
SM122 Assoc. Prof. Liakos

Review Notes: Exam 4

1 Modeling with Differential Equations

A. GENERAL AND SPECIFIC SOLUTIONS

1. If given a solution to verify for a differential equation, simply plug it into the DE
and ensure the equality remains valid.

For example, to show y = sinx+ x2 is a solution to y′′+ y = x2 + 2, determine y′′

and add it to y, verifying that the sum is x2 + 2.

2. If given an initial condition, then you will be verifying a specific solution. This
requires the additional step of plugging the initial condition into the proposed
solution to make sure that it not only satisfies the DE, but also that it satisfies
the solution at the specific points.

B. ELECTRICAL CIRCUITS

1. Electrical Circuits lend themselves to modeling with differential equations.

2. Kirchoff’s Law: Below L is the inductance (measured in Henries), R is the resis-
tance (measured in Ohms), C is the capacitance (measured in Coulombs), E is
the battery/generator voltage (measured in Volts):

a. For RL circuits, your unknown is the current i(t). The equation is

L
di

dt
+Ri = E

with initial condition i(0) =initial current.

b. For RC circuits, your unknown is the charge q(t). The equation is

R
dq

dt
+
q

C
= E

with initial condition q(0) =initial charge.

Note that you may have to use the relationship i = dq
dt

.

Also, for steady state charge current take the limit as t→∞. Note that the limit
may NOT be a number but a function. In the latter case, the limit eliminates
terms of the form e−kt, where k is a positive constant.
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2 Direction Fields

A. The Direction Field, or Slope Field, is a graphical representation of the “output” of a
differential equation, thought of as a function assigning to each point in the xy-plane
a slope. For the equation

dy

dx
= f(x, y)

this slope is obtained by taking arbitrary values for x and y and plugging them into
f(x, y).

1. Starting at any point in the plane and following these instantaneous rates of
change will construct a specific solution to the differential equation, just like a
numerical initial condition.

3 Euler’s Method

A. Euler’s Method numerically approximates the value of a solution yn ≈ y(xn) to the
differential equation

dy

dx
= f(x, y)

given an initial condition y(x0) = y0, provided that we can “step” from y0 to yn in
discrete steps of size h.

1. For example, to determine y(1.3) given y(1), you could use three steps of size
h = 0.1.

B. Use the formulae
xn+1 = xn + h yn+1 = yn + hf(xn, yn)

Make sure that you use the “old” values in yn+1.

4 Separable Equations

Equations of the form(s)

dy

dx
=(term involing only x)(term involing only y)

dy

dx
=(term involing only x)

dy

dx
=(term involing only y)
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A. To solve isolate all x’s on one side of the equation and all y’s on the other side.

B. Integrate both sides and place arbitrary constants on one side of the equation for
simplicity.

5 Exponential Growth and Decay

A.
dy

dx
= ky, y(0) = y0.

1. Solution is y(t) = y0e
kt.

2. k > 0 means exponential growth.

3. k < 0 means exponential decay.

B. Radioactive Decay

1. Mathematically a simple exponential decay.

2. Physicists prefer half-life, th to decay constants; half-life helps you find the con-
stant k from the following formula:

k =
ln(0.5)

th

6 Newton’s Law of Cooling/Heating

A. The equation that gives the temperature T (at any time t) of an object with initial
temperature T0 placed in a room with temperature Tamb is:

dT

dt
= k(T − Tamb),

where k a constant to be determined later.

B. Using separation of variables the solution is

T = Tamb + (T0 − Tamb)ekt

To find k a problem usually states the following:

1. The temperature after t1minutes/hours is T1. In that case plug the given quanti-
ties to the solution.

2. When the temperature is T2 the object cools/heats at a rate of r degrees per
minute/hour. In that case plug the given quantities into the differential equation.
Do NOT forget to put a minus sign on the rate if the object cools.
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7 Linear Equations

A. Equations of the form
y′ + p(x)y = q(x)

Note that the equation may NOT be in this form. You may have to manipulate it to
bring it to that form. As a first step, always divide by the coefficient of y′.

