
Contents

1 Matrix Algebra 5
1.1 Vectors and Matrices . 5
1.2 Vector Operations . 6
1.3 Matrix Operations . 8
1.4 Linear Spaces and Subspaces . 14
1.5 Determinants and Inverse of Matrices . 18
1.6 Computing A−1 Using Co-Factors . 24
1.7 Linear Independence, Span, Basis and Dimension 26
1.8 Row Reduction and Gaussian Elimination . 28
1.9 Eigenvalues and Eigenvectors . 33
1.10 concluding remarks . 38

2 Differential and Integral Calculus 39
2.1 Derivative . 39
2.2 Taylor Polynomial and Series . 42
2.3 Functions of Several Variables and Vector Fields 45
2.4 Divergence . 48
2.5 Curl and Vector Fields . 52
2.6 Integral Theorems . 54

3 Ordinary Differential Equations 59
3.1 Linear ODEs . 60
3.2 General Systems of ODEs . 62
3.3 MATLAB’s ode45 . 64
3.4 Asymptotic Behavior and Linearization . 67
3.5 Motion of Parcels of Fluid in MATLAB . 72
3.6 Numerical Methods . 75
3.7 Stability Analysis of Numerical Schemes . 77
3.8 MATLAB Programs for the Forward Finite Difference Method 78
3.9 Stability Analysis of Numerical Schemes (continued) 81
3.10 Boundary Value Problems and the Shooting Method 85
3.11 Project A: Modified Euler Method . 89
3.12 Project B: Runge-Kutta Methods . 91
3.13 Project C: Boundary Value Problem u′′ = f(x), u(0) = u(1) = 0. 95

1

2 CONTENTS

3.14 Project D: The Method of Line . 100
3.15 References . 104
3.16 Linear Algebra and Matrix theory . 104
3.17 Advanced Calculus . 104
3.18 Differential Equations . 104

4 Equations of Motion of Fluid Dynamics 105
4.1 Flow Representations – Eulerian and Lagrangian 105
4.2 Deformation Gradient . 108
4.3 Derivation of Equation of Conservation of mass – a Heuristic Approach 113
4.4 Acceleration in Cartesian Coordinates . 122
4.5 Strain-Rate Matrix and Vorticity . 123
4.6 Internal Forces and the Cauchy Stress . 129
4.7 Euler and Navier-Stokes Equations . 132
4.8 Bernoulli’s Equation . 135
4.9 Acceleration in a Rotating Frame . 137

4.9.1 Coordinate Curves . 137
4.9.2 Spherical Basis . 139
4.9.3 Eulerian Formulation of Velocity and Acceleration Revisited 140
4.9.4 Velocity in Spherical Basis . 141
4.9.5 Dynamics of Basis Vectors . 142
4.9.6 A formula for Acceleration . 143
4.9.7 Coriolis Acceleration: 2Ω× vr . 146
4.9.8 Gradient Operator in Spherical Coordinates 146
4.9.9 Navier-Stokes Equation in a Rotating Frame 147

4.10 Project A: Inviscid Linear Fluid Motions . 149
4.11 Project B: Equations of Motion for Bubbles . 151
4.12 Project C: Chaotic Transport . 153
4.13 Project D: Particle Dynamics on the Rotating Earth 156
4.14 References . 156

5 Shallow Water Equations 157
5.1 Introduction . 157
5.2 Derivation of Equations . 157
5.3 Linearization of the Shallow Water Equations . 160
5.4 Linear Wave Equation . 161

5.4.1 Separation of Variables and the Fourier Method 162
5.4.2 The Fourier Method in MATLAB . 165

5.5 The Characteristics Method . 169
5.6 D’Alembert’s solution in MATLAB . 172
5.7 Method of Line and the Wave Equation . 173
5.8 Project A: Derivation of the Characteristics Method 178
5.9 Project B: Variations on the Method of Line . 181
5.10 References . 182

CONTENTS 3

6 Wind-Driven Ocean Circulation: The Stommel and Munk Models 183
6.1 Introduction . 183
6.2 The Stommel Model . 184

6.2.1 The Governing PDE . 184
6.3 Non-dimensionalization . 186
6.4 Solution to the BVP . 187

6.4.1 Determining ψp . 187
6.4.2 Determining ψh . 187
6.4.3 Applying the Boundary Conditions . 188

6.5 MATLAB Programs . 190
6.6 The Stommel Model – A Numerical Approarch 194
6.7 Constructing the System AΨ = B . 196
6.8 The MATLAB Program . 199
6.9 References . 199

7 Stommel and Munk Models 201

8 The Lorenz Equations 203
8.1 Introduction . 203
8.2 References . 206

4 CONTENTS

Part One: Mathematical Preliminaries

Assuming you have some familiarity with the basic tenets of elementary calculus, differential
equations and matrix theory, in this first part of the this text we will review the essential defini-
tions and theorems from these topics, leaving the motivation and some of the details to be found
in the standard texts referenced at the end of the chapter. In conjunction with this review, you
will be introduced to the basic MATLAB tools as they relate to the mathematical concepts.

Chapter 1

Matrix Algebra

Here we develop the basic concepts and tools in matrix algebra, including vector spaces and
subspaces, systems of algebraic equations, determinants and inverse of matrices, Gaussian elimi-
nation, and eigenvalues and eigenvectors. Each topic is supplemented with the elementary MATLAB
functions that relate to the mathematical concepts.

1.1 Vectors and Matrices

A vector is a quantity that has magnitude and direction, while a scalar is a quantity with
magnitude only. As is standard in science, scalars are often denoted by Latin or Greek letters,
such as a, b, α and β, and vectors are displayed in boldface – x, y, α and e2. Physical concepts
such as force, velocity, acceleration are represented by vectors while quantities such as mass,
pressure, temperature, and salinity are examples of scalars.

We adopt the natural geometric interpretation of a vector v in the plane or the three-
dimensional space, as an arrow that begins at the origin of the coordinate axes, is parallel to the
direction of the vector, and has its length equal to the magnitude of the vector. In this setting
we use the coordinates of the endpoint of the arrow to identify the vector. For example

v = 〈1,−2, 2〉

is the vector that originates at (0, 0, 0) and ends up at (1,−2, 2). Note the use of 〈 and 〉 to denote
a vector, while (and) are used to denote coordinates of positions. With this interpretation in
mind, the length or the magnitude of the vector v = 〈a1, a2, a3〉, denoted by ||v||, is the
distance from (0, 0, 0) to (a1, a2, a3):

||v|| =
√

a2
1 + a2

2 + a2
3. (1.1)

Although vectors in physical settings typically have two or three components, we often en-
counter vectors that have n components, where n can be any positive integer, so a vector v may
appear as

v = 〈a1, a2, ..., an〉.

