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Abstract. Managing an industrial production facility requires carefully
allocating limited resources, and gives rise to large, potentially compli-
cated scheduling problems. In this paper we consider a specific instance
of such a problem: planning efficient utilization of the facilities and tech-
nicians that maintain the United States nuclear stockpile. A detailed
study of this problem yields a complicated mixed-integer programming
(MIP) model with upward of hundreds of thousands of variables and
even more constraints. Consistently and quickly solving such a model
exactly is impossible using today’s algorithms and computers, and, in
addition to branch-and-bound, requires good heuristics and approxima-
tion algorithms. In an effort to design such algorithms, we study several
different methods of generating good solutions given the solution to the
LP relaxation. We design a suite of sample data and test the algorithms.
The goals of this project were twofold. First, we wanted to develop a
program that could efficiently and accurately help with the Pantex plan-
ning problem. Second, we wanted to experimentally test various ideas,
designed originally for “cleaner” problems, in this more challenging con-
text. In summary, we demonstrate the value of using a-points as a way
to quickly and cheaply generate, from one solution of an LP relaxation,
many feasible solutions to an integer program. In this particular environ-
ment, the use of a-points, combined with other heuristics, outperforms
local search. We also see the value of finding combinatorially-structured
subproblems as opposed to using simple greedy approaches.

* Research partially supported by NSF Grant DMI-9970063 and an American-
Scandinavian Foundation Thor Thors Memorial Fund Grant. ea367@columbia.edu.

** Some of this work done while this author visited the third author at Sandia National
Labs. berryjw@cs.lafayette.edu.

*** Sandia is a multipurpose laboratory operated by Sandia Corporation, a Lockheed-
Martin Company, for the United States Department of Energy under contract DE-
ACO04-94AL85000. caphill@sandia.gov.

T Research partially supported by NSF Grants DGE-0086390 and DMI-9970063.
djp80@columbia.edu.

¥ Research partially supported by NSF Grant DMI-9970063 and an Alfred P. Sloan
Foundation Fellowship. cliff@ieor.columbia.edu.

§ Research partially supported by NSF Grant DMI-9970063. wein@mem.poly.edu .



1 Introduction

Managing an industrial production facility requires carefully allocating limited
resources, and gives rise to large, potentially complicated scheduling problems.
In this paper we consider a specific instance of such a problem: planning efficient
utilization of the facilities and technicians that maintain the United States nu-
clear stockpile. In particular, Sandia National Laboratories has developed and
implemented the Pantex Process Model (PPM) [7] to support planning activities
at Pantex, a US Department of Energy (DOE) production plant in Amarillo,
Texas. The plant simultaneously supports three major DOE programs — nu-
clear weapon disposal, stockpile evaluation, and stockpile maintenance — which
share its facilities, technicians, and equipment. We focus on one piece of the
PPM, namely the Evaluation Planning Module (EPM) which projects facility
and technician utilization over a given planning horizon (typically a year).

A substantial portion of the Pantex workload relates to evaluation of weapons
in the active stockpile. Each weapon evaluation involves partial disassembly of
the weapon, one or more inspection tests, and then re-assembly and return of
the weapon to the active stockpile.

A detailed study of this problem yields a complicated mixed-integer program-
ming (MIP) model with more than hundreds of thousands of variables and even
more constraints. (See Section 2 for a detailed problem description.) Pantex plan-
ners want (approximate) answers to planning queries in minutes, with the code
running on a local PC. Consistently and quickly solving such a model exactly
is impossible using today’s algorithms on a PC, and thus, in addition to using
branch-and-bound, we must use good heuristics and approximation algorithms.

In this paper, we empirically evaluate the relative success of several ap-
proaches to solving the MIP. We employ traditional branch-and-bound algo-
rithms to exactly solve the MIP. Also, we employ several different techniques
in combination to approximately solve this mixed-integer program. These tech-
niques all follow the same general structure:

. Solve the LP relaxation of the MIP.

. Use an a-point method to generate an ordering of the jobs.
. Convert the ordering into a feasible schedule.

