’
{XeSpTr(X)<n}t ( (w,z) >0: (i,5)€E i=1
D (igyes Wi = 1,
Ez 1% S T



APPROXIMATING SEMIDEFINITE PACKING PROGRAMS 245

where 7 = InaX{(In)lIl (G, X) : X = 0,Tr(X) < n} <4 has the same structure as
i
the Lagrangian relaxation of the packing problem.

4. Solving the saddle-point problem. The saddle-point problem (20) is a
game. An e-saddle-point for (20) is an e-equilibrium for this game. One could, in
principle, use fictitious play [4] or similar methods to compute such an e-equilibrium.
Since the general methods for computing e-equilibria in maximin games rely on sub-
gradient descent and the primal-dual objective functions are nonsmooth, these general
methods need O(e~?) iterations to converge [34].

4.1. Nesterov procedure for nonsmooth optimization. Nesterov proposed
an iterative procedure for computing an e-saddle-point for the special case where each
of the packing functions are linear (i.e., g;(X) = (A;,X) with A; = 0), i.e. saddle-
point problems of the form

(34) max %3{<C—;viAi,X>+;vi}.

We note that Nesterov [23] has adapted his method from [22] to solve functions of
form (34). We provide the relevant theorem from [22] for completeness.
THEOREM 6 (see [22]). The Nesterov iterative procedure computes an e-saddle-
point for (34) in O(e~! - Q\/D,D,/o.0,) iterations where
(i) % = max||y|, <1, ||X|| <3 [0, viAy, X)|? is the “size” of the constraint ma-
trices and ||-||, and |- || are appropriate norms on the primal and dual spaces,
respectively;

(ii) D, = maxxey d.(X) is the “diameter” of the set X with respect to a strongly
convez function d(X) that has a convezity parameter o, and is nonnegative on
the primal set X;

(ili) D, = maxyey d,(v) is the “diameter” of the set V with respect to a strongly
convez function d,(v) that has a convezity parameter o, and is nonnegative on
the primal set V; and

(iv) in each iteration the procedure needs to compute an exact solution to problems
of the form

and

(36) vev { ; Vivi + pody (v)}

for given I' € 8™ and v € R™. The parameters pu, and p, are functions of
Oy, 0z,82, Dy, and € as described in Figure 1.
We call a strongly convex function that is nonnegative on a given convex set S
a proz-function for the set. Prox-functions ensure that both the primal and the dual
optimization problems are smooth. In order for the Nesterov algorithm to be efficient,
one should choose the prox-functions d, and d,, so that the optimization problems (35)
and (36) can both be solved in closed form. It is this requirement that restricts one
to “simple” feasible sets X and V. Another requirement on the prox-functions is that
the associated “diameters” D, and D, are modest.



246 G. IYENGAR, D. J. PHILLIPS, AND C. STEIN

NESTEROV PROCEDURE

D.Dy _ e _ Q9 _ 9D, 1
Set N = Op0y Ha = 2D, Ho = WpOgOy  OpOy €

Fix (u(o), Oy e y.
Set X(O) = argmaxx ey { < > Zz 1 E] 1 ’LU <A'LJ7X> dz (X)}7
1D = (A, XY, G =1, ki = 1,...,m;
Set (VLO)7 yi)) = (v& ¥ = argming ey { 3L )T (V,¥) + 1udy (v,3) }s
fort=0to N
do

t t
Set (u(t+D), wt+D) = (%)(V(G)vy(G)) + (g_é)(v(L)’y(L));
X(t+1) = argmaxxc y { < > Zgl U)S——i_l) <A7,J7 X> - dew (X)}7
P = (A XY =1 ki =1y
(a (t+1) W(Hl)) is the minimum of
(s (L v ™) = ¥, (V) y9))) (v2y) +dy(v.)

over (v,y) € V;

(VD yny (H%)(ﬁ(t+l)"fv(t+l))+ ( £l )(V(Lt)’y(Lt))’

v <t+1>7 y¥™)Y is a solution to

t+1

mingy yyey { ( PR At 7)) ")+ oy (v, ¥)};

— N N N
return (X:tho %X(t)a( ( )ay(L )))

FIG. 1. Nesterov procedure. Here, (1, (1)) represents the gradient calculation, (V(Gt),yg)) and

(@, w®) are each calculated via (46), (47), and (48) for the proz-functions of the form described
in (45).

As is typical in the Nesterov procedure, the numerical value of the constants
te = O(e) and p, = (’)(M%) = O(e~!) are very different. The multiplier u, is the
Lipschitz constant of a smoothed approximator of the saddle-point function, whereas
Ly 1S a penalty parameter on the change between dual iterates. In order to find an
e-saddle-point, u, must be set to the order of e. This, in turn, requires the raising the
smoothing constant p, to (’)(ﬂ%) (see [22] for further details). In practice, reducing
Hy can improve the runtimes of the algorithm (see also [30]).

4.2. Extension of Nesterov procedure to packing constraints. We extend
Nesterov’s method to packing functions of the form described in (2). A large set of
useful packing functions belong to this class—all the packing constraints that arise in
the optimization problems described in section 2 are of this form. For this restricted
class of packing functions, the Lagrangian function ¢ is given by

(37) O(X,V,Z1,...,2Zm (C,X) —1—21}1 1—2,21] ii» X) |,

where fori = 1,...,m, we denote z; € P; = {z : A;z < b;} as the variables associated
with the ith packing function g;(X) = max{Z?i:l zij (Ayj, X) : Pyz; < b;} and v; as
the variables associated with the constraint g;(X) < 1. Since ¢ is quadratic in v and



APPROXIMATING SEMIDEFINITE PACKING PROGRAMS 247

z;, we linearize the objective by defining a new set of variables for all ¢ and j as
(38) Yij = ViZij.

In terms of these new variables, the Lagrangian function is given by

(39) (X, V,y1,- 5 ym) = (CX)+ > | oi =Y wiy (Aiy, X)
i=1 j=1

Note that this linearization step works only because v > 0 and the saddle-point
problem is minimizing over v. Now we are in position to apply the Nesterov procedure
to compute an e-saddle-point for the function ¢(X,v,y1,...,ym) over the sets X x Y,
where

=1

(40) y: {(Va}’h---a}’m):VZO,ZUi S 17P’Ly’L S’U'Lbhzzlvam}

In [22, 23] the primal feasible set is of the form & = {X : X » 0, Tr(X) < wy};
however, the dual set is of the form ¥ = {v:v > 0,) . v; < 1}. We show that the
Nesterov procedure can be extended to the larger set of dual spaces ) in the form
of (40). As we have indicated earlier, such a procedure is efficient only if one is able
to construct prox-functions for the sets X and ). For the primal space, X, we have

m m ki
max (X, v,y1,..., =w i + Wz Am: C— A ]
X€X¢( yi Ym) m;yz x A\max ;j:zlyzg ij
so the results of [23, section 4] can be used; i.e., we can use the spectral entropy
function

n
(41) d.(X) = Z Ai(X) In(A (X)) + sz In(sy) — wy In(wy/(n + 1)).

i=1
We note that the use of the spectral entropy function for smoothing is not new,
e.g., see Ben-Tal and Nemirovski [3]. For completeness, we show in Appendix A,
section A.2 that the “diameter” is Dy = wy In(n + 1). What remains is to determine
a prox-function for the dual set.

4.2.1. Prox-function for the dual set ). In every step of the Nesterov pro-
cedure we are required to solve a smoothed version of the following problem:

m ki
42 min v — o 7
( ) (Vi¥1500ym)EY Z: ? Z:yzf}/zj

i=1 j=1
where 75, ¢ = 1,...,m, j = 1,..., k;, are parameters that change in each iteration.

Here, we have y;; = v;2;; as described in (38).