5

6 CHAPTER 1. MATRIX ALGEBRA

The magnitude of v is determined the same way as in (1.1)

||v|| =
√

a2
1 + a2

2 + ... + a2
n =

√√√√
n∑

i=1

a2
i .

Matrices are simply rectangular array of numbers delimited by square brackets. A few
examples are

A =
[√

2 2
−3.1 4

]
, B =

[
a1 a2 a3

b1 b2 b3

]
, C =




sin x sin 2x
sin 2x sin 4x
sin 3x sin 6x


 ,

or

D =




4 −1 0 0 1 + i
−1 4 −1 0 0

0 −1 4 −1 0
0 0 −1 4 −1

1− i 0 0 −1 4




, E =




1
2

1
3

1
4

1
3

1
4

1
5

1
4

1
5

1
6


 ,

Each of these matrices has a certain number of rows and columns; Matrix A is a 2 by 2 matrix,
consisting of two rows and two columns. Similarly, matrices B, C, D and E are 2 by 3, 3 by 2,
5 by 5 and 3 by 3, respectively. From now on we use the notation m × n to denote an m by n
matrix.

Ecah entry of a matrix is identified by the row and column positions it occupies, so the (1, 1)
(pronounced “one one”) entry of A is

√
2, its (1, 2) entry is 2, its (2, 1) entry −3.1, and so on.

It is common to denote the (i, j)-th entry of a matrix A by aij , so, referring back to matrix A
defined above, we write

a11 =
√

2, a12 = 2, a21 = −3.1, a22 = 4.

Vectors could also be viewed as matrices having only one row or one column. For instance
the vector v = 〈1,−2, 2〉 can also be identified by the matrices V1 or V2 defined as

V1 =
[

1 −2 2
]
, V2 =




1
−2

2


 .

The appropriate identification is often determined by the problem context.

1.2 Vector Operations

Based on experience with modeling physical problems, we have an understanding and apprecia-
tion of where vectors come from and why we should represent and manipulate them mathemat-
ically. The typical operations of vector addition and scalar multiplication, as well as the various
vector multiplications, have their origin in well-known physical settings. To a large extent similar
interpretations exist in matrix algebra, which we now address.

1.2. VECTOR OPERATIONS 7

Given a vector v and a scalar α, an element in the set of real numbers R or complex numbers
C, we define αv, the scalar product of α and v, as the vector that has magnitude |α| ||v|| and
is otherwise parallel to v. If v = 〈a1, a2, a3〉, we find that

αv = 〈αa1, αa2, αa3〉.

The sum or vector addition v1 + v2 of the two vectors v1 and v2 is the vector we obtain as
the main diagonal of the parallelogram constructed based on the two vectors v1 and v2. This
geometric construct is equivalent to the following algebraic operation: Let v1 = 〈a1, a2, a3〉 and
v2 = 〈b1, b2, b3〉. Then

v1 + v2 = 〈a1 + b1, a2 + b2, a3 + b3〉.
Similarly, the sum of two vectors v1 = 〈a1, a2, ..., an〉 and v2 = 〈b1, b2, ..., bn〉 is the vector

v1 + v2 = 〈a1 + b1, a2 + b2, ..., an + bn〉.

There are two vector multiplications that we need to consider. First, the dot or the inner
product of the two vectors v1 and v2, denoted by v1 · v2, is defined by

v1 · v2 = ||v1|| ||v2|| cos θ,

where θ is the angle between the two vectors. This operation has two significant geometric
interpretations: a) when ||v1|| = 1, v1 · v2 equals the length of the projection of v2 on v1, and
b) v1 ·v2 vanishes if and only if the vectors are orthogonal. In component form the dot product
takes the form

v1 · v2 =
3∑

i=1

aibi,

which has the straightforward extension to n-dimensional vectors

v1 · v2 =
n∑

i=1

aibi.

The second way to consider the product of two vectors v1 = 〈a1, a2, a3〉 and v2 = 〈b1, b2, b3〉
is by forming their Vector or Cross product. Denoted by v1 × v2, the cross product of v1 and
v2 is a vector whose magnitude is

||v1|| ||v2|| sin θ

and whose direction is perpendicular to both v1 and v2 and uniquely determined by the right-
hand rule. In component form this vector takes the form

v1 × v2 = 〈a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1〉. (1.2)

Geometrically, this operation provides information about how close two vectors are to being
parallel. In particular, v1 × v2 = 0 if and only if v1 and v2 are parallel.

Problems

1. Let a = 〈1,−2〉, b = 〈3,−1〉.

8 CHAPTER 1. MATRIX ALGEBRA

(a) Find ||a||, ||b||, ||3a + 2b||,
(b) a · a, a · b, (2a) · (−3b),

(c) Extend a and b to be three-dimensional vectors by setting their third components to
zero. Compute a× b, b× a, a× a, (a + b)× a.

2. Let a = 〈2.1,−2, 3〉, b = 〈3.2,−1.1, 4.3〉.
(a) Find ||a||, ||b||, ||αa + b||, where α is a real number,

(b) a · a, ||a||, a · b,

(c) Compute a× b, a× a, b× a,

(d) Compute a · (b× c) where c = 〈1, 1, 1〉.
3. Let a = 〈a1, a2, a3〉, b = 〈b1, b2, b3〉, and c = 〈c1, c2, c3〉.

(a) Show that a× b = −b× a.

(b) Is a× (b× c) = (a× b)× c? Either prove the result or give a counterexample.

4. Let a = 〈a1, a2, a3〉, b = 〈b1, b2, b3〉, and c = 〈c1, c2, c3〉.
(a) Show that a · (b× c) = (a× b) · c.
(b) Show that a · (b× c) is the volume of the parallelepiped constructed from a, b and c.

(c) Show that a× (b× c) = (a · c)b− (a · b)c.

5. Let a = 〈a1, a2, a3〉. Show that a · a = ||a||2.
6. Let e1 = 〈1, 0, 0〉, e2 = 〈0, 1, 0〉, and e3 = 〈0, 0, 1〉.

(a) Show that ei · ej = δij , where δij = 1 if i = j and zero otherwise.

(b) Show that e1 × e2 = e3, e2 × e3 = e1 and e3 × e1 = e2.