. Try to improve the schedule via local improvements.
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Particularly noteworthy is our use of a-points in this context (Step 2). Given
a solution to a linear program, in which the variables x;; denote the fraction
of job j completed (or started) at time ¢, the a-point of job j is the earliest
time at which an « fraction of job j has been completed (or started). Each
value of « defines an ordering of the jobs; given one LP solution, it is possible
to generate many different orderings. a-points have been used extensively in
designing approximation algorithms for combinatorial scheduling problems (see,
e.g. [6,4,14,8,5]), and are explained in more detail in Section 3. Computational
work by Savelsbergh, Uma and Wein has shown their practical value in settings
where the objective is related to flow time or completion time [13]. a-points have
also performed well in practice for the best-effort objective, where one finishes as



many jobs as possible by their deadlines [12]. Méhring, Schulz, Stork, and Uetz
use, in addition to other approximation techniques, a-points to design heuristics
for problems with the makespan objective in a setting where jobs also need
simultaneous processing [10] from different machines. This feature is the same
in the EPM, and is called resource-constrained project scheduling. For a survey
of resource-constrained project scheduling, see [1]. To our knowledge, there is no
prior work on using a-points in problems with hard deadlines. These problems
pose a particular challenge, as a greedy schedule created from a particular job
ordering may not satisfy all the deadlines if it must obey precedence and resource
constraints. Therefore, the model used by EPM allows (but seeks to minimize)
resource overage. Because the EPM plans for future operations, this is not an
artificial analysis tool; the goal is to acquire the resources by the time they are
needed. Under this objective, we demonstrate the utility of a-points in a setting
with deadlines and precedence constraints.

In a simple combinatorial scheduling problem, once we compute an ordering
for the jobs, the task (Step 3) of computing a schedule is typically no more
difficult than list-scheduling or some equally simple procedure. In this problem,
the ordering is not sufficient to indicate a schedule, so we need to use a more
sophisticated job assignment algorithm. We employ two basic approaches for
job assignment. One is a greedy method while the other is a more sophisticated
approach based on assignment and maximum flow subproblems. By contrasting
these two approaches, we are able to evaluate the relative efficacy of using mul-
tiple a-points versus different levels of sophistication of job-assignment. We also
employ a local search at the end of the algorithm.

We solve the MIPs within this paper using both the CPLEX 9.0 commer-
cial MIP solver and the parallel Integer and Combinatorial Optimizer (PICO)
which is under development at Sandia National Laboratories and RUTCOR [3].
PICO is a general branch-and-bound framework specialized to mixed-integer-
programming with many computers in parallel as opposed to the single (or se-
rial) computer version of CPLEX. We describe these issues in more detail in
Section 3.

We design a suite of sample data and test the algorithms. We report on our
data, experiments and conclusions in Sections 4, 5, and 6.

The goals of this project were twofold. First, we wanted to develop a program
that could efficiently and accurately help with the Pantex planning problem.
Second, within this challenging context, we wanted to experimentally test various
ideas that were originally designed for “cleaner” problems. The details of this
paper focus on the second goal, and we report on our particular conclusions in
Section 6. In summary, we demonstrate the value of using a-points as a way
to quickly and cheaply generate many feasible solutions to an integer program
from one solution of an LP relaxation. In this particular environment, the use of
a-points, combined with other heuristics outperforms local search. We also see
the value of finding combinatorially-structured subproblems as opposed to using
simple greedy approaches.



2 Problem Formulation

In the Pantex planning problem, each job (evaluation) consists of a set of tasks,
related by precedence constraints. The precedence graph is an out-forest. In
practice the trees of precedence constraints are highly chainlike. Each task j has
a fixed processing time p;, which can be as short as an hour or as long as several
months. It also has a release date r; and a hard deadline d;.

The time horizon is broken into weeks, currently consisting of six consecutive
working days. Each day is eight hours long. Task lengths are given in hours.

Each task 7 must be performed without interruption in a facility of type k;.
While task j is being executed, a technician crew of size s; must be assigned to
that task. The actual technicians may change over the life of the task, but the
crew size must always be maintained. Each technician in the crew must have
the proper training to perform the task. Training is controlled by certifications.
Each technician has a list of certifications to which (s)he can be assigned and
each task j has a required certification c¢;. Facility availability is given in hours
per week and we assume all technicians are available at all times.