Recall that in this section we assume that for all i, the packing function g;(X)
is of the form (2); i.e., for all j, we are given matrices A;; and P; so that g;(X) =
max{zj zj (Ai;, X) : P;z < b;}. Let d; denote any prox-function such that the vector
valued function

k
(43) f;(v) = argmin Z’yjzj + pydi(z) : Pz < b,

j=1



248 G. IYENGAR, D. J. PHILLIPS, AND C. STEIN
can be computed efficiently. Note that the optimization is over the z; variables and
not the y; variables. Let d, denote any prox-function that allows one to compute

k
(44) f,(v) = argmin Z ViV; + pydy (V) v EY

j=1

in closed form. We smooth (42) using the prox-function
(45) dy(V,¥1,- -, Ym) = Zvidi(Yi/Ui)+dv(v)
i=1

to obtain the smooth optimization problem
m

ki
(46) min Slvi =D wivi | ¢+ 1dy(Viyis. o ym)
=1

(Voyiym)€Y | =

The optimization problem (46) can be decomposed into the form

m ki

(47) min Z 1 — max Z 2% — tydi(2i) ¢ |+ pydu(v)
i= j=

Let v; = [Vit, - - - Yik, | ¥, for i = 1,...,m, and v = [v1, ..., vpm], where

vi=1-— ('lefi('yi) — puydi(£i(;))), i=1,...,m.

Then the optimal solution to (46) is given by

v* = fv(”)v
(48) yi = (=), i=1,...,m,

where the functions f;, ¢ = 1,...,m, are defined in (43) and f, is defined in (44).
All that remains to be shown is that the function d, that satisfies (45) is, in fact, a
prox-function for the dual set Y. We can now use the following result of [14].

THEOREM 7 (see [14]). For alli =1,...,m, suppose that d;(z;) is a proz-function

for the set P; = {z : P;z < b;}, and d,(v) is a proz-function for the set V. Then the
following statements are true.

(i) The function defined by dy(v,y1,...,ym) = Y iey vidi(yi/vi) + dy(V) is a proz-

function of the set Y. For all i =1,...,m, let D; be the “diameter” of the set

P; with respect to the proz-function d;(z;) and D, be the “diameter” of the set

V with respect to the prox-function d,. Then the “diameter” of the set ) with
respect to d, is given by

D, = _nax {D;} + D,.

(ii) Fori=1,...,m, let o; be the convexity parameters of the proz-function d;(z;)
with respect to the norm ||-||; and define M; = max{||z|| : z € P;}. Let o, be the
convexity parameter of the prox-function d,(v) with respect to the norm ||, .
Then the convexity parameter of the prox-function dy is

1
Z;il (14+M;) +%’

gi

O'y:



APPROXIMATING SEMIDEFINITE PACKING PROGRAMS 249

and the norm, ||-||,, in the Y-space is given by |(v,y1,....ym)l, = V[, +

(iii) The parameter Q for the saddle-point problem associated with (39) is given by

2

ki

0?2 = max E E A;;,X)zi;| = max QF,
Xyl <1 IIXIIIS1 i=1,..m

here Q2 = 2 1
e H;'I»ll\ <1||x|\ <1|ZJ 1 (Aij, X) 245|* for i M

The last result (iii) is not explicitly established in [14]; however, it follows from
the results in the paper in a straightforward manner. Thus, our problem reduces to
constructing prox-functions for each of the packing constraints and the set V. The
natural prox-function for the set V is

(49) dy(v) = Zvi In(v;) 4 sy In(sy) — wy In(w, /(m + 1)).

We show in Appendix A, section A.1 that this prox-function has a convexity parameter
oy = 1/w, with respect to the ¢;-norm and the “diameter” D, = w, In(m + 1), and
the dual solutions have form

w 6771/M'U

(50) v* = argmin {v"v + p,d, (v)} = o}

=1,...,m.
vey 1+Zk e i/ s m

Next we describe some prox-functions for the packing functions discussed in section 2.

1. g(X) = (A,X) for A = 0. This function is smooth, and we do not need a
prox-function.

2. 9(X) = > lwijl = max { (X,Z) : |Zy| < 1 Vi,j}. The simplest prox-

function is d(Z) = 5 3=} ;_, | Zij|*. For this prox-function the parameters are

D=n?/2, o=1, M=max{|Z||,:Z e P}=n,

and the optimal solution, Z* = argmax{(Z,X) — ud(Z) : |Z;;| < 1}, is given
by

Zj = sgn(X;;) min {|X;5|/p, 1}, i,j=1,....n

3. Recall the inifinity norm of a matrix-to-vector linear operator is a packing
function defined as

A17
9(X) =

= max Zzl (A, X) : ||z]|, < 1}.

=1

The simplest prox-function is d(z) = % ||z||>. For this prox-function the pa-
rameters are



250 G. IYENGAR, D. J. PHILLIPS, AND C. STEIN

and the optimal solution is
<A1 ) X>

k
1
z¥ = argmax{zzi (A, Xi) — pd(z) : ||z]|, < 1} = 1w+ B : ’
i=1 (Ag, X)

where 8 = max{||( (A1,X) ... (AyX) )THQ — u, 0}.

Theorem 7 allows one the flexibility of independently choosing approximate prox-
functions for each of the packing functions and the set V. However, this flexibility has
the tradeoff that the convexity parameter o, is typically very small. Consequently, the
number of iterations required to converge to an e-optimal solution increases, and the
numerical stability of the algorithm can be adversely affected. Therefore, for certain
applications it might be more efficient and numerically stable to directly define a
prox-function on the ) space.

4.3. Solution algorithm for packing SDPs. The algorithm for solving our
saddle-point problems (37) is described in Figure 1. After executing the Nesterov
procedure, we then apply Theorem 3, Lemma 4, and/or Theorem 5 as appropriate.
We have made a few modifications to the standard version of the Nesterov procedure.
We iterate in the dual space, i.e., in ), and then compute the approximate primal
solution X by aggregating over all gradients. We compute the iterate y*) using the
Bregman distance associated with the prox-function d,. For prox-functions of the form
(45), the dual update decomposes into separate updates of the v and z variables (see
(47) and (48) for details).

5. Complexity results for specific packing SDPs.

5.1. MAXCUT, graph coloring, and Lovasz-9 function. Recall that the
packing SDP formulation of the MAXCUT problem is given by

p* = max (Lp,X)

s.t. %<eie:,x>§1, i=1,...,n,

i

Tr(X) <1,
X = 0,

where Lp = D 2LD™ 2 denotes the normalized Laplacian. Note that diag(Lp) = I
holds. Then since D/ Tr(D) is feasible to the MAXCUT problem, it follows that p* > 1.
The trace constraint and Lemma 1.7 of [6] imply w, = 1 and w, = 2, respectively.
Letting C = D~/2LD~!/2, the Lagrangian relaxation of this packing SDP is

pappip {17V +(C-AMX) |

where A(v) denotes a diagonal matrix with “;p) v; along the main diagonal. We use

the prox-function d,(X) = > ; \(X) log(/\i()li)) and the norm

X, =D (X))
=1

for the X-space and the prox-function d,(v) = Y .| v;log(v;) and the norm ||v]||, =

S |vi] for the V-space. For these prox-functions, we have

D, =log(n+1), D, =2log(n+1),



APPROXIMATING SEMIDEFINITE PACKING PROGRAMS 251

and for these norms, we have

- ’I‘r(D

Z d. Xii)
i=1 v

The Nesterov procedure and rounding via Theorem 3 and Lemma 4 require
O(rlog(n) - e7!) iterations to compute an e-approximate solution in the absolute
sense. Since p* > 1, it follows that such a solution is also e-approximate in the rela-
tive sense. Each iteration of the Nesterov procedure requires us to solve one problem
of the form (36) and two optimization problems of the form (35). Thus, we have the
following result.

COROLLARY 8. The complexity of computing an e-optimal solution in the rel-
ative sense for the MAXCUT problem using the Nesterov procedure and rounding is
O(nr?log(n) - et 10g3(6_1)), where T denotes the total number of nonzero elements
in the Laplacian matriz L.