B. First, let

µ =

∫
p(x)dx

Note that you do not need a constant of integration here. The solution of the equation
is

y = e−µ
(∫

eµq(x)dx+ C

)

8 Sequences

A. Lists of numbers {an} = a1, a2, a3, . . .

B. Sequence converges if the terms approach a finite value far into the set

lim
n→∞

an = L

C. Other properties of sequences:

1. Monotonic: always increasing or always decreasing.

2. Bounded:

a. Bounded Above: There is a number greater than or equal to every term.

b. Bounded Below: There is a number less than or equal to every term

RESULT: If increasing and bounded above, then convergent. Same if decreasing
and bounded below.
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9 Series

A. INFINITE sum of the terms of a sequence.

B. Series convergence means that all of the terms added together give a finite constant
∞∑
n=0

an = S.

C. TEST FOR DIVERGENCE: If the terms of the sequence converge to a non-zero value,
or diverge, then the series diverges. That is

If lim
n→∞

an = L 6= 0 or limn→∞ an DNE, then
∑∞

n=0 an DNE

D. GEOMETRIC SERIES

To test whether a series is geometric, perform the following:

– divide any two consecutive terms (the later term by the earlier)

– repeat for a different pair of consecutive terms

– if the result of the above steps is the same, the series is geometric

Call the ratio r. The geometric series converges if |r| < 1 to a
1−r . If |r| ≥ 1 the series

diverges. Formally, what we saw above is that every new term of the series is formed
by multiplying the old term by r. So if we start with the term a the series can be
written as

a+ ar + ar2 + ar3 + . . . =
∞∑
n=0

arn

RECALL that the geometric series is one of a few which we can evaluate.

E. ABSOLUTE CONVERGENCE

1. If
∞∑
n=1

|an|, (i.e. the series composed of the absolute values of the terms of the

original series) converges, then
∞∑
n=1

an is said to be “Absolutely Convergent”.

2. If a series is Absolutely Convergent, then it is Convergent.

3. Ratio Test

If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1 then
∞∑
n=1

an converges absolutely

If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ > 1 then
∞∑
n=1

an diverges

Note that the Ratio Test is inconclusive if lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1.
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10 Power Series

A. Functions of x.

B. f(x) =
∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + · · · centered at 0 or

f(x) =
∞∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + · · · centered at a

C. Determine values of x for which power series converges, called the interval of conver-
gence which has a radius R about a, with the Ratio Test

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1

1. If the series converges only if x = a, then R = 0.

2. If the series converges for all x, then R =∞.

3. If the series converges for some values of x, then R > 0 with the series converging
in the interval (a−R, a+R). (Here the endpoints are NOT included.)

11 Functions Written as Series Sums

A. Use algebra to manipulate problems into a transformation of the geometric series

1

1− x
= 1 + x+ x2 + x3 + · · ·

Note that you can substitute anything for x.

B. Note that you can use derivatives or integrals to express more complicated functions
as series. Here are a couple of examples:

− ln(1− x) =

∫
1

1− x
dx =

∫
(1 + x+ x2 + . . .) dx

= x+
x2

2
+
x3

3
+ . . .

or

arctan(x) =

∫
1

1 + x2
dx =

∫
1

1− (−x2)
dx =

∫
(1 + (−x2) + (−x2)2 + . . .) dx

= x− x3

3
+
x5

5
+ . . .
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12 Taylor and MacLaurin Series

A. Used to approximate values of functions which can be written as power series.

B. Taylor Series of f about a

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + . . .

C. MacLaurin Series of f is a Taylor Series about a = 0

f(x) = f(0) + f ′(0)x+
f ′′(0)

2
x2 +

f ′′′(0)

3!
x3 + . . .

D. Find the first four or five derivatives, evaluate them at a so that you can determine
the coefficients. After you have constructed the respective terms, observe the pattern
and write the n-th term.
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