(c) Let a = 〈a1, a2, a3〉. Note that a = a1e1 + a2e2 + a3e3. Let b = 〈b1, b2, b3〉. Using
the information in parts (a) and (b), show that a × b = (a2b3 − a3b2)e1 + (a3b1 −
a1b3)e2 + (a1b2 − a2b1)e3. Compare this result with the formula in (1.2).

7. Let u = 〈u1, u2, u3〉 and e3 as defined in Problem (6a). Compute e3 × (e3 × u).

1.3 Matrix Operations

The concepts of matrix addition and scalar multiplication are borrowed directly from their
counterparts in vectors: Given two m×n matrices A and B, their sum, A + B, is another m×n
matrix whose ij-th entry is the sum of the ij-th entries of A and B:

A = [aij], B = [bij], then A + B = [aij + bij].

Similarly, the scalar product of α and A, denoted by αA, is defines as the matrix whose ij-th
entry is αaij :

A = [aij], α ∈ R, then αA = [αaij].

1.3. MATRIX OPERATIONS 9

The operation of dot product of vectors is the basis for the definition of matrix multiplication.
Consider the two matrices A and B, with A an m× p matrix and B a p× n matrix. We define
C, the product of A and B, as the m× n matrix whose (i, j)-th entry is the dot product of the
i-th row of A and the j-th column of B, i. e.,

cij =
p∑

k=1

aikbkj .

For example, consider the matrices

A =
[

1 −2 2
0 1 −1

]
, B =




0 1
−1 1

1 3


 .

Then

C = AB =
[

1 −2 2
0 1 −1

] 


0 1
−1 1

1 3


 =

[
4 5

−2 −2

]
,

a fact we verify in MATLAB by entering the following lines:

A=[1 -2 2;0 1 -1]
B=[0 1;-1 1;1 3]
A*B

One of the important features of matrix multiplications is that this operation is not commuta-
tive, that is, AB does not necessarily equal BA. Simply compute BA in the previous example:

BA =




0 1
−1 1

1 3




[
1 −2 2
0 1 −1

]
=




0 1 −1
−1 3 −3

1 1 −1


 .

Note that BA looks quite different from AB, including having a different size and shape.
The definition of matrix multiplication is intimately related to how one represents systems of

linear algebraic equations. Consider, for instance, the system of equations




2x + 3y − z = 1,
−3x + 2y + 4z = −2,

x + y + z = 0.
(1.3)

The left-side of each equation in (1.3) is the dot product two vectors, one vector consisting of the
variables x, y and z, and the other the vector of the coeffiecients. In this way (1.3) is re-written
as 



〈2, 3,−1〉 · 〈x, y, z〉 = 1,
〈−3, 2, 4〉 · 〈x, y, z〉 = −2,
〈1, 1, 1〉 · 〈x, y, z〉 = 0.

(1.4)

Recalling that the dot product of two vectors is at the essence of matrix multiplication, we now
rewrite (1.4) in matrix notation. First we construct a 3× 3 matrix A, each row of which consists

10 CHAPTER 1. MATRIX ALGEBRA

of the the coefficients of x, y and z in a corresponding equation:

A =




2 3 −1
−3 2 4

1 1 1


 .

Next write the variables x, y and z as a 3× 1 column vector and denote it by x:

x =




x
y
z


 ,

and finally we construct a second column vector to include the input variables and denote it by :

b =




1
−2
0


 .

The system of linear equations (1.3) is now equivalent to the matrix equation

Ax = b, (1.5)

as it can easily be verified.
This strategy generalizes to any system of linear equations. Consider the system of linear

equations consisting of m equations in n unknowns:




a11x1 + a12x2 + ... + a1nxn = b1,
a21x1 + a22x2 + ... + a2nxn = b2,

... = ...,

... = ...,
am1x1 + am2x2 + ... + amnxn = bm.

(1.6)

This system is written in the form Ax = b with

A =




a11 a12 am1

a21 a22 am2

...

...
am1 am2 amn




, x =




x1

x2

...

...
xm




. b =




b1

b2

...

...
bm




. (1.7)

In most examples of physical significance the matrix A in (1.7) will be square (i.e., m = n). One
such example is 




2x1 − x2 = h2f(t1),
−x1 + 2x2 − x3 = h2f(t2),
−x2 + 2x3 − x4 = h2f(t3),

... = ...

... = ...
−xn−1 + 2xn = h2f(tn),

(1.8)

1.3. MATRIX OPERATIONS 11

where the typical i-th equation is

−xi−1 + 2xi − xi+1 = h2f(ti). (1.9)

System (1.8), as we see later, results from the numerical discretization of the boundary value
problem −x′′(t) = f(t), with x(a) = x(b) = 0. This system is of the form (1.5) with

A =




2 −1 0 0 0
−1 2 −1 0 0 ... 0
0 −1 2 −1 0 ... 0
...
...
... −1 2 −1
0 0 0 −1 2




, b = h2




f(x1)
f(x2)

...

...
f(xn)




. (1.10)

The matrix A in (1.10) has several interesting properties which we study in later sections and
chapters. One of these features is the sparsity of this matrix, that so many of its entries are
zero; MATLAB is particularly well-suited to handle matrices of this form by taking advantage of the
sparsity of such matrices and implement algebraic operations involving sparse matrices extremely
efficiently.

Returning to (1.5), the equation Ax = b in (1.5) has a very similar structure to the scalar
equation ax = b, whose solution is x = b

a when a 6= 0. This analogy will be the source of
inspiration for seeking solutions to the matrix equation Ax = b in the form

x = A−1b

once we have a proper definition of A−1, the inverse of A, a concept we will take up later in this
chapter.

We end this section with a few definitions of special matrices:

1. The zero matrix, denote by Z, is a matrix with all entries equal to zero. The lines

n=10;
zmatrix=zeros(n);

generates a 10× 10 zero matrix, labelled zmatrix, in MATLAB.

2. An m× n matrix is called a square matrix if m = n.

3. Given an n×n matrix A, the entries aii, i = 1, ...,m constitute the diagonal of that matrix.
Generally, when m is non-negative, the entries ai,i+m, i = 1, ..., n−m, comprise the m-th
superdiagonal of A. Similarly, the entries ai+m,i, i = 1, ..., n −m, with m non-negative,
form the m-th subdiagonal of A.

The matrix (1.5) has only three non-zero diagonals; the main diagonal, all of whose entries
are 2, a superdiagonal and a subdiagonal of only −1’s.