In a true schedule, each task is assigned to a specific facility and given
a specific team of qualified technicians. However, for planning future techni-
cian/facility needs, it is currently sufficient to assign tasks to a pool of facilities
and technicians checked at a weekly granularity. That is, a plan is feasible with
respect to facility resources for a particular week if the total work for each facility
type k is no more than the number of type-k facility hours available that week.
This is equivalent to allowing preemption and migration. Using ideas similar
to those used by McNaughton [9], we can show that this underestimates true
facility requirements by at most a factor of two, as the preemptive schedule can
be converted into a nonpreemptive schedule by taking the one job per machine
that is preempted and placing it on a new machine. Technician hours are pooled
similarly. To determine certification-hour availability, each technician is assigned
to certifications by specifying the amount of time (possibly fractional) (s)he will
devote to each certification during each week. No technician is assigned more
hours for a particular certification during a week than the total lengths (within
that week) of tasks requiring that certification.

We make the further restriction, consistent with Pantex’s operations, that
short tasks (less than a day) can start at any time of the day, but they cannot
be split across two days; they must be completed on the day on which they start.

A production plan or schedule assigns a start time to each task. Since pre-
emption is not allowed, a task occupies a facility for its entire duration beginning
at its start time. A production plan is feasible if: a) all precedence constraints,
release dates, and deadlines are obeyed, b) short tasks are completely scheduled
within a single day, ¢) the total amount of work scheduled for each facility type
during any particular week does not exceed the availability of such facilities, d)
for each week the requirements for technicians are matched by qualified techni-
cian assignments and each technician is assigned no more than a week of work,
and e) for each week, no technician is assigned to a particular certification for
more hours than the sum of the task lengths (within that week) of tasks requiring



that certification. This last constraint partially prevents serialization of parallel
task work, that is, allowing one worker to do the work of two provided he works
twice as long.

A typical planning problem spans a year and involves at least 500 jobs and
1000 tasks. Each job has from one to six tasks. There are about 28 — 32 facility
types and 300 technicians, each of whom holds 2-5 of the 80 — 100 possible
certifications.

In practice, these planning problems are often infeasible. Future work can
be performed by newly-hired or retrained technicians in facilities that are newly
built or borrowed from other programs sharing Pantex’s facilities. Thus our ob-
jective is to find a feasible plan that minimizes the use of extra resources beyond
what is currently available. Specifically, we wish to minimize the total number of
hours assigned to ghost facilities (facility overage) and ghost certification hours
(technician overage). In general these terms could be weighted based upon the
difficulty of acquiring facilities relative to technicians. However for this study,
we weight the two overages equally.

The production plan is not a true schedule because we do not assign workers
to specific tasks. We only guarantee that the pool of workers is sufficient in
the aggregate. Given the uncertainty in the data (job load, task duration, etc),
extra resolution is probably not warranted. However, the optimal overage for
this schedule is a lower bound on the optimal overage for a true schedule where
tasks are assigned to specific facilities with specific teams of technicians and all
resources constraints are met at the finest resolution (in this case, by the hour).
Therefore, a decision to allocate more resources to Pantex can be justified based
on the optimal plan, but the resources specified in the plan may not be sufficient.

2.1 MIP Formulation of the Pantex Problem
Input parameters/constants/shorthand

pj,Tj,d; The processing time (in hours), release day and deadline day of task j

0j The minimum number of full days needed to process task j (i.e. p; = [p;/8]).
T() Set of possible start days for task j.

p(7,t,7) Number of hours work on task j performed during week 7 if j is started on day t.
T(j,7) Set of start times ¢ for task j such that p(j,¢,7) > 0.

kj,cj, s; Facility type, technician certification and crew size for task j.

C(w)  The set of certifications held by worker w

frr The number of hours available in facilities of type k during week 7.

b(4,7') 1if j <j" and task j' can be “packed” with j, 0 otherwise

Variables

We use four types of variables. The z variables are integral, while the remaining

variables are rational.
xzj = 1if task j starts on day ¢, and 0 otherwise

Ywer = fraction of time worker w spends using certification ¢ in week 7
Fi- = number of ghost facilities of type k in week 7
G.r = number of ghost technicians with certification ¢ in week 7



MIP formulation
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Constraints (1) ensure that every task is done. Constraints (2) prevent over-
scheduling any technician in any week. Constraints (3) ensure a task is not
started until all predecessors are completed. Constraints (4) ensure there is suf-
ficient facility capacity in each week to perform all the work that must be done
in that week, and constraints (5) are the analogous constraints on certification
hours. Constraints (6) prevent some situations where a technician is taking the
place of multiple technicians. There are 48 work hours in a week. Although short
jobs may start at any hour, as long as they fit in a day, we will always start them
at the beginning of the day or immediately following the completion of their last
predecessor (whichever is later). We will refer to this program as TILP.