Recall that the Lagrangian relaxation of the packing SDP formulation for the
graph coloring problem is given by

Q2

X £ vl <MD < @)’ oa=1 ov=1/2

i 1, )X 1 I
[X=0TR(X)<n} (w.2)eW (; wGig) (Gig ;z

where 7 = Hlax{(rn)ln5 (Gij,X) : X = 0Tr(X) <n} <4and W= {(w,z) >0:
1,J)€

Digyee Wij = 1,370, z < 7). We use the prox-function

n

d:(X) = > Xi(X) log(Ai(X))

=1

and the norm [|X||, = >"I, [\i(X)] for the primal space and the prox-function

dy(w,v) = Z w;j log(wj) + Zvi log(v;)
(4,4)€E i=1

and the norm [|(w, V)|, = 3 j)ce [wij| + 2202, [vi| for the dual space. For these
prox-functions, the “diameters” are

D, =nlog(n+1), D, =1log(r)+log(n+1)<2log(n+1),

where in this case the sparsity equals the number of edges, i.e., r = m. For these
norms, the convexity parameters are given by o, = 1/n,0, = 1, and

2

n

0% = max  max E we ) (Gij, X E 2i(Xis)

Xl <1l[(w, )|, <1 < ’
(i,5)€E i=1

The Nesterov procedure and rounding via Theorem 3 and Lemma 4 require O(n log(n)-
e~ 1) iterations to compute an e-approximate solution in the absolute sense. Karger,
Motwani, and Sudan [16] establish that p* > 1/c¢*, where ¢* denotes the optimal
number of colors required to color the graph. Thus, an e-approximate solution in the
absolute sense is (c*¢)-approximate in the relative sense. Each iteration of the Nesterov



252 G. IYENGAR, D. J. PHILLIPS, AND C. STEIN

procedure requires us to solve one problem of the form (36) and two optimization
problems of the form (35). By Corollary 14 we have the following result.
COROLLARY 9. The complezity of computing an e-optimal solution for the graph
coloring SDP using the Nesterov procedure is (’)(n2rlog(n) et log?’(e’l)), where 1
denotes the total number of edges in the graph.
Recall that the packing SDP formulation for the Lovasz-9 function is given by

¥(G) = max (J,X)
st. (BEGD X)) <1, (i,5) €€,
(PO, > <1, (i.j) €&,

We use the prox-function d,(X) = Y1 Xi(X)log(\i(X) and the norm ||X||, =
Sor Ii(X)] for the primal space. For the dual space we use the prox-function
dy(Vv,W) = 320 iee wij log(wi;) + >2(; jyee vijlog(vi;), where w are the dual mul-
tipliers for the <E(i’3),X> < 1 constraints and v are the dual multipliers for the
F(9), X) < 1 constraints. We use the norm [|(w, V)|, = P jee lwigl + 20 il
for the dual space. For these prox-functions, the “diameters” are given by

D, =log(n+1), D,=nlog(2n+1)
where, as before, r = m. For these norms, the convexity parameters are given by
P=1, o,=1, o,=1/n.

The Nesterov procedure requires O(nlog(n) - €1) iterations to approximate 9(G) to
within € in the absolute sense. Since 11 is feasible to (10), it follows that ¥(G) > 1, so
an absolute e-approximation is also e-approximate in the relative sense. Each iteration
of the Nesterov procedure requires us to solve one problem of the form (36) and
two optimization problems of the form (35). An analogous argument also works for
Szegedy’s number, 9. Moreover, Theorem 5 can be used to round the SDP solution
to feasibility, as Z( 1J) is a strict feasible solution to (13). Thus, we have the
following result.

COROLLARY 10. The complezity of approximating the Lovdsz-¢ function and
Szegedy’s number of a graph to within e (absolutely or relatively) using the Nesterov
procedure is O(n’rlog(n) - e~ * 10g3(6_1)), where r denotes the total number of edges
in the graph.

We compare the best known algorithms for coloring, MAXcuUT, the Lovasz-¢ func-
tion and Szegedy’s number in Table 1. For moderate ¢ ~ 1072 and dense graphs
r = Q(n(1*9), the packing SDP-based methods are superior to other methods avail-
able in the literature. Another significant feature of our method is that we treat a
large class of SDPs in a unified manner.

5.2. Sparse PCA. In this application the packing function is given by

1 1
==Y |Xj| = _max {<—Y,X>}.
K {v:|y|,;<1} [ \k



APPROXIMATING SEMIDEFINITE PACKING PROGRAMS 253

TABLE 1
Running time of SDP solvers. n = number of nodes/dimension, r = number of edges/cost
matriz sparsity. Except for the case of MAXCUT, the interior point runtimes are from [21]. All poly-
logarithmic factors in mn, v, and e~1 have been suppressed.

Algorithm Packing SDP Interior point Previous work
MAXcuT (5(1”«2 .671) O(n39) [2] (~9(m“ ;5—2) [17]
O(r-€e75) [1, 29]
Coloring @(n% . 6—1> On5m® +13) | Onr-e4) [17]
Lovész ¢, 9+ @(n%« . 6*1)) O(n5(n3 + 13)) A(nd - e2) [3]
Sparse PCA @<n4 e—1> @(n6‘5) @<n4 ] 5_1> 7]

Therefore, (39), (40), and (47) imply that the Lagrangian relaxation of the sparse
PCA packing SDP (16) is given by

(51) max min {<C - lY,X> + v} ;

XeX (v, Y)ey K
where the dual set is of the form Y = {(v,Y) : 0 < v < 1,]Y;;| < v} and the primal
set is of the form X = {X : X = 0, Tr(X) = 1}. In the sparse PCA formulation one
typically assumes that C has been scaled to ensure that Tr(C) = 1; therefore, we
have that w,; = max{(C,X) : X »= 0, Tr(X) = 1} = 1. For the primal set X, we use
the entropy prox-function

n

4:(X) = Y N(X)log(Ni(X), X[, = 3 (X1,

i=1

which has a “diameter” D, = log(n + 1) and convexity parameter o, = 1. For the set
Y, we use the quadratic prox-function

1 1
dy(0.Y) = 20"+ 23 [Vl @Y, = (P + 3 Il
ij ij

Since the prox-function dy(v,Y) is not of the form vdi(Y/v) + dy(v), we cannot
use Theorem 7 to compute the “diameter” D,, the convexity parameter o, and the
parameter €). In Lemma 15 in Appendix C, section C.1 we directly compute that these
parameters are D, = n?, oy=1,and Q = 1.

We show in Appendix C, section C.1 that the optimization problem

(vg}i)réy{(X, Y) + v+ pydy(v,Y)}

can be solved with an active set method in O(n?log(n)) time. Therefore, the complex-
ity per iteration is dominated by the cost of computing the exponential of a matrix
that is generally dense, so the full eigenvalue-eigenvector decomposition is, theoreti-
cally, best. Since I is a strictly feasible solution, we can use Theorem 5 to round.

COROLLARY 11. The complexity of computing an e-optimal solution for the sparse
PCA problem using the Nesterov procedure with rounding is (’)(n‘ﬂ/log(n) . 6_1).

Our runtime matches the best known previous result of [7]. However, the proce-
dure in [7] does not yield a feasible solution for the relaxation — one needs to conduct
a one-dimensional search over v to obtain a feasible solution.



254 G. IYENGAR, D. J. PHILLIPS, AND C. STEIN

6. Numerical experiments. We tested our general algorithm for solving pack-
ing SDPs on the sparse PCA problem (16). We describe our implementation in detail
in section 6.1. We tested the runtime performance of our implementation on random
instances generated in a manner similar to that described in [35] (see also [7]). We
describe data generation in section 6.2 and report the results of our numerical exper-
iments in section 6.3. The code for both the solution algorithm and data generation
was written completely in MATLAB [20]. Each experiment was run in MATLAB re-
lease R2009a on an Opteron 2.6 GHz dual-core two processor machine with 20 GB of
RAM and the default multithreading capabilities of MATLAB enabled. Since we use
the multithreading capability of MATLAB, we report the actual time (using MATLAB
functions tic and toc). For the per iteration cost, we report the more conservative
CPU time, which includes the overhead incurred by the multithreading.