Mimicking MATLAB’s notation, we may denote by

diag(a, m)

12 CHAPTER 1. MATRIX ALGEBRA

to mean a matrix with zero entries everywhere, except on the m-th diagonal where the
entries of the vector a are placed. For example,

A = diag(〈2,−7, 3,−5〉,−2)

is the 6× 6 matrix

A =




0 0 0 0 0 0
0 0 0 0 0 0
2 0 0 0 0 0
0 −7 0 0 0 0
0 0 3 0 0 0
0 0 0 −5 0 0




.

Note that a negative m in this notation denotes a subdiagonal, a positive m a superdiagonal.
Hence,

B = diag(〈2, 2〉, 1)

is the 3× 3 matrix

B =




0 2 0
0 0 2
0 0 0


 ,

The following MATLAB lines reach the same conclusions:

a=[2 -7 3 -5];
A=diag(a,a);
B=diag([2 2],1];

4. The Identity matrix, denote by I, is an n× n matrix with ones on the diagonal and zeros
elsewhere. The command eye(n) in MATLAB generates an n× n identity matrix.

5. An n×n matrix is called a diagonal matrix if aij = 0 if i 6= j; so a diagonal matrix is one
whose only nonzero entries may reside on the diagonal.

6. An n × n matrix is called upper triangular if aij = 0 with i ≤ j. Similarly, an n × n
matrix is called lower triangular if aij = 0 with i ≥ j. The matrix A in (1.10), for
example, may be written as the sum of three matrices, D, a diagonal matrix, and L and
U , which are lower and upper triangular, respectively, as follows

A = D + L + U

where D = 2I, L = diag(〈−1,−1, ...,−1〉,−1) and U = diag(〈−1,−1, ...,−1〉, 1). The
following lines in MATLAB generate a 10× 10 version of A:

n = 10;
a=-ones(n-1,1);
A=2*eye(n)+diag(a,-1)+diag(a,1);

1.3. MATRIX OPERATIONS 13

7. Given a matrix A we construct AT , called the transpose of A, by interchanging the rows

and columns of A. For example, if A =
[

1 2
3 4

]
, then AT =

[
1 3
2 4

]
. The transpose

operation in MATLAB is accomplished by placing an ’ after the matrix:

A=[1 2; 3 4];
B= A’; % B is the transpose of A

8. A square matrix A is said to be symmetric if A = AT ; the matrix A in (1.10), for example,

is symmetric, while A =
[

a 2
3 b

]
is not. It is easy to show that the sum of two symmetric

matrices is another symmetric matrix, while the product of two symmetric matrices may
not in general be symmetric.

9. Given a complex-valued matrix A, the matrix Ā is the matrix one obtains by taking the

complex conjugate of each entry of A. For example, if A =
[

1 + i 2
−3− i 2 + 3i

]
, then

Ā =
[

1− i 2
−3 + i 2− 3i

]
. The Conjugate Transpose of a matrix A is defined by ĀT . A

complex-valued matrix is called Hermitian if A = ĀT .

Problems

1. Use the help command in MATLAB to learn about zeros, ones, eye, diag.

2. Write down the following matrices:

(a) diag(〈a, a〉, 1)
(b) diag(〈a, a〉, 0)
(c) diag(〈a, a, b〉,−1)
(d) ones(2), ones(2,1) zeros(3), zeros(10,2); verify each answer in tt MATLAB.
(e) A=-2*diag(ones(3,1)). How does the output differ from A = -2*eye(3)?

3. What will be the output of the following program in MATLAB? Write down the output of
each line:

a=3;
b=-1;
A=a*diag(ones(2,1),1)+4*diag([b b],-1)+7*diag([b],2);
B=A’;

4. Write the following systems of linear equations in matrix form

i)
{

2x− 3y = 1
3x + y = −2,

ii)
{

ax + by = α1

cx + dy = α2,
iii)





x + y + z = 0
x− y + z = 1
2x + z = 1,

iv)
{

y = 2x
x− y = 0.

14 CHAPTER 1. MATRIX ALGEBRA

5. Let A and B two arbitrary 2×2 matrices. Show that the transpose of the product of A and
B is the product of the transposes of B and A (note the change in order of multiplication),
i.e.,

(AB)T = BT AT .

6. Let A and B be two n× n symmetric matrices. Show that

(a) A + B is also symmetric.

(b) αA + βB is symmetric for all α and β, where α and β are arbitrary real numbers.

(c) Is the product of A and B necessarily symmetric? Either prove this statement or give
a counterexample.

7. A square matrix A is called skew symmetric if AT = −A. Determine which of the
following matrices is symmetric or skew-symmetric.

i)
[

2 1
1 −1

]
ii)

[
0 2

−2 0

]
.

8. Let A be an n× n skew-symmetric matrix. Show that aii = 0 for every i with 1 ≤ i ≤ n.

9. Show that the zero matrix Z is the only matrix that is symmetric and anti-symmetric.

10. Let A be an n × n matrix. Show that A can be written as sum of two n × n matrices B
and C, where B is symmetric and C an anti-symmetric matrix.

11. Consider A =



−1 1 −1
0 1 2
3 2 1


 . Find the B and C of the previous problem.

12. Consider the set of linear equations given by the formula

xi+1 − 2xi + xi−1

h2
+ a

xi+1 − xi−1

2h
+ xi = f(ti),

where h and a are given, the index i ranges from 1 to 6, and x0 = x7 = 0.

(a) Write down this system as Ax = b.

(b) Is A symmetric? Is it Skew-symmetric?

(c) Find D, L and U to write A = D+L+U with D a diagonal matrix, L lower traingular,
and U upper triangular.

1.4 Linear Spaces and Subspaces

Lines and planes of geometry are the fundamental objects in geometry for building and ap-
proximating other structures such as curves and surfaces. Lines and planes are examples of
linear spaces and subspaces in three dimensions, which we develop here in the general setting of
arbitrary dimensions.

1.4. LINEAR SPACES AND SUBSPACES 15

We denote by Rn the collection of all n-tuples, i.e.,

Rn = {(a1, a2, ..., an)| ai ∈ R}

where R is the set of real numbers. We note that we can add elements in Rn and multiply
elements by scalars in the natural way:

(a1, a2, ..., an) + (b1, b2, ..., bn) = (a1 + b1, a2 + b2, ..., an + bn),
c (a1, a2, ..., an) = (c a1, c a2, ..., c an).