3 Algorithms

In this section, we describe our algorithms. We also describe the branch and
bound used to solve the mixed integer program TILP, which provided the optimal
objective values (or lower bounds) that we use as a basis for comparison for our
heuristics. Our heuristics all followed the same general steps:

1. Solve the linear programming relaxation of TILP to obtain z7,.

2. Call the BEST-a or FIXED-a subroutine to convert the TILP solution z7}; to
a set, II, of priority orderings for the jobs

3. For each ordering 7 € II, call the COMB or GREEDY subroutine to determine
a schedule w(r) for the tasks

4. Use local search to try to improve the objective for the schedules.



Steps 2 and 3 each employ two different subroutines resulting in four different
algorithms. We implemented and tested each algorithm, and also examined the
value of using local search to improve the solution.

Mized-integer programming To reduce the size of the MIP, task starts are repre-
sented at daily granularity rather than to the hour (the smallest size of a task).
We force long jobs to start at the beginning of a day. This does not significantly
decrease planning flexibility. However, if we were to force short jobs to align with
the start of days, we could introduce significant unforced idle time, especially on
chains of short jobs. Therefore, short jobs can start at hourly increments within a
day. This is not explicitly represented in the MIP. Start times are interpreted as
mid-day (earliest possible) whenever one or more predecessors are also running
that day.

To enforce this interpretation, we must take some care in formulating prece-
dence constraints. In the MIP given in Section 2, we enforce precedence j < j' in
constraints (3). Normally, we need only enforce a precedence constraint between
immediate (predecessor,successor) pairs. However, when j and j' can finish on
the same day (they pack, b(j,j’') = 1), we must usually add an extra precedence
constraint between j’ and a more distant predecessor to guarantee j' is always
scheduled completely within a day.

We used two different MIP solvers, CPLEX 9.0 and PICO, to solve the
mixed-integer programs. CPLEX (serial) is the standard commericial MIP solver,
whereas PICO (Parallel Integer Combinatorial Optimizer) is a massively-parallel
mixed-integer programming solver being developed at Sandia National Labora-
tories and RUTCOR. PICO requires a linear-programming solver to compute
lower bounds, for which we currently use the free solver, COIN LP. PICO is
licensed under the GNU general library public license and is expected to be
released free in 2004. We used only the serial version of PICO in this paper.

Neither solver could handle problems spanning the entire year-long time hori-
zon, and so we tested our algorithms on problems spanning roughly half the
time horizon (i.e. around six months). For these problems, both codes could
solve most, but not all of the instances considered, and CPLEX was faster than
PICO. Sections 4 and 5 contain more details about the size of problem versus
tractability.

We also started developing routines specific to the MIP for use within PICO.
For a fractionally assigned task j, we can branch on the full set of z;; variables
where one child forces j to start by time ¢* and the other child forces j to start
after t* 4+ 1 where t* is is the a-point for & = 0.5. One could get similar behavior
with CPLEX by explicitly listing all decision variables for each job as a special-
ordered set. We make branch choices based on gradients just as it would for
branching on single variables. As described in Section 3, we can use an a-point-
based algorithm to find feasible solutions early. This allows early pruning of the
search tree.

In future work, we will use the parallel version of PICO in order to solve
the full version of these problems, and test the ideas that we have implemented
within PICO.



a-points The TP code described in the previous section is not able to efficiently
*

solve all of our instances. We therefore begin with the solution z7, to the linear
programming relaxation. In step 2, BEST-« and FIXED-« convert a solution z7,
to a set of orderings, II, of the tasks. They both use the method of a-points to
do this. The variables x;; were defined in the formulation of TILP, and are an
indicator of which day a given task starts in. After relaxing the integrality, the
start-time variables x;; now represent the fraction of the task j that starts at day
t. Start-time variables can be converted into the more standard completion-time
variables by the formula: ) = xji,Vj,t. Then, for a given a € [0, 1], and
solution to the linear programming relaxation of (TILP), the a-point of a task,
f;?‘, is defined as the first day ¢ at which the fraction of task j completing at or

before t exceeds . Formally, this is:

t} = min{t : Z@T > af. (8)