6.1. Implementation details.

Initial dual iterate. Our solution algorithm for packing SDP needs an initial fea-
sible dual solution. In our numerical experiments, we used the initial solution v = 0.8
and Y = 0.2sgn(C), where sgn(C) is a matrix with sgn(C;;) as the (4, j)th entry.

Primal iterate, dual gradients, and the matriz exponential. The dual gradient is
given by the optimal solution of the smoothed primal optimization problem

max{ <c - lY(’“),X> + dem(X)},
K

XeXx

where the prox-function d,(X) = Y1 | Ai(X) log(Xi(X) and {\;} denotes the set of
eigenvalues of X. The optimal solution is

e (CYT) vty vy

RN E=CD) I T W)

where 0 = diag(w) and w; is the ith eigenvalue of the matrix p;1(C — 2Y®)) and
v is an arbitrary user-defined parameter. Shifting eigenvalues by v was suggested in
section 5.2 in [22].

We computed X* using three different methods: the standard matrix exponential
calculator expm in MATLAB, a full eigenvalue-vector decomposition, and a partial
eigenvalue-vector decomposition (using Lanczos iterations). The latter two methods
allow for a finer control over the precision of the exponential computation. We found
that the full eigenvalue-vector decomposition performed best with v = max; w;. We
also found that p, < 0.02 exceeded the precision capabilities for all methods; therefore,
we use pi, € {.03,.04} depending on the problem class. The quadratic prox-function
used in the dual space was stable with respect to the p, parameter. An interesting
open direction would be to use a quadratic prox-function for the primal optimization
step.

Scaling covariance matriz C. Typically in sparse PCA applications one assumes
that the matrix C is scaled so that Tr(C) = 1. We found that this scaling did not
perform well in our numerical experiments. The main reason was the numerical dif-
ficulties in computing the exponential of a dense matrix. Since the primal parameter
was set so that u, > 0.03, the primal iterate X(*)| i.e., the smoothed optimal so-
lution, is not very close to the true (nonsmooth) optimal solution. We found that
this inaccuracy did not hamper the progress of the algorithm when the dual iterate
was set so that (v®), Y(¥)) £ (0,0). However, when the dual iterates were small, i.e.,



APPROXIMATING SEMIDEFINITE PACKING PROGRAMS 255
(v®), Y *)) ~ (0,0), we need to ensure that the primal iterate

Xc = argmax{ (C,X) — uwdm(X)}
Xex
is close to the true (nonsmooth) optimal solution in order to correctly compute the
dual iterates. If not, it is possible that the smoothed solution is primal feasible whereas
the true solution is, in fact, infeasible. In such a case, the successive dual iterates
remain close to zero, and the algorithm progresses slowly. We can avoid this problem
by either decreasing p, or scaling up the matrix C. In either case, we increase the
computational cost since the effective Lipschitz constant increases. We chose to scale
up C because such a scaling significantly affects only the computational cost iterate
when (v(®), Y(¥)) =~ (0,0). We scale C by v/ Tr(C), where v is chosen so that g(X¢) €
[1+ 4,14 ] for some positive § < . In our numerical experiments we set § = .3 and
~ = .4. Since each iteration of the search for the correct scaling is equivalent (modulo
a constant) to one step of the algorithm, we include these search iterations in our
runtimes and iteration counts (which added 4-9 iterations to our iteration counts).
Termination conditions. We used several termination conditions concurrently.
(a) At any iteration the duality gap is

1= g, {(CX0) -5 (s X + 30

17 7

g {(0- 2 %) + o}
ij
= <cLX“§ mm<()1—§:LX”

—(v(t) max{0, Amax(C — (1/k)Y® )}).

We terminate whenever the duality gap satisfies n®) < e. We “round” the out-
put X from the Nesterov procedure into a feasible solution X using Lemma 16
in Appendix C, section C.2.

(b) Let X*) denote the primal iterate computed in iteration k. Let

t
<) 2k+1) w
X' = —X
kZ:O SIS

denote the primal saddle-point solution returned by the Nesterov proce-

dure if it were to be terminated at iteration t. Suppose X(t) is d-feasible,

(X(t)) < 1+ 6, and the cumulative infeasibility satisfied o(®) =

Zk —0 t+1]€)-(";522) ( (k) — % <Y(k),X(k)>) < 4. Then Lemma 17 in Appendix C,

section C.2 shows how to construct a feasible solution X such that (C,X) >
(1-— —)((C X*) — § —9). Thus, we are guaranteed that X is e-optimal if
we set § = €(k — 1)/2((v 4+ 1)k — 1), where v denotes the factor by which we
scale C.

6.2. Problem data. We focused our experiments on random SDP instances
where the number of components and their sparsity were known. The following in-
stance generator was introduced in [35] (see also [7]).



256 G. IYENGAR, D. J. PHILLIPS, AND C. STEIN

(i) Descriptive variables. The family is generated from the random variables
Y1 ~ N(0,0%), Ys ~ N(0,03), D =w Yy +wYo+6, &~ N(0,03),

where Y7,Y5 and 0 are independent random variables and A (1, 0%) denotes a
normal distribution with mean u and variance ¢2; and
(ii) Observations. The family has the following “observed variables”:

where each n; ~ N(0,1). Thus, there are 4 observations for each Y;, i = 1,2,
and 2 observations for the mixed variable D.
We modified this methodology to construct two instance families of covariance matri-
ces varying in size from 120 x 120 to 6002 x 6002.
1. Scaled family. In this instance family the descriptive variables are as follows:

Y1, Ys ~ independently N'(0,07), D = 0.8Y; — 0.35Y5,

where 02 = 200 and 03 = 250. Each instance of size s was generated by scaling
the number of observations by a positive scalar s as follows:

Y + i, 1 <4< 4s,
Yo + i, 4s+1 <14 <8s,
D+mi, 8s+1<i<10s,
Nis 10s+1 <7< 12s.

X, =

For this family, the dimension of the covariance matrix is n = 12s, and the
sparsity variable is k = 4s. The theoretical optimal sparse principal component
has loadings on the variables in the set {X; : 4s+1 <14 < 8s}, i.e., the variables
associated with Y3. We choose ten instances each for s € {10,20,...,200} U
{300,400, 500}.

2. Fized family. In this instance family, we fix the number of observations asso-
ciated with each descriptive variable Y; at 4 and those associated with D at
2, and we scale the number of descriptive variables up by a positive factor c.
The variance of the normal random variables was scaled to ensure a dominant
component. In particular, we set

‘1
Y, ~N(0,48%),i=1,....c, D=) —Y
i:l\/E

and generated the observations as follows:

Y, Yi+m, 4t—-1)<i<4tt=1,...,¢c
Tl D+, =4+ 1,484 2.

For this family, the size of the covariance matrix is n = 4c+ 2, and the sparsity
variable is set to k = 4. The theoretical optimal sparse principal component has
loadings on the variables in the set {X; : 4¢ — 3 < i < 4c}, i.e., the variables
associated with Y.. We chose ten instances each for ¢ € {30,60,...,600} U
{900, 1200, 1500}.

We summarize the data generated in Table 2.