Note that under the addition and scalar multiplications, the resulting n-tuples still belong to Rn.
In this sense, we say that Rn is closed under the operations of addition and scalar multiplications
and refer to Rn as the n-dimensional Euclidean space. Geometrically, R2 is equivalent to the
usual plane and R3 to the three-dimensional physical space. The complex version of Rn, denoted
by Cn, where

C = {z| z = a + bi, a, b ∈ R},
with i =

√−1, is defined in the same way as Rn and is equipped with the natural operations of
addition and scalar multiplication based on these operation with complex numbers.

Similar to Rn, we define En, the n-dimensional space of vectors, as the collection of vectors
having n components

En = {〈a1, a2, ..., an〉| ai ∈ R}.
En is endowed with the vector addition and scalar multiplications defined earlier. There is of
course the natural connection between Rn and En in that the n-tuple a = (a1, a2, ..., an) in Rn

can be viewed as the endpoint of the vector 〈a1, a2, ..., an〉 in En, which begins at the origin of
the coordinate system and ends up at a.

By a linear subspace (or subspace for short) of either Rn or En we mean a subset of these
spaces that remains closed under the two operations of addition and scalar multiplications. For
example, consider the space R3 and the subspace

R1 = {(0, 0, a)| a ∈ R}.

To see that R1 is closed under addition and scalar multiplication, consider two arbitrary elements
of R1, A1 = (0, 0, a1) and A2 = (0, 0, a2). Their sum is (0, 0, a1) + (0, 0, a2), which equals
(0, 0, a1 + a2) and is therefore another element of R1. Similarly, with α an arbitrary scalar in R
and (0, 0, a) an arbitrary element of R1, we note that α(0, 0, a) equals (0, 0, αa), again belonging
to R1. Thus, R1 is closed under addition and scalar multiplication so it forms a subspace of R3.
Geometrically this subspace is the z-axis of a typical rectangular coordinate system set up for
the space R3.

By contrast the set R2 defined by

R2 = {(1, 0, a)| a ∈ R}

is not a subspace of R3 because this set is not closed under either addition or scalar multiplication.
To see this, consider a typical element from this set, (1, 0, a). With α 6= 1, an otherwise arbitrary
scalar, we have

α(1, 0, a) = (α, 0, αa)

16 CHAPTER 1. MATRIX ALGEBRA

which does not belong to R2 since α 6= 1.
The subspace defined by R1 is an example of a one-dimensional subspace of R3, a straight

line passing through the origin (we will give a precise definition of dimension shortly). In general
any straight line passing through the origin forms a subspace of R3. These subspaces constitute
the only one-dimensional subspaces of R3.

In addition to one-dimensional subspaces, R3 also has two-dimensional subspaces. A typical
one is R3 defined by

R3 = {(a, b, 0)| a, b,∈ R}.
Geometrically R3 is a plane passing through the origin. In fact any plane passing through the
origin forms a two-dimensional subspace of R3. As we will see later, because the definition of R3

contains two free parameters, a and b, R3 is a two-dimensional subspace of R3. We will often
refer to such parameters as the degrees of freedom of the subspace.

All in all R3 has four types of subspaces, the one- and two-dimensional subspaces we have
discussed already, the empty subspace (one that contains no element from R3, and thus forms a
zero-dimensional subspace), and R3 itself.

Subspaces of En are generated in the same way as in Rn, by allowing a few parameters vary.
For example,

E1 = {〈0, 0, a〉| a ∈ R}
and

E2 = {〈a, a, 0〉| a ∈ R}
each defines a one-dimensional subspace of E3, while

E3 = {〈a, b, a + b〉| a, b ∈ R}

is a two-dimensional subspace of E3.
We denote by Mm×n the set of all m by n matrices. This set is a linear space under the usual

matrix addition and scalar multiplication of matrices. Subspaces in Mm×n come about in the
same way that they are generated for Rn or En; all members of the subspace are m×n matrices
with a fixed set their entries set to zero and the rest allowed to be arbitrary. For example,
consider M2×2, the set of all 2 by 2 matrices. The set

M1 = {
[

a 0
0 0

]
| a ∈ R}

is a one-dimensional subspace of M2×2, which the reader can verify easily by showing that this
set is closed under matrix addition and scalar multiplication. Other one-dimensional subspaces
of M2×2 are constructed by placing the a in M1 in the other three slots in the 2 by 2 matrix.
Similarly, two-dimensional and three dimensional subspaces of M2×2 are generated by placing
two or three parameters in the various entry positions in the general 2 by 2 template.

We have taken some effort in this section to give examples of spaces and their subspaces of
the kind that play fundamental roles in mathematical physics. We will see additional examples
of linear spaces of special significance when we study methods to approximate functions and
their applications to solving differential equations numerically. We will also see applications of
subspaces when we study eigenvalues and eigenvectors of matrices, which constitute one of the
most important tools in applied mathematics.

1.4. LINEAR SPACES AND SUBSPACES 17

So far we have introduced the concepts of space and subspace in the context of vectors and
matrices. These concepts, however, apply equally naturally to other constructs in mathematics.
For example, consider the set Pn

Pn = {a0 + a1x + a2x
2 + ... + anxn+1| a0, a1, ..., an ∈ R}, (1.11)

which is the set of all polynomials of degree n, a positive integer, with real coefficients. If we
impose the natural addition of polynomials and scalar multiplication of a polynomial by a scalar
α ∈ R on Pn, then this set is closed under both addition and scalar multiplication, and hence
forms a linear space. The similarity between Pn and Rn+1 or En+1 should be clear. We can
associate to each typical element a0 + a1x + a2x

2 + ... + anxn+1 of Pn the point (a0, a1,an) in
Rn+1 or the vector 〈a0, a1, ..., an〉 in En+1. In this precise sense, we can think think of Pn to be
equivalent to Rn+1 and En+1, and when we discover properties of Rn+1 or En+1 we can ask if
those same properties have aanlogues for Pn and vice versa.

A second important set of functions that can be viewed as a linear space is the set of trigon-
metric functions

Tn = {a0 +
n∑

i=1

ai cos
iπx

L
+

n∑

i=1

bi sin
iπx

L
| ai, bi ∈ R} (1.12)

where L is a fixed real number and n a fixed positive integer. It is easy to see that the sum of
two elements of Tn, and the scalar product of an element of Tn again belong to Tn, so Tn is a
linear apace. Since there are 2n + 1 arbitrary coefficients in Tn (namely, the ai’s and bi’s), then
Tn is equivalent to the 2n + 1-dimenional Euclidean space R2n+1 or E2n+1. It is also relatively
easy to see that sets such as

{a0 +
n∑

i=1

ai cos
iπx

L
| ai ∈ R} and {

n∑

i=1

bi sin
iπx

L
| bi ∈ R}

are subspaces of Tn.