T<t

Alternatively, we can use the original time-indexed variables in equation (8):

t§ = min{t : Za:jT > al. (9)

<t

Thus, ¢§ represents the first day ¢ at which the fraction of task j starting at or
before ¢ exceeds a. The task ordering is simply the (ascending) order of either ¢¢
or t7. In general, using the orderings generated by ¢ will favor starting longer
tasks later than shorter tasks. Our experiments showed that ¢ resulted in a
better objective than ¢7'. This may be a result of the presence of due dates and
the resource optimizing objective, which would favor starting longer tasks earlier.

Implementing these methods involves calculating ¢ or fjo»‘ from equations (9)
or (8) for each « in some given set A. The distinction between different a-points
methods involve what A is. Our heuristics used methods known as BEST-«
and FIXED-a (see e.g. [13]). BEST-a corresponds to trying all a € [0, 1] that
yield different orderings. There are a finite number of « to try, as the orderings
change at most once for every nonzero x;;. For a basic solution to MILP, the
number of nonzero z;; is bound by the number of basic variables in the linear
programming relaxation. For our particular implementations, we approximated
BEST-a by using 51 « spread uniformly over the [0, 1] interval. The FIXED-«
method corresponds to setting .4 to can just one particular a.. We set 4 = {0.5}.

CoMB This section describes an algorithm, CoMB, that converts an ordering,
m, of the tasks to a feasible schedule, or plan, w(w). In addition to the ordering,
CoMB uses information from the linear program relaxation and combinatorial
structure to create schedules. This algorithm is the one used to generate early
feasible solutions to strengthen pruning in (PICO-based) branch and bound.
Given an ordering m, the heuristic must first deal with a subtlety concerning
the discretization of the problem. Specifically, for a short task 7’ that packs with
its predecessor j, the starting time alpha point ¢J (in this case equivalent to
f;?‘,) might be the same day in which task j finishes. Since the alpha points are



expressed in days, not hours, task j completes sometime in the middle of day 5
when started at the beginning of day ¢, The true starting hour of task 4’ must
be adjusted accordingly.

CoMB computes the “resource availability” from the linear programming
solution. Ghost facilities used in the LP solution are added to the true facility
availability. Technician-hour availability for each certification for each week is
the number of hours the LP assigns to that certification over all technicians for
that week plus the ghost technician hours. Since the objective-function value of
this solution is a lower bound on the optimal integer solution, we are free to
use all these resources in our heuristic solution without degrading the objective
value. Therefore, only resources used in excess of this availability are considered
“overage” for this heuristic.

CoMB schedules tasks in alpha-point order. To schedule a task j, ComB
computes the incremental decrease in technician and facility availability incurred
by each potential starting day of j and places j in the earliest place that creates
no new overage. If no such place exists, COMB places the task either as early as
possible, or in the place with minimum overage. The strategy is determined at
the start of the heuristic; for this paper we try both and take the best result.
CoMB decrements the technician and facility availability for each week in the
lifetime of the task and continues to the next task.

Given the greedily-determined start times, COMB computes an optimal (ra-
tional) technician assignment using one maximum-flow computation for each
week. The flow problem is formulated as follows. There is a source node s, a
node W; for each worker i, a node C; for each certification j and a sink ¢. The
source is connected to each of the W; nodes with capacity equal to the total time
the worker is available to work during this week. In our current model, this is
the same for all workers: 48 hours. There is an edge from each worker node W;
to each certification node C; where worker ¢ has certification j. The capacity
is the total number of hours of work for certification j scheduled in this week
(according to our heuristic schedule). Finally, there is an edge from each certifi-
cation node to the sink with capacity equal to the total man-hours of work for
certification j in this week. That is, for each (piece of a) task with certification
j run in this time week, we multiply the length of the task (in this week) by
the crew size. The capacity on the source-to-worker edges reflects the bound on
technician availability. The capacity of the worker-to-certification edges reflects
the total time a worker can spend on a certification (constraints 6 in MILP). The
capacity of the certification-to-sink edges reflects the total work requirement for
each certification. The technician assignment is encoded in the flow from worker
nodes to certification nodes. The residual capacity on the edge from certification
J to the sink (that is the difference between the capacity and the flow) is the
technician overage from this assignment. In particular, if the maximum flow in
this network saturates all the certification-to-sink edges, then all the work is
done and there is no overage.