APPROXIMATING SEMIDEFINITE PACKING PROGRAMS

TABLE 2
Description of the artificial data.

n K Ind. vars. [obs.] Dep. vars. [obs.]
Scaled | Fixed Scaled | Fixed Scaled Fixed Scaled Fixed
120 122 40 4 2 [40] 30 [4] 1 [20] 1[2]
240 242 80 4 2 [80] 60 [4] 1 [40] 1[2]
360 362 120 4 2 [120] 90 [4] 1 [60] 1[2]
480 482 160 4 2 [160] 120 [4] 1 [80] 1[2]
600 602 200 4 2 [200] 150 [4] 1 [100] 1[2]
720 722 240 4 2 [240] 180 [4] 1 [120] 1[2]
840 842 280 4 2 [280] 210 [4] 1 [140] 1[2]
960 962 320 4 2 [320] 240 [4] 1 [160] 1[2]
1080 1082 360 4 2 [360] 270 [4] 1 [180] 1[2]
1200 1202 400 4 2 [400] 300 [4] 1 [200] 1[2]
1320 1322 440 4 2 [440] 330 [4] 1 [220] 1[2]
1440 1442 480 4 2 [480] 360 [4] 1 [240] 1[2]
1560 1562 520 4 2 [520] 390 [4] 1 [260] 1[2]
1680 1682 560 4 2 [560] 420 [4] 1 [280] 1[2]
1800 1802 600 4 2 [600] 450 [4] 1 [300] 1[2]
1920 1922 640 4 2 [640] 480 [4] 1 [320] 1[2]
2040 2042 680 4 2 [680] 510 [4] 1 [340] 1[2]
2160 2162 720 4 2 [720] 540 [4] 1 [360] 1[2]
2280 2282 760 4 2 [760] 570 [4] 1 [380] 1[2]
2400 2402 800 4 2 [800] 600 [4] 1 [400] 1[2]
3600 3602 1200 4 2 [1200] 900 [4] 1 [600] 1[2]
4800 4802 1600 4 2 [1600] | 1200 [4] 1 [800] 1[2]
6000 6002 2000 4 2 [2000] | 1500 [4] 1 [1000] 1[2]
TABLE 3

257

CPU seconds per iteration for the scaled and fized families of sparse PCA SDP relaxations.
Mean and standard deviation are shown.

n Mean Stand. dev.

Scaled | Fixed Scaled Fixed Scaled Fixed
120 122 0.10 0.07 0.02 0.05
240 242 0.43 0.45 0.01 0.33
360 362 0.97 1.03 0.05 0.72
480 482 1.56 1.68 0.06 1.04
600 602 2.46 2.49 0.06 1.32
720 722 3.66 3.89 0.11 1.92
840 842 5.38 5.52 0.28 2.51
960 962 7.16 8.01 0.37 3.59
1080 1082 9.89 10.49 0.66 4.61
1200 1202 12.35 14.54 0.62 6.13
1320 1322 15.73 18.24 0.67 7.64
1440 1442 19.02 22.93 0.62 9.41
1560 1562 23.03 28.90 0.53 11.68
1680 1682 27.72 35.39 1.69 14.22
1800 1802 32.68 41.63 0.64 16.54
1920 1922 39.08 50.04 1.30 19.56
2040 2042 45.11 55.74 0.68 21.78
2160 2162 52.54 67.57 1.73 25.83
2280 2282 61.43 78.20 2.98 29.85
2400 2402 69.04 88.90 1.58 33.25
3600 3602 202.10 268.69 7.64 90.80
4800 4802 495.11 635.32 32.32 | 189.18
6000 6002 923.58 | 1269.51 52.17 | 335.83

6.3. Results. We report the average runtimes in Table 3 and the average it-
eration count in Table 4 in order to find relative e-optimal solutions with ¢ = .001.



258

G. IYENGAR, D. J. PHILLIPS, AND C. STEIN

TABLE 4

Iteration counts for the packing SDP algorithm on the scaled and fized families of the sparse
PCA SDP relazations.

n Mean Stand. dev. Maximum

Scaled | Fixed Scaled | Fixed Scaled | Fixed Scaled | Fixed
120 122 46.7 73.7 26.1 18.9 104 121
240 242 29.0 37.1 11.1 9.1 47 48
360 362 45.7 41.9 23.5 10.8 75 53
480 482 42.5 55.9 22.8 7.6 83 74
600 602 33.9 67.0 16.3 12.2 62 86
720 722 51.7 66.6 20.0 15.7 93 86
840 842 38.6 81.8 17.5 8.2 75 94
960 962 56.8 43.1 22.1 1.2 90 46
1080 1082 42.0 73.7 15.1 56.7 75 187
1200 1202 35.1 47.1 10.7 0.9 63 49
1320 1322 36.0 64.5 18.3 45.5 74 201
1440 1442 42.2 52.0 14.4 1.5 65 55
1560 1562 36.3 52.8 14.2 2.0 64 56
1680 1682 41.5 54.4 15.1 1.3 61 57
1800 1802 43.7 74.2 24.0 52.0 89 230
1920 1922 56.0 57.4 23.3 0.9 100 59
2040 2042 42.0 133.3 15.5 89.0 66 243
2160 2162 53.7 58.8 24.4 1.4 98 62
2280 2282 43.8 101.7 22.9 75.7 85 254
2400 2402 38.4 102.2 20.4 76.9 80 256
3600 3602 50.1 72.4 22.3 1.2 92 75
4800 4802 39.5 76.1 20.4 19.1 88 117
6000 6002 50.5 74.0 17.1 5.0 81 86

In Table 3 (resp., Table 4) the column labeled “mean” reports the CPU seconds (resp.,
number of iterations) averaged over 10 instances for each problem size, the column
labeled “stand. dev.” reports the standard deviation of the runtimes (resp., iteration
counts), and the column labeled “max” reports the maximum CPU time (resp., itera-
tions) over the 10 instances. In Figure 2 we display a plot of the runtimes as a function
of the problem size n. These numerical results support the following observations.

(a)

The average number of iterations required to solve instances from the scaled
family was relatively small, ranging from 29 to 56. Also, the standard devia-
tion remained fairly consistent, ranging from 11 to 25. The average number
of iterations required to solve the fixed family was larger and varied more,
ranging between 37 and 134 iterations. The standard deviation varied more
as well, ranging from 48 and 256.

The best fit line for the average runtime in real seconds is as follows:

Scaled family : log(R) = —5.61 + 2.61 log(n),
Fixed family : log(R) = —6.16 + 2.88 log(n).

Thus, the running time grows as some function which is O(n?), outperforming
the theoretical bound by Q(n).

From the results reported in Table 3, it is easy to check that the average run-
time per iteration grew at the same rate as the overall runtime. The scaled
family had a slightly smaller runtime per iteration growth than the fixed fam-
ily, which implies that the main bottleneck is the O(n?) operations required to
compute the matrix exponential. The runtime per iteration (and also the over-
all runtime) should decrease significantly if the shift-invert Lanczos method



APPROXIMATING SEMIDEFINITE PACKING PROGRAMS 259

6 T T
5L ——mean P
- - -conf. int. o
4l //—//“,«»/’ o
& 3 T
S
on 21— -
2
1 -
0, - —
- | | | | | | | |
2 2.2 24 2.6 2.8 3 3.2 3.4 3.6 3.8
Scaled log,( (n)
5
4
~ 3+
=
S 2+
g
= 4L
0,
- | | | | | | | |
2 22 24 2.6 2.8 3 3.2 3.4 3.6 3.8

Fixed log, (n)

Fi1G. 2. The median runtimes (R) for the packing SDP on the scaled and fized families. The
dotted lines around the medians represent 97.5% confidence intervals. Runtime reported is in real
seconds.

is used to compute the matrix exponential. Another possibility is to use a
quadratic prox-function for the primal smoothing.

(¢) The instances from the fixed family were more difficult when compared to
the instances from the scaled family, both in terms of runtime per iteration
and iteration growth. The principal difference between the two families was
that the cardinality constraint x remained fixed at four for the fixed family,
whereas in the scaled family, x grew linearly with the scaling factor s.

We compared the performance of our algorithm against the self-dual-minimization
code of [27], also called SeDuMi. In general, our algorithm was orders of magnitude
faster than SeDuMi [27]. However, with default settings SeDuMi was not able to solve
the instances we studied—SeDuMi crashed on instances with covariance matrices
larger than 50 x 50. Consequently, we do not have SeDuMi runtimes to report. Our
runtimes are also significantly superior to the runtimes reported in [7].

Appendix A. Details of our prox-functions.

A.1. The dual prox-function. In order to keep the notation simple, we relabel

the slack variable s, in (49) as vp,41.