Problems

1. Verify whether the following sets form subspaces of R3 or E3. In case of a subspace, give
the geometric interpretation:

(a) {(0, a, 0)| a ∈ R}
(b) {(a, a, 0)| a ∈ R}
(c) {(a, 1, 1)| a ∈ R}
(d) {〈a, a, a〉| a ∈ R}
(e) {(a, b, 0)| a, b ∈ R}
(f) {〈a, b, a + b〉| a, b ∈ R}
(g) {a, b, c)| a, b, c ∈ R}.

2. Write down all subspaces of M2×2.

3. Show that {



0 0 a
0 0 0
0 a 0


 | a ∈ R} is a subspace of M3×3.

18 CHAPTER 1. MATRIX ALGEBRA

4. Find all subspaces of M2×3.

5. Find a formula for the number of subspaces of Mn×n.

6. Is the set O5 = {a1x + a3x
3 + a5x

5| ai ∈ R} is a subset of Pn when n ≥ 5?

7. Let A be an n× n matrix. the pair (λ,x) is called an eigenvalue-eigenvector pair for A if

Ax = λx

with x having at least one non-zero entry (note that x = 0 satisfies Ax = λx trivially).

(a) Show that if (λ,x) is an eigenvalue-eigenvector pair, so is (λ, αx) for any nonzero
α ∈ R.

(b) Show that if x1 and x2 are two eigenvectors associated with the same eigenvalue λ,
then x1 + x2 is also an eigenvector associated with λ.

(c) Let (λ1,x1) and (λ2,x2), with λ1 6= λ2, be two eigenvalue-eigenvector pairs of Ax =
λx. Is it true that x1 + x2 is an eigenvector? If so, what is the eigenvalue?

1.5 Determinants and Inverse of Matrices

One of the key ideas we have introduced so far is related to how matrix algebra is used to
write a system of algebraic equations compactly and what the consequence of this approach is
in obtaining the solution to such a system. We now elaborate more on this point and discuss
the theory of determinants of matrices and its implication in providing computational tools that
lead to solutions of systems of algebraic equations.

In the previous sections several special matrices were introduced including the identity matrix.
Recall that an n × n identity matrix, which we genrally denote by In or by I, is a matrix with
ones on the diagonal and zeros elsewhere; and let’s recall that in MATLAB this matrix is accessed
by entering

eye(n)

The identity matrix has the special property that it leaves a matrix A unchanged under multi-
plication, that is, AI = IA = A. In that sense this matrix acts as the multiplicative unity for
matrices, similar to the role number one plays for the set of real numbers. For this reason, I
also plays a significant role in the definition of A−1, the inverse of A. We say a matrix B is an
inverse of A if

AB = I. (1.13)

It turns out that a matrix B that satisfies (1.13) commutes with A, that is AB = BA. Addi-
tionally, it turns out that B, when it exists, is the unique matrix that satisfies (1.13). The last
two properties prompt us to denote by A−1 the (multiplicative) inverse to A so given a square
matrix A, A−1, when it exists, is the unique matrix that satisfies

AA−1 = A−1A = I. (1.14)

Not every square matrix A has an inverse, just like not every real number has a multiplicative
inverse. But unlike scalars, where 0 is the only number that does not have an inverse, there are

1.5. DETERMINANTS AND INVERSE OF MATRICES 19

infinitely many matrices that do not have inverses. We illustrate this point for the class of 2 by
2 matrices. Let A be defined by

A =
[

a11 a12

a21 a22

]

where the entries are arbitrary real or complex numbers. Let B be a candidate for the inverse of
A and write

B =
[

b11 b12

b21 b22

]
.

Since AB = I, and keeping in mind that we want to compute the entries of B in terms of A’s
entries, we group the four equations we obtain from this relation as follows:

{
a11b11 + a12b21 = 1,
a21b11 + a22b21 = 0,

and
{

a11b12 + a12b22 = 0,
a21b12 + a22b22 = 1,

(1.15)

The above systems are simultaneous equations in the unknowns (b11, b21) and (b12, b22), respec-
tively. Simple manipulations lead to

b11 =
a22

D
, b12 = −a12

D
, b21 = −a21

D
, b22 =

a11

D
, (1.16)

where D, called the determinant of the matrix A, is

D = a11a22 − a12a21. (1.17)

Hence,

A−1 = B =
1

a11a22 − a12a21

[
a22 −a12

−a21 a11

]
. (1.18)

Clearly if the determinant of the matrix A is zero, the formulas in (1.18) are not valid and A
will not have an inverse. Such matrices are called singular and will play a significant role when
we discuss eigenvalues and eigenvectors. By contrast nonsingular matrices, those with nonzero
determinants, will have unique inverses, which are in turn used to determine the unique solution
to the system of algebraic equations

Ax = b. (1.19)

To see this, multiply both sides of the above equation by A−1 to get

A−1(Ax) = A−1b.

Since A−1A = I, the left side reduces to x and we end up with

x = A−1b (1.20)

as the unique solution to (1.19). What we have illustrated is important enough that we state it
as a theorem.

Theorem 1.5.1: Consider a system of linear algebraic equations in the form (1.19). Then
(1.19) has the unique solution (1.20) if and only if A is nonsingular.

We have only illustrated this theorem in the context of 2 by 2 matrices. It turns out that its
statement and conclusion are valid for n× n matrices, a claim that we can easily verify once we

20 CHAPTER 1. MATRIX ALGEBRA

generalize the concept of determinant to these matrices. Before proceeding to that generalization,
we note in passing that the set of 2 × 2 singular matrices, matrices with zero determinants, is

neither finite (any matrix
[

a a
a a

]
is singular), nor is this set a linear subspace of M2×2. For

example, the two matrices [
1 1
1 1

]
,

[
1 2
2 4

]

are singular but their sum
[

2 3
3 5

]
is nonsingular. Similarly, the set of nonsingular matrices

also does not form a linear space since, starting with a nonsingular matrix A, its additive inverse
B = −A is also nonsingular, yet their sum A + B is the zero matrix, which is singular.