Assigning resources greedily The greedy subroutine for assigning resources, GREEDY,
creates a feasible schedule, w(w), from a given ordering, 7. Note that w(7) corre-



sponds to a start time for each task, a schedule for each technicians and facility,
and a number of ghost hours needed for each certification and facility per week.

We either assign all technicians to tasks first and then all facilities to tasks, or
vice versa. Our experiments demonstrated the former is better. Because of these
results, and the two methods’ similarity, we only describe the TechSchedFirst
subroutine. Due to space constraints we do not prove the algorithm’s correctness.

Throughout TechSchedFirst, a set of jobs, J, which are not scheduled and
have no uncompleted predecessors are maintained. Also, each job’s earliest pos-
sible start time is maintained. This is the minimum of its release date and the
completion time of its predecessors. At each iteration, TechSchedFirst greedily
assigns technicians to the job in J with the highest priority according to 7 by
determining the time in the time window of its earliest possible start time and
due date that corresponds to the point at which the most technicians will be
free. This is possbile to do via interval trees (see Cormen et. al. 2001, [2]). If
more technicians are required, the necessary amount of ghost technician hours
are allocated. TechSchedFirst then updates J and the earliest possible start
times of all jobs. With the start times of each job established, TechSchedFirst
then schedules facilities to each task in ascending start time order, with ghost
facility hours scheduled as needed.

Local search Since our experiments indicated that technicians were a more con-
strained resource, we implemented a straightforward local search heuristic, called
LocALIMPROVE, that swaps technicians between different tasks. We did not im-
plement local search on COMB as our goal was to compare the more sophisticated
job-assignment heuristic to greedy methods.

LocaLIMPROVE takes a feasible schedule as input and returns a feasible
schedule with an objective no worse than the input. LOCALIMPROVE assumes
tasks are sorted in descending ghost technician hours. The subroutine examines
each task j, and, if it has ghost technicians, determines any other tasks that have
scheduled process time overlap. It calculates the set, C©, of all tasks that have no
overlap with j. Then C = J\CC is the set of tasks with overlap with j. Swapping
technicians to task j only affects tasks in C. It finds all technicians that are not
currently working on j, but have the correct certification to work on j. It swaps
the technician to j that corresponds to the best change in the objective, updating
the ghost requirements of both j and any task in C on which the technician was
working. This is iterated as long as j still has ghost technicians.

We also applied a simple evolutionary algorithm which did not work as well.
In future work, we will consider more sophisiticated evolutionary algorithms.

4 Data

Due to security reasons, access to actual data was severely restricted. However,
we know many properties and characteristics of the real datasets. We created
a problem generator that is easily modified and creates problem instances that
capture properties of the real data.



Series (jobs) |Tasks|Crew|Certs|Techs|C.per.T.|Fac.Types|Fac.Hours
SeriesA - (20) | 212 | 1-6 | 100 | 300 3-5 30 100
SeriesA - (100)| 1060 | 1-6 | 100 | 300 3-5 30 100
SeriesA - (200)| 2120 | 1-6 | 100 | 300 3-5 30 100
SeriesB - (20) | 212 | 1-6 | 100 | 150 3-5 6 10
SeriesB - (100)| 1060 | 1-6 | 100 | 750 3-5 6 50
SeriesB - (200)| 2120 | 1-6 | 100 | 1500 3-5 6 100
SeriesC - (20) | 212 | 1-2 | 100 | 300 3-5 30 100
SeriesC - (100)| 1060 | 1-2 | 100 | 300 3-5 30 100
SeriesC - (200)| 2120 | 1-2 | 100 | 300 3-5 30 100

Table 1. Overview of selected problems

The problem generator uses predefined job templates that describe the successor-

predecessor relationships of the tasks and include parameters for the size and
requirements of each task. These templates were created using our knowledge
that in the actual problem the jobs are highly chainlike, each task can have at
most one predecessor and most tasks have only one successor even though we
allow tasks to have more than one successor. We then combined this with tem-
plates for the facilities, technicians and certifications and the scenario, which
defines the random distributions of the task sizes along with the time horizon.
The actual size of the tasks is determined using a uniform random distribution,
whose parameters are dependent on the scenario and the task. To select the
certification and facility for a task, we split the certifications and facilities into
a few sets and then randomly pick a certification and facility.