LEMMA 12. Let d,(v) = Zf:{l v In(v;) — wy In(w, /(M + 1), where v ey ={v:

v>0, "y =w,)

i
1. d, is strongly convex with convexity parameter o, = w—lv on the interior of V.
2. Let

(52) v* = argmin{y v + p,d, (v)}.
vey



260 G. IYENGAR, D. J. PHILLIPS, AND C. STEIN

Then

—%i/ ko
v; :L:”f—ii—’ i=1,....,m+1.
i e~ i/ ko
3. dy(:) >0 0nV, and D, = w,log(m +1).
Proof. The Hessian

V2d,(v) = diag([1/v1, ..., 1/vmi1])

is positive definite on any v € YV U RTil. Fix such a v. Then for any w € R™*1,

m—+1 ’UJ2
w! V2d,(v)w = —,
- Vi
m U}2> < 1 m-+1 )
= Z — - Z Vi |,
<i—0 i “Wo 39
(& fwl )
w;
53 > — pp— ) )
) -1 (z ﬁw—)
1 2
54 ———
654) L,

where (53) follows from the Cauchy—Schwartz inequality applied to the vectors s =
[W1/\/01, .-, Wint1//Omt1] - and s = [\/01, ..., \/Omt1] -

Since the objective function of the optimization problem (52) is strongly convex
and the Slater condition holds, it follows that the optimum solution is the unique
Karush—Kuhn—Tucker point for the problem. The Lagrangian function for the opti-
mization problem (52) is given by

m—+1
L(v,B) = 'YTV + pody (V) + 8 <w” - Z Ui) + PTVa
=1

where 8 and p are the penalty multipliers. Setting the gradient of the Lagrangiain
function to zero, we get

Yi + po(1 +1n(vf)) — B
0=V,L(v,p,B) =
Y1 + o (1 4+ (v, 1)) — B

or equivalently v = e~ (vilw)eBtpi i =1 ... m+1. Since vy > 0 for all choices of
B and p, the complementary slackness condition p;v; = 0 implies that p; = 0. Thus,
vf = e Vi/teel i =1,... m+ 1. Since Z:’:{l v = wy, it follows that

e = i

T e
and the optimal v} = w,e™/H / Zzzrll e R/ =1, ... m+1.

By setting v = 0, we see that V = argmin, ¢ dy(v) = 251, and d,(v) = 0.
Thus, it follows that d,(v) > d(¥v) =0 on V.

Since d,(v) is a convex function and V is a simplex, it follows that the optimal
value of maxy ey d,(v) is achieved at an extreme point of V. The extreme points of V
are given by w,e;, i = 1,...,m+1, and at any of these points d, (w,€;) = w, In(m+1).
Thus, D, = w, In(m + 1). O




APPROXIMATING SEMIDEFINITE PACKING PROGRAMS 261

A.2. The primal prox-function. The primal prox-function in (41) (which is
also used in [23]) is

n

d(X) = Z Ai(X) In(A(X)) + sz In(sz) — wy In(wy /(0 + 1))
i=1

for X e ¥ ={X > 0: Tr(X) < wy}, and s, = w, — Tr(X). In order to keep the
notation simple, we will work with the matrix
o X o
x[xo)
In terms of the new variables the prox-function d,(X) = 275" Ai(X) In(A (X)) —
wz log(wy/(n+1)). The prox-function d is simply the dual prox-function d,, evaluated
on the eigenvalues of X.
LEMMA 13. Let dy(X) = Z?:ll Ai(X) In(A(X)) — wg In(wy/(n 4+ 1)), where X €
X={X>0:Tr(X)=w,).
1. d, is strongly conver with convezity parameter o, = w—ll with respect to the
norm || X[l = Yi; [X(X)] on the interior of X.
2. Let

(55) X* = argmax{(I', X) — p,d;(X)} = — 7
Xex 'I‘r(eﬁ )
3. Then dy(-) >0 on X and Dy = wylog(n+1).

Proof. From results in [3] it follows that d,(X) is strongly convex with respect to
the ¢1-norm, [|X]|; = S0 [N(X)].

Let A € R guch that Ay > Ay > -+ > An+1 > 0 and Z"H A; = 1 denote the
ordered eigenvalues of a matrix X € X. Note that the value of the function d,(X) is
completely determined by the eigenvalues of X. Thus, the eigenvectors of the optimal
X are completely determined by the matrix I'.

Let T' = U diag(y)U denote the eigendecomposition of the matrix T, where we
let v1 > v > -+ > yp41. Then

n+1 n+1
= Z’YiuiTXUi < Z%’/\i,
i=1 i=1
where equality holds only if u;, ¢ = 1,...  k, are the eigenvectors corresponding to the

k largest eigenvalues of X. It follows that for a fixed A the optimal set of eigenvectors
for the matrix X is given by the eigenevectors of T'.

Now our problem reduces to computing the optimal set of eigenvalues A. From
Lemma 12 it follows that the optimal A* is given by

)\ e'Yt/l"a: 1
Y= i=1,... .
! Z”“ e/t v=hent

Thus,

X* UT diag([e’h/um, ey e”"*l/”f])U el/NzF
= Tr (UT dia,g([e')’l/ﬂfur7 ey eVn+1/Mz])U) - Tr (el/ur) .




262 G. IYENGAR, D. J. PHILLIPS, AND C. STEIN

Setting I = 0, it follows that argming ¢y d»(X) = ;%5 1. Consequently, for all X € X
we have that d,(X) > dy(w,/(n+ 1)I) = 0.

Since d(X) is a convex function on the eigenvalues of X € X which lie in a
simplex, it follows that the optimal value of maxxex d,(X) is achieved at an extreme
point of X'. The extreme points of X are given by w,uu', where u € R"*! with ||u|| =
1 and at any of these point d,(w,uul) = w, In(n+1). Thus, D, = w, In(n+1). 0

Appendix B. Matrix exponential via Lanczos iterations. The most expen-
sive step in using the Nesterov procedure to solve the Lagrangian relaxation of the
packing SDP is computing the optimal

1

—T
Wy €He

XeXx

3

where e* T denotes the matrix exponential for a matrix I' € S™ scaled by a positive
constant y, € Ry, . Let T' = Vdiag(v)V ", where v denotes the vector of eigenvalues
of I and V denotes the matrix with rows equal to the corresponding eigenvectors of
T. Then

 Vdiag(ex ) VT
1+>0, eH

where diag(ei’y) denotes a diagonal matrix with the ith entry equal to e’ . Thus,
we can compute X* by first computing the eigendecomposition of I'. However, the
complexity of this procedure is O(n?).

Matrix exponentials appear in solving discrete approximations of elliptic partial
differential equations. Therefore, there has been a lot of interest in the applied nu-
merical mathematics community to efficiently compute approximations to a matrix
exponential. Currently, the best known techniques for efficiently computing the matrix
exponential rely on using the Lanczos method to computing the basis of the Krylov
subspaces associated with the matrix I' [10, 13] or (I + 6T')~! [31] for an appropri-
ately chosen 6. Theorem 3.3 of [31] indicates that O(log?-¢~!) Lanzos iterations are
required to approximate the matrix-vector product exp(I')v for any v € R™. Setting
v =e;,i=1,...,n, results in an overall complexity of O(nrlog® e~1), where 7 denotes
the number of nonzero elements in I'. Thus, we have the following corollary.

COROLLARY 14. The complezity of computing exp(T'/u) via the SHIFT-INVERT-
LANCZO0S procedure proposed in [31] is O (nr) logg(efl)), where r denotes the number
of nonzero terms in the matriz T'. Also, computing exp(T'/u)v for any v € R™ requires
O(rlog?(e™t)) time.

In practice, Corollary 14 is of limited value for calculating the full matrix exponen-
tial. However, as noted in [8], a partial matrix exponential can be used to approximate
the gradient successfully.

Appendix C. The sparse PCA packing SDP.

X*

3

C.1. Sparse PCA dual prox-function.
LEMMA 15. Let

1 1
dy(v,Y) = S| + 5 ) 1Vis?
2 2
o

and Y ={(v,Y):0 <v <1,|Y;| <v}.



