
Simplex implementation
SA405, Spring 2012

Instructors: Foraker and Phillips

For this assignment, you will finish an implementation of Simplex based on the code from the Rader textbook. The
implementation will solve the problem:

max c>x
s.t. Ax = b

x ≥ 0.

Post your completed code to dropbox.

All code files should have your lastname followed by an underscore and then the requested function
name. If you do not follow this convention, your code will not be graded. Make sure your function
name and file name are identical or they may not work correctly.

E.g., Commander Foraker would turn in:
foraker plex.m, foraker FindImpDir.m, foraker FindStepSize.m, and foraker UpdateSol.m

Before beginning the assignment, download the files, USNAplex.m and PhaseOne.m, from dropbox. Change the
file and function name to your lastname plex.m and your lastname plex. (put your actual lastname in for your
lastname). Here is a description of the variables used:

• A,b,c: These are the constraint matrix, right-hand side vector, and objective function coefficients, respectively.
The constraint matrix should be full-row rank.

• initsol, initB: These are optional arguments to be used if an initial solution and corresponding basis is known.
Otherwise, a phase 1 LP will be formed and called.

• R: This is the return data structure, a matlab struct with several fields. See the comments in the code for the
various fields it contains.

• x: This is the current solution vector.

• B: This is a boolean vector indicating whether a variable is basic or not.

• done, unbdd: Boolean variables indicating whether the main loop is complete and the linear program has an
unbounded optimal solution.

• iters: A variable that keeps track of the number of main iteration loops required.

• d: The vector with a simplex direction.

• p: The variable index corresponding to d.

• stepsize: The maximum value that d can be scaled by and added to x and still have a feasible solution.

• leavingind: The index of B that corresponds to the leaving variable. Note that this is not (in general) the same
as the variable index. See the example below for clarification of this.

The basis data structure The basis data structure allows the basis matrix and basic components of the current
solution to be referenced. The boolean vector is set so that each component indicates whether the corresponding
variable is basic or not. E.g., if

A =

[
1 2 5 0
3 2 1 5

]
b =

[
5
7

]
then setting

B =


false
false
true
true


would mean a basic matrix

Bmat = A(:, B) =

[
5 0
1 5

]

1



and a basic solution found via the commands x = zeros(4, 1), x(B) = Bmat\b = Bmat−1 ∗ b so that

x =


0
0
1

6/5

 .
Note that Bmat is the submatrix of A corresponding to the columns indicated by the basis vector B. Suppose x2 is a
desired entering variable. We form the associated simplex direction by first setting d = zeros(4, 1) and then d(2) = 1.
Then, we must solve the equation

A


0
1
d3
d4

 =

[
0
0

]

which can be done via the matlab command d(B) = −Bmat\A(:, 2) which results in

d =


0
1
−2/5
−8/25

 .
To find the leaving variable and step size, we need to determine the maximum λ such that

x + λd ≥ 0⇔ λ = min{−x(i)/d(i)|d(i) < 0, B(i) = true}.

In matlab, we will use the more descriptive stepsize instead of λ. To calculate λ, we first form the boolean vector
indicating the “good indices”: find the limiting value via goodinds = boolean(B .* (d < -.001 )). Note that this
command uses a few matlab tricks:

1. the boolean “casting” function which assures that goodinds is a boolean vector;

2. the expression, d < -.001, which creates a vector with boolean variables set to true when d(i) < -.001. Note
that −0.001 is used so as to avoid precision errors; and

3. component-wise multiplication, .* , which produces a vector where each component is the product of the boolean
variables from the vectors B and d < -.001.

Then, we set stepsize = min(-x(goodinds) ./ d(goodinds)). We can, additionally, determine the leaving variable
by setting leavingvar = find(-x ./ d == stepsize).

Finally, to update the basis, we set B(2) = true and B(leavingvar) = false.

Complete the following:

1. Implement the FindImprovingDirection function. This takes, as input, the constraint matrix, A; the
current basis, B; the objective coefficient vector, c; and the current solution, x. As output, the function should
return an improving direction vector, d; the entering variable index associated with the simplex direction vector,
enteringvar; and a boolean variable set to true if there are no improving simplex directions, done. Note that the
outputs corresponding to the direction vector and entering variable index should be set to some dummy values if
there are no improving simplex directions.

2. Implement the FindStepSize function. This takes, as input a simplex direction, d; the current solution,
x; and the current basis, B. As output, the function should return the maximum amount the entering variable
can be increased and still be feasible, stepsize; the indice in the leaving variable, leavingvar; and a boolean
variable set to true if the direction is unbounded (i.e., no maximum value exists), unbounded.

3. Implement the UpdateSol function. The inputs are the simplex direction vector, d, the stepsize, stepsize
, the nonbasic variable to be added to the basis, enteringvar, the leaving basic variable index, leavingvar, ,the
current basic solution, x, and the current basic array, B. The outputs are the updated basic solution, newx, and
the updated basic array, newB.

2



4. Download the 20 test problems in the file, testprobs.mat, and write a script to test your code with the
word testscript plus your lastname in the filename. The test problem input data is in the 20 by 25 by
100 array, testA; the 20 by 25 matrix testb; and the 20 by 100 matrix, testc; The testubdd and testinf vectors
contain boolean variables indicating whether the problems are unbounded or infeasible, respectively. The optimal
solutions and objectives are in the 20 by 100 matrix testsol and the 20 dimensional vector testobj. Use this
data to test that your code is correct. You first check whether your problem is infeasible or unbounded and that
this agrees with your results. If so, and if feasible and bounded, then check whether your optimal objective and
solution agree with the data. Note that it may be the case your solution and/or objective differs by a small
amount so you should be checking whether the difference is less then some small value such as .001 or .0001.

3