Due to hardware and time issues we created series of scaled down problems
that retain most of the characteristics of the real problems. We needed to make
the problems small enough so that the branch and bound could solve most
of the instances, while keeping them large enough to contain all the original
structure. The time horizon was cut down from a year to 6 months, and job
lengths scaled down so that we fit the same number of jobs in this time horizon.
To make the problems more challenging, we made the job templates larger and
less chainlike than in the actual problem. We created three sets of problems,
with 10 problems in each set. The goal of the first dataset, “Series A,” was to
see how the algorithms would handle increasingly difficult problems that share
the same fundamental properties. In some sense, the problem with 100 jobs is
the most like the actual EPM problem. The next set of problems, “SeriesB”,
was created to see how the algorithms would deal with problems of increasing
size but not increasing difficulty. Since Series A and B seemed to require more
technicians than facilities, we created “Series C” by decreasing the number of
ghost technicians that the solutions requires and hence increased the importance
of the ghost facilities. Table 1 shows a small, medium and large problem of each
problem set. Finally, we also generated a full-year problem to test whether our
heuristics would be able to solve a problem of this size. To create the full-year
problem, we used the Series A problem with 100 jobs and doubled the time
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Fig. 1. Performance on SeriesA and SeriesC. We show the performance of the algo-
rithms for SeriesA and SeriesC as a percentage of the objective value above the best
known lower bound. The best known lower bound is the optimal IP solution for all
problems except 160 — 200 jobs of SeriesA.

horizon and processing time of each job. We discuss the results of this small test
in Section 5.

5 Results

We use results from the three data series described in Section 4 to illustrate the
effectiveness of the algorithms, since the results from those series are represen-
tative of all the problems that we generated. Because of limited space, we focus
mainly on the common conclusions, instead of analyzing in detail any specific
results for the algorithms.

We ran GREEDY on a 1.8 GHz Pentium 4 with 512 MB of RAM running
Linux kernel 2.4.7-10. The SPECint2000 and SPECint-base2000, performance
comparisons are, respectively, 619 and 599. CPLEX 9.0, PICO, and COMB ran
on a 3 GHz Xeon with 2 GB of RAM running Linux kernel 2.4.20-18. The
SPECint2000 and SPECint-base2000 performance comparisons are, respectively,
1138 and 1089. Because of the considerable difference in speed between the two
machines, we only analyzed runtimes for CPLEX 9.0, PICO, and CoMB. More
information on the SPEC performance comparison benchmarks can be found at
http://www.specbench.org.

Figure 1 shows the performance of the heuristics BEST-a and GREEDY as a
percentage of the objective value above the best known lower bound. In most
cases this lower bound is the optimal integer solution. However the most difficult
problems (SeriesA with 160,180 and 200 jobs, SeriesB with 160,180 and 200
jobs) were too big to be solved optimally in a reasonable amount of time and for
these we give the best lower bound encountered during the branch-and-bound
computation. Figure 2a shows the performance of BEST-a and GREEDY along
with the best known lower bound for SeriesB. Since the last problems of SeriesB
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Fig. 2. Performance on SeriesB and the effect of local search. The graph on the left
shows the results for SeriesB. The lower bound is the optimal IP solution for 20 — 140
jobs problems. Since the lower bound is zero for the 160 — 200 jobs problems, we show
the actual objective values for all the algorithms and the lower bound. The graph on
the right shows The effect of LOCALIMPROVE on BEST-a and FIXED-«, using GREEDY.

have lower bound of 0, we cannot find the percentage over the best known lower
bound for these problems. Figure 2b shows the effect of using LOCALIMPROVE
with the heuristics.