APPROXIMATING SEMIDEFINITE PACKING PROGRAMS 263

1. dy is strongly conver with oy = 1.
2. Fiz X €S, LR, and py > 0. Let

(v, Y") = arg( n\l{1)n {X,Y) + v+ pydy(v,Y)}.
v ey

Let {Bt:t=1,...,7} denote the distinct values in the set {u |le|
py | Xl < 1} sorted in increasing order. Set fo = 0. For k = 0,. - 1,
define

L 1y 2o x5, 80 K]

ap = .
py (1+ {85+ |Xi5] > Brl)
Then
Y* = _Sgn(X ) mln{ ‘XIJ| }
ij ) )
(57) 21X

ij
V= L by + 0y maxf{0, | X — py} <0,

ij
ar  for some k € {0,...,7 —1}.

3. (v*,Y*) can be computed in O(n?In(n)) operations.
Proof. The strong convexity of d, with o, = 1 follows immediately from the fact
that V2d,(v,Y) = IL,2. .
From the definition of d,, it follows that

X, Y) +¢ Y
(vrgl{l)réyﬂ ) + v+ pydy(v,Y)}

(58) =minq v+ > XV + 22 [P+ V2| 0<v <l —v< Y, <o
i,J ]

Since d,, is strongly convex, it follows that (58) has a unique solution. The Lagrangian
function of the quadratic program (58) is given by

L(v,Y,p,q,r,s) :év—l—ZXinij +& UQ—I—ZY;? +plv—1)—qu
1,5 i,J

+ Z(ﬁ'j (Yij —v) — 545 (Yij +0)),

where p, q,7i;,5;; > 0. Then (v* Y*) is optimal for (58) if and only if (v*,Y™) is
feasible and there exist multipliers p*, ¢*, r* > 0 such that

ijs zg =
Vy, L, Y) e yey = Xij + Y75 1% — s 0,
(59) VUL(U7Y) |(v*,Y*) = [+ /J,y’l}* +p - q - Z(TU + Szg) = 0,
4,J

and the complementary slackness conditions

P v%) = g = (07 = ) = 8 (V4 v7) = 0

)



264 G. IYENGAR, D. J. PHILLIPS, AND C. STEIN

hold. From the gradient condition for ¥;* in (59) and the complementary slackness

conditions for r}; and sj; it follows that

Yl; — —sgn(Xl-j) . min{—'ij',v*},
(60) ri; = (Xij — pyv*)*,
si; = (—py0” — Xij) ™.

Thus, we have

Tyt s = max{0, [X;| — pyv*}

5 — si; = sen(Xi;) max{0, | Xy;| — pyv*}.

(61) and 77

Using the gradient condition for v* in (59), we have that

F0*) 2 0+ pyv” — D = st = L4 vt =Y max{0, | Xy — pyv*} = q" - p".
ij ij
Note that f(v*) is the gradient of the objective with respect to v*. We now compute
the optimal v* using case analysis.

(i) f(0) =£=3_;;|Xi;] = 0.Set v* = 0,p* =0,and ¢* = f(0) > 0. Then (v*,p*, ¢")
satisfy the gradient condition and the complementary slackness conditions.

(i) f(1) = £+ py — 32, max{0, | Xy;| — py} < 0. Set v* =1, p* = —f(1) > 0, and
g* = 0. Then (v*,p*, q*) satisfy the gradient condition and the complementary
slackness conditions.

(iii) f(1) > 0> f(0). Since f(v*) is a continuous function of v*, it follows that there

exists v* € (0,1) with f(v*) = 0. Since f(v*) is piecewise linear, we can compute
v* by sorting { |Xi;|: 1<, <n}.
Let {8; : t = 1,...,7} denote the distinct values in the set {u;l | X5 1 0 <
py ' |Xij] < 1} sorted in increasing order. Let Sy = 0. Since f(a) = £ + pya —
(i1 X 1>y b3 Py ([ Xij| — @), for o € (Br, Br4a], k= 0,...,7 — 1, there exists
v* € (Bk, Br+1] with f(v*) = 0 if and only if

. A =L+ piy Z{ij:|xij|>yyﬁk} | X5
vt =y = —
py (14 1427+ | X5 > Br}|)

The computational cost of computing v* is dominated by the cost of sorting
{py ' 1Xi;|} and can, therefore, be computed in O(n?In(n)) time. 0

C.2. Rounding sparse PCA solutions. Recall that we assume x > 1 since
the sparse PCA problem reduces to argmax{Cy; : 1 <i < n} when k = 1.

LEMMA 16. Suppose k > 1. Let X denote an e-saddle-point for the sparse PCA
saddle-point problem (51). Let W = diag(X) and Z = X — W. Set

o [ W, (C,Z) <0,
(62) X = { W +14Z, otherwise,

where v = min {1, %(Z)W)}' Then X is a feasible, (:—El ) -optimal solution to the sparse
PCA packing SDP (16).
Proof. The packing constraint in the sparse PCA problem is given by

9(X) = %Z | X5

(]



APPROXIMATING SEMIDEFINITE PACKING PROGRAMS 265

Let A = D + E, where D and E are disjoint components of A, i.e., D;;E;; = 0 for
all 1 <i,5 < n. For example, D = diag(A) and E = A — D are disjoint components
of A. Then

(63) 9(A) = g(D) + g(E).

Since Tr(X) = 1 and W = diag(X) = 0, it follows that g(W) = L Tr(W) = 1 < 1;
i.e., W is strictly feasible for the sparse PCA packing SDP (16).
We now show the theorem by case analysis depending on the value of Z at the
objective.
(a) <C,z> < 0. Then <C,W> = <C,X> — <C,z> > <C,X>. Since W is feasible
for (16), it follows that W is an e-optimal solution for the sparse PCA packing
SDP (16).
(b) (C,Z) > 0. Note that

v =max{a:g(W +aZ)<1,a<1}.

Consider the following two cases:
(i) ¥ = 1. In this case g(X) < 1. Thus, X is feasible for the sparse PCA SDP.
The e-optimality follows as in the proof of Theorem 3.
(ii) v < 1. Then (63) implies

X=W+1Z=W+yX-W)=(1-~)W +7X = 0.
Thus, X is feasible for (16).
Let d = 9(X). Slnce v < 1, it follows that X is mfeamble ie,d=gX)>1.
Since g(W) = 4 and g(Z) 9(X) —g(W)=d—1,it follows that

T :3111 - 1+@ Zl_nil(g_l)'
Thus,
=(C. W) +7(C.Z)
> (CW) + ( i (@-1)(c.Z)
(64) > (C.X) - ~1)(C.Z)
(65) > (C,X) - -1)(C,X)

where (64) follows from same argument as in Theorem 3 and (65) fol-
lows from that fact that (C,W) + (C,Z) = (C,X) and C,W = 0 (so
(C,W) > 0). Then (28), (29), and (30) from the proof of Theorem 3 imply
that (C,X) > p* — Lze.



266 G. IYENGAR, D. J. PHILLIPS, AND C. STEIN

Thus, we have that X is a feasible, (£ )-optimal solution to (4). O

The following lemma establishes the correctness of a stopping criterion used in
our sparse PCA code.

LEMMA 17. Let (U(k),Y(k)), k > 0, denote the sequence dual iterates generated
by the Nesterov algorithm displayed in Figure 1 applied to the sparse PCA problem.
Then the primal iterates

1

(66) X*) = argmax{ (C,X) v — = <Y(k),X> - uwdw(X)}.