The computation of the determinant of an n by n matrix A is based on an iterative process,
where each step of the process reduces the computation to evaluating the determinant of i × i,
2 ≤ i < n, submatrices, each of which is constructed from A. As it turns out the algorithm we
present here does not have a unique starting point – it is up to the user to decide which row
or column of A is selected to start the algorithm to obtain the underlying submatrices. It is,
however, the case that the determinant of a matrix is a unique scalar whose determination is
independent of the starting strategy.

Given aij , the (i, j)-th entry of A, we define Aij as the (n−1)×(n−1) submatrix constructed
from A by eliminating its i-th row and j-th column. We define det(A) by

det(A) =
n∑

j=1

(−1)i+jaijdet(Aij). (1.21)

The formula in (1.21) is repeated until one reduces each det(Aij) to the computation of the
determinant of a 2 × 2 matrix, whose formula we arrived at in (1.17). Although this algorithm
is somewhat tedious, its iterative nature allows us to reduce the study of determinants of any
matrix to smaller sized matrices induced by the original matrix.

Expression (1.21) is computed using the i-th row of A. A similar formula gives the same value
when the computation is carried out in terms of a column of A instead:

det(A) =
n∑

i=1

(−1)i+jaijdetAij . (1.22)

We summarize the determinant algorithm as follows:

Algorithm 1.5.1 (Computing the Determinant of an n by n matrix A by Row Eval-
uation):

1. (Step 1): Select any of the rows of A. Label it the i-th row.

2. (Step 2): Construct the submatrices Aij, j = 1, ..., n. Compute the determinant of each
Aij. Label it Dij.

This is the recursive (iterative) step of the algorithm because computing the determinant
of an (n− 1)× (n− 1) matrix may require repeating this algorithm until each Aij becomes
a 2 matrix.

1.5. DETERMINANTS AND INVERSE OF MATRICES 21

3. (Step 3): Compute the sum
∑n

j=1(−1)i+jaijDij, which is the determinant of A.

We illustrate this algorithm for the 3 by 3 matrix

A =




1 −2 3
0 1 −2
3 2 1


 . (1.23)

We compute the determinant of this matrix using its first row (hence, i = 1 in Step 1 of Algorithm
1.5.1). To accomplish Step 2, we need to compute D11, D12 and D13. They are

D11 = det(
[

1 −2
2 1

]
) = 5, D12 = det(

[
0 −2
3 1

]
) = 6, D13 = det(

[
0 1
3 2

]
) = −3.

Step 3 leads to

det(A) =
3∑

j=1

(−1)1+ja1jD1j = a11D11 − a12D12 + a13D13 = 1× 5− (−2)× 6 + 3× (−3) = 8.

This result can be checked in MATLAB by executing the following lines:

a=[1 -2 3; 0 1 -2;3 2 1];
det(a)

As pointed out earlier, the above algorithm may be implemented using columns of A, which is
as follows:

Algorithm 1.5.2 (Computing the Determinant of an n by n matrix A by Column
Evaluation):

1. (Step 1): Select any column of A. Label it the j-th column.

2. (Step 2): Construct the submatrices Aij, i = 1, ..., n. Compute the determinant of each
Aij. Label it Dij.

3. (Step 3): Compute the sum
∑n

i=1(−1)i+jaijDij, which is the determinant of A.

To illustrate this algorithm, instead of using the first row of A in (1.23), we use the third column
(hence, j = 3 in Step 1 of Algorithm 1.5.2. Next we compute Di3, i = 1, 2 and 3:

D13 = det(
[

0 1
3 2

]
) = −3, D23 = det(

[
1 −2
3 2

]
) = 8, D33 = det(

[
1 −2
0 1

]
) = 1.

Step 3 leads to

det(A) =
3∑

i=1

(−1)i+3ai3det(Ai3) = a13D13− a23D23 + a33D33 = 3× (−3)− (−2)× 8 + 1× 1 = 8.

22 CHAPTER 1. MATRIX ALGEBRA

In later sections we will describe other algorithms for computing the determinant of a matrix.
The recursive algorithm we have descibed so far is a reasonable method to use when dealing with
relatively small size matrices, but it is quite inefficient when dealing with large matrices, princi-
pally because it require on the order of n3 algebraic operations (additions and multiplications) to
determine teh determinant of an n×n matrix. This algoirthm, however, lends itself to deducing
a few theoretical results about matrices, which we address next:

1. It follows directly from Step 3 of Algorithms 1.5.1 and 2 that if a row or a column of a
matrix A consists of zero entries, then the det(A) = 0.

2. If two rows or two columns of a matrix are identical, then that matrix has zero determinant,
which is easily arrived at for 2×2 matrices, and hence for for any n×n matrix by appealing
to the recursive character of the two algorithms.

3. If a row of a matrix is a linear combination of two other rows of the same matrix, then the
determinant of that matrix vanishes. This statement is readily proved for 2 × 2 matrices,
and hence can be exntended to all n× n matrices by induction.

Some of the exercises at the end of this section address these issues.
We end this section by briefly reviewing, at least in the context of simple examples, what we

should expect for a solution to Ax = b when A is singular. Consider the following system of two
euqtaions {

ax + by = e
ax + by = f.

(1.24)

Note that the determinant of A is zero in this case so we don’t expect to be able to determine
a unique solution. Geometrically, each equation in (1.24) is a straight line in the xy-plane.
Since both equations have the same slope −a

b , the two lines are parallel. If the system in
(refdetNoInverse) is to have a solution, it will reside at the intersection of these lines. Two
parallel lines intersect only if they are coincide, i.e., only if e = f in (1.24). Thus, evidently we
may encounter two scenarios; if e 6= f , then (1.24) has no solutions. Alternatively, if e = f , then
(1.24) has infinitely many solutions because now the two equations are identical, ax + by = e,
in which case we are dealing with one equation in the two unknowns x and y. Hence, assuming
b 6= 0, we solve y for x to get y = 1

b (e − ax), with x taking on any arbitrary real value. So, by
letting x = k, with k and real number, any ordered pair of the form

〈x, y〉 = 〈k,
1
b
(e− ak)〉

is a solution of (1.24). We will elaborate on this point in a later section when we discuss the
algorithm known as Gaussian Elimination, where we are able to generalize this discussion to
systems of linear equations of any size. We summarize these observations in the following theorem:

Theorem 1.5.2: Consider a system of linear algebraic equations in the form (1.19). Sup-
pose the matrix A in (1.19) is singular. Then (1.19) either has no solutions or infinitely many
solutions.