In Series A, CPLEX required seconds for the 20, 40, and 60 job problems,
minutes for the 80 and 100 job problems hours for the 120 and 140 job problems
and could not solve the 160, 180, and 200 job problems in under 48 hours. In
Series B, CPLEX required seconds for the 20, 40, 60, 80, and 100 job problems,
minutes for the 120 and 140 job problems, and did not solve the 160, 180, and
200 job problems in under 48 hours. CPLEX solved the 20 to 160 job problems
of Series C in at most 72 seconds and required several minutes for the 180 and
200 job problems. CPLEX’s success with the Series C problem was related to
the fact that it did not require any branches in the branch and bound tree -
the optimal solution to the linear program was integral. The heuristics ran on
all problems in Series A in under 133 seconds, in Series B in under 321 seconds,
and under 130 seconds for all problems in Series C.

BEST-« is better than FIXED-«. In almost every instance where both heuristics
do not achieve the optimal solution, BEST-« yields significant improvement over
FixED-a. Figure 2b shows this for SeriesA; the results for other series were
similar. The difference increases as the problems become more difficult. In the
extreme case the solution from FIXED-a without LOCALIMPROVE is more than
factor of 4 times the solution from BEST-a without LOCALIMPROVE.

ComB performs better than GREEDY. For SeriesA, COMB was on average
14.3% over the optimal solution, compared to 16.2% for GREEDY. For SeriesC,
the average was 10.5% for CoMB and 14.5% for GREEDY. Of the 10 instances in
SeriesB, CoOMB performed better in 8 instances, while GREEDY only performed
better in only one instance. This can been seen in Figures 1 and 2a.

LocALIMPROVE helps FIXED-a but it does not help BesT-a. Figure 2b
shows the effect of LOCALIMPROVE for SeriesA. The results for other series



were similar. For FIXED-a, LOCALIMPROVE has a significant improvement on
the solution, while the effect on BEST-«v is minimal. Of the 30 instances, only 3
instances had improved solutions when using BEST-a with LOCALIMPROVE com-
pared to using only BEST-«. Also while LOCALIMPROVE significantly improves
the solution of FIXED-a, there was not a single instance where FIXED-a with
LocAaLIMPROVE found a better solution than BEST-a without LOCALIMPROVE.
A small decrease in accuracy gives a huge decrease in running time.
CPLEX required several hours to solve the most challenging tractable problems
in these series. Moreover, the most difficult problems ran for more than two days
without a solution. The heuristics scale efficiently with the problem input size
and run in minutes at worst; we get a solution to the most difficult problem
in under 7 minutes. In addition, the heuristics usually return a solution that is
within 10% of the optimal value.
The best heuristic is BEsT-a CoMB. Overall, our results indicate that BEST-«
and COMB is the best combination. LOCALIMPROVE does not yield any signifi-
cant improvements on the BEST-« and its running time hardly justifies its inclu-
sion. Hence the best combination in terms of speed and results is BEST-o« COMB.
We tested BEST-a GREEDY on our full-year problem and found that it
computed a solution within 14% of the linear programming relaxation lower-
bound. Based on the results of the the other experiments, we hypothesize that
BEST-a CoMB would perform well on the larger problems as well.

6 Conclusion and Future Work

We have provided evidence that sophisticated algorithmic ideas, designed for
combinatorial scheduling problems and designed with approximation algorithms
in mind, can be used in heuristics to obtain good solutions to a difficult, “real-
life” project scheduling problem. In addition to providing solutions in a fraction
of the time of exact methods, our heuristics allow a finer granularity of time.

Our experiments also provide evidence that a-points can yield reasonable ap-
proximations for a difficult project scheduling problem. This supports the idea
that a-points can be practically used in several problem contexts. Our experi-
ments demonstrate that, for this problem, BEST-« is a significant improvement
on FIXED-«, and multiple choices for « should be used in any algorithm em-
ploying a-points. In particular, a-points provide an inexpensive way to generate
many feasible schedules from one linear program. We have also demonstrated
that a-points can be used in situations with hard deadlines.

In the future, we plan to run our heuristics and exact methods on full-scale
data. We would like to compare the overage of an optimal plan to the over-
age for an optimal true schedule. We wish to quantify the effect of improved
heuristics, and of rerunning heuristics on multiple search-tree nodes, on running
times of exact methods. Additionally, we would like to consider different priority
rules, especially some suggested for the resource leveling objective by Neumann
and Zimmerman[11]. We are particularly interested in testing greatest resource
demand or greatest resource demand per time unit. Finally, we would like to in-



vestigate the use of start-time based a-points further, both experimentally and
theoretically.
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