Xex K
Let X' = Zk —0 5 D) kt{gg) X® denote the primal solution returned by the Nesterov
algorithm if it were to be terminated at iteration t. Let W(t) = diag(i(t)) and Z(” =
X(t) - W(t). Define

Xt — W(t)v <C7Z(t)> <0,
W(t) + "/(t)z(t), otherwise,

1— g(W())}

where v = min {1, =)

Suppose X(t) is 0-feasible for the packing constraint, i.e., g(i(t)) <1+440. Then

(@) > (1 2) (1030 -5 ),

where

denotes the average infeasibility of the iterates {X®)} and X* denotes the optimal
solution to sparse PCA packing SDP (16).
Proof. From (66) it follows that

<C,X(’“)> - % <Y<k>,x<k>> > (C,X*) — % <Y(’“),X*> e (Ao (X7) = dp (X)),

Since X* is feasible, i.e., [|X*|; = max{y.|y,,|<1y (Y, X*) < 1, it follows that vk —
1 {y® X*) >0, and

<C,X(t)> > (C,X*) — <1/(k) . <Y<k>,x<k>>> e (Ao (X7) = dp (X)),

K

Since pip = 55~ and dy(X*) — d(X®)) < D,, it follows that

<C,X(t>> > (C,X*) — (VW - % <Y(k),X(k)>> - %

Hence,

(67) <c X! ’> > (C,X") — o) — %

Next, consider the following two cases:



APPROXIMATING SEMIDEFINITE PACKING PROGRAMS 267

(2) (C,Z") < 0. Since (63) implies that (C,X(t)) = (C, W) + (C,Z") =
,A +(C,Z""), it follows that ,A > X, us, the result
C, X0 4 (C,Z"), it follows that (C,X®) > (C,X"™). Thus, the resul
follolvst.
, > 0. In this case, an argument similar to that employed in the proo
b) (C,Z") > 0. In thi imil h loyed in th f
of Lemma 16 establishes that

<C,X<t>> > (1 - % max{g(X"”) - 1, 0}) <C,X“’> .

The result follows from the fact that g(i(t)) —1<6. O

Acknowledgments. We thank the referees and associate editor for their helpful

comments. Also, we thank Satyen Kale and Michael Lewis for useful discussions and
David Steurer for pointing out the reformulation of the MAXCUT problem. We also
thank Tom Crockett for his help setting up the computational experiments. Computa-
tional facilities at the College of William and Mary were provided with the assistance
of the National Science Foundation, the Virginia Port Authority, Sun Microsystems,
and Virginia’s Commonwealth Technology Research Fund.

REFERENCES

S. ARORA AND S. KALE, A combinatorial, primal-dual approach to semidefinite programs, in
Proceedings of the 39th ACM Symposium on the Theory of Computing, 2007.

S. J. BENSON, Y. YE, AND X. ZHANG, Solving large-scale sparse semidefinite programs for

combinatorial optimization, STAM J. Optim., 10 (2000), pp. 443-461.

. BEN-TAL AND A. NEMIROVSKI, Non-Euclidean restricted memory level method for large-scale

conver optimization, Math. Program., 102 (2005), pp. 407-456.

. BERGER, Brown’s original fictitious play, J. Econom. Theory, 135 (2007), pp. 572-578.

CHAN, K. CHANG, AND R. RAMAN, An SDP primal-dual algorithm for approximating the

Lovdsz-theta function, in Proceedings of the IEEE International Conference on Symposium

on Information Theory, 4 (2009), pp. 2808-2812.

. R. K. CHUNG, Spectral Graph Theory, CBMS Reg. Conf. Ser. Math. 92, Amer. Math. Soc.,

Providence, RI, 1996.
. D’ASPREMONT, L. EL GHAOUI, M. I. JORDAN, AND G. R. G. LANCKRIET, A direct formulation
for sparse PCA using semidefinite programming, SIAM Rev., 49 (2007), pp. 434-448.
D’ASPREMONT, Smooth optimization with approzimate gradient, STAM J. Optim., 19 (2008),
pp. 1171-1183.

. FREUND, Dual gauge programs, with applications to quadratic programming and the

minimum-norm problem, Math. Program., 38 (1987), pp. 47-67.

. GALLOPOULOS AND Y. SAAD, Efficient solution of parabolic equations by Krylov approzima-

tion methods, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 1236-1264.

M. X. GOEMANS AND D. P. WILLIAMSON, Improved approximation algorithms for mazximum cut
and satisfiability problems using semidefinite programming, J. ACM, 42 (1995), pp. 1115
1145.

N. GVOZDENOVIC AND M. LAURENT, The operator W for the chromatic number of a graph,
SIAM J. Optim., 19 (2008), pp. 572-591.

M. HoCHBRUCK AND C. LUBICH, On Krylov subspace approzimations to the matrixz exponential
operator, SIAM J. Numer. Anal., 34 (1997), pp. 1911-1925.

S. HopA, A. GILPIN, J. PENA, AND T. SANDHOLM, Smoothing techniques for computing Nash
equilibria of sequential games, Math. Oper. Res., 35 (2010), pp. 494-512.

S. KALE, personal communication, 2009.

D. KARGER, R. MOTWANI, AND M. SUDAN, Approzimate graph coloring by semidefinite pro-
grammang, J. ACM, 45 (1998), pp. 246-265.

P. KLEIN AND H.-I. Lu, Efficient approzimation algorithms for semidefinite programs arising
from MAX CUT and COLORING, in Proceedings of the T'wenty-eighth ACM Symposium
on the Theory of Computing, 1996, pp. 338-347.

L. LovAsz, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory, 25 (1979),
pp. 1-7.

= Ha

B o2 o>



G. IYENGAR, D. J. PHILLIPS, AND C. STEIN

Z. Lu, R. MONTEIRO, AND M. YUAN, Convex optimization methods for dimension reduction
and coefficient estimation in multivariate linear regression, Math. Program., to appear.

MATLAB®, Mathworks, Inc., Natick, MA, http://www.mathworks.com.

Y. NESTEROV AND A. NEMIROVSKI, Interior-point polynomial algorithms in convex program-
ming, STAM Stud. Appl. Math. 13, Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1994.

Y. NESTEROV, Smooth minimization of nonsmooth functions, Math. Program., 103 (2005),
pp. 127-152.

Y. NESTEROV, Smoothing technique and its applications in semidefinite optimization, Math.
Program., 110 (2007), pp. 245-259.

S. PLoTKIN, D. B. SHMOYS, AND E. TARDOS, Fast approrimation algorithms for fractional
packing and covering problems, Math. Oper. Res., 20 (1995), pp. 257-301.

R. T. ROCKAFELLAR, Convex Analysis, Princeton Math. Ser. 28, Princeton University Press,
Princeton, N.J., 1970.

D. STEURER. personal communication, 2009.

J. SturM, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones, Optim. Methods Softw., 11 (1999), pp. 625-653; also available online from
http://sedumi.ie.lehigh.edu/.

M. SZEGEDY, A note on the ¥ number of Lovdsz and the generalized Delsarte bound, in SFCS
’94: Proceedings of the 35th Annual Symposium on Foundations of Computer Science,
Washington, DC, 1994, IEEE Computer Society, pp. 36-39.

L. TREVISAN, Maz cut and the smallest eigenvalue, in Proceedings of the 40th ACM Symposium
on Theory of Computing, 2009; ArXiv 0806, 1978.

P. TSENG, On accelerated proximal gradient methods for convex-concave optimization, STAM
J. Optim., submitted.

J. VAN DEN ESHOF AND M. HOCHBRUCK, Preconditioning Lanczos approrimations to the matriz
exponential, STAM J. Sci. Comput., 27 (2006), pp. 1438-1457.

K. WEINBERGER AND L. SAUL, Unsupervised learning of image manifolds by semidefinite pro-
gramming, Int. J. Comput. Vision, 70 (2006), pp. 77-90.

L. X140, J. SUN, AND S. BoYD, A duality view of spectral methods for dimensionality reduction,
in Proceedings of the 23rd International Conference on Machine Learning, 2006, pp. 1041—
1048.

D. B. YUDIN AND A. S. NEMIROVSKII, Informational complexity and effective methods for the
solution of convex extremal problems, Ekonom. i Mat. Metody, 12 (1976), pp. 357-369.

H. Zou, T. HASTIE, AND R. TIBSHIRANI, Sparse principal component analysis, J. Comput.
Graph. Statist., 15 (2006), pp. 265-286.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