Problems

1.5. DETERMINANTS AND INVERSE OF MATRICES 23

1. Complete the calculations that led to the formulas in (1.15).

2. Compute the determinant and inverse (if it exists) of the following matrices. Check the
results in MATLAB.

(a) (i)
[

2 2
1 −1

]
, (ii)

[
2 −2

−2 2

]
, (iii)

[
a b
−b a

]
, where a and b are arbitrary real

numbers.

3. Compute the determinant of the following matrices. Check the results in MATLAB.

(a) (i)




2 2 0
0 1 −1
0 0 1


, (ii)




a a a
−a a 0

0 a a


, where a is an arbitrary real number, (iii)




1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5


.

4. Solve the following systems of equations and check the answers in MATLAB when appropriate:

(a)
{

2x− y = 1,
x + y = 3,

(b)
{

αx− βy = 1,
αx + βy = 3,

. Is there a solution to this problem for all values of α, β ∈ R?

(c)
{

x− y = 1,
2x− 2y = 3.

How many solutions does this problem have?

(d)
{

x− y = 1,
2x− 2y = 2.

How many solutions does this problem have?

5. Solve the following systems of equations and check the answers in MATLAB when appropriate:

(a)





x + y + z = 0,
2x− y = 1,

x− 2y + 3z = −7.

(b)





y + z = 2,
x− y = 0,

x + 3z = 4.

(c)





αx + y + z = 0,
x + αy + z = 0,
x + y + αz = 1.

what happens when α = −2? when α = 1?

6. Properties of Determinants

(a) Consider the two matrices A =
[

a11 a12

a21 a22

]
and B =

[
a11 + αa21 a12 + αa22

a21 a22

]
.

Note that B is obtained from A by multiplying the second row of A by α and adding
to its first row. Show that detA = detB. Show the same conclusion holds if B is
obtained from A by replacing A’s second row by adding α times its first row to the
second row.

24 CHAPTER 1. MATRIX ALGEBRA

(b) Let A be an arbitrary 3 × 3 matrix. Let B be obtained from A by replacing its i-th
row with the sum of the i-th and α times the j-th row, i 6= j. Then detA = detB.

(c) Show the above property holds for any n× n matrix.

(d) Let A and B two arbitrary 2× 2 matrices. Show that det AB = det A det B.

(e) Prove the conclusion of the above problem for arbitrary 3× 3 matrices. This result is
valid for arbitrary n× n matrices.

(f) Let A be an arbitrary n × n matrix. Let B be obtained from A by exchanging the
i-th and the j-th rows. Show that detA = −detB. Prove the same results holds when
columns of A are exchanged.

7. Use the Help command in MATLAB and read about the Hilbert matrix and its properties.
The command hilb(n) produces the n× n Hilbert matrix in MATLAB.

(a) Use MATLAB and compute the determinant and inverse of the i× i Hilbert matrix for
2 ≤ i < 5.

(b) The following program generates several Hilbert matrices, computes their determinant
and then plots their the graph of these values in the “semilog” scale (consult MATLAB’s
Help to read about semilogx, semilogy, loglog commands and their associated
concepts):

b=[0];
for i=1;10
b=[b;det(hilb(i+1)];
end
semilogy(b)

See Figure 1.1 for the output.

1.6 Computing A−1 Using Co-Factors

As in the case of 2× 2 matrices, when the determinant of an n×n matrix A is nonzero a unique
inverse A−1 exists. To compute it, we first construct a matrix, called the cofactor matrix, denoted
by cof(A). The (i, j)-th entry of this matrix is (−1)i+jdet(Aij), i.e.,

cof(A) =




det(A11) −det(A12) det(A13) ... det(A1n)
−det(A21) det(A22) −det(A23) ... −det(A2n)

...

...
det(An1) −det(An2) det(Ann)




, (1.25)

when n is odd, and with appropriate changes with n is even. The Adjoint of A is defined as the
transpose of cof(A):

Adj(A) = cof(A)T . (1.26)

1.6. COMPUTING A−1 USING CO-FACTORS 25

Figure 1.1: Determinant of Hilbert Matrices in Semilog Scale

The inverse of A−1 is now defined by the following formula:

A−1 =
1

det(A)
adj(A). (1.27)

As an example, consider the 3 by 3 matrix

A =




1 1 0
0 1 1
1 0 1


 .

The cofactor matrix of A is

cof(A) =




1 1 −1
−1 1 1

1 −1 1


 ,

whose transpose gives us the adjoint of A

adj(A) =




1 −1 1
1 1 −1

−1 1 1


 .

Also, det(A) = 2, so the inverse of A is

A−1 =
1
2




1 −1 1
1 1 −1

−1 1 1


 .

The above calculation can easily be verified in MATLAB as follows:

26 CHAPTER 1. MATRIX ALGEBRA

A=[1 1 0; 0 1 1; 1 0 1];
inv(A)

MATLAB returns

ans =

0.5000 -0.5000 0.5000
0.5000 0.5000 -0.5000

-0.5000 0.5000 0.5000

We have given no motivation for why the determinant of an n × n matrix is defined the way
it was, why is this scalar uniquely determined, why the algorithm for computing the inverse of
a matrix works, and why it leads to the unique inverse matrix. Some of these questions are
explored in the exercises, but to gain more indepth understanding of these concepts, the reader
is strongly encouraged to consult the books on linear algebra that are listed at the end of this
chapter, most notably the texts by Gilbert Strang as well as the video lectures available at
http://ocw.mit.edu/OcwWeb/Mathematics/18-06Spring-2005/CourseHome/.

Problems

1. Find the inverse of each matrix, if it exists. Verify answers in MATLAB when possible.

a)




0 0 1
1 0 0
0 1 0


 , b)




1 0 1
1 1 0
0 1 1


 , c)




0 1 0
0 0 1
−1 −2 −3


 , d)




a 0 a
b 0 0
0 c 0


 .

1.7 Linear Independence, Span, Basis and Dimension

Intimately related to the concept of inverse of a square matrix is the concept of linear indepen-
dence of its rows and columns. We now develop this concept in conjunction with that of the span
of a set of vectors, the basis and the dimension of a linear space.

Consider a set of vectors {a1,a2, ...,am}, each of which belonging to the linear space En. We
define the span of these vectors as the set of all linear combinations of these vectors:

S = {v|v = α1a1, α2a2 + ... + αmam, with αi ∈ R, 1 ≤ i ≤ m}. (1.28)

As an example, consider the set consisting of a single vector a1 = 〈1, 0, 0〉. The span of this
vector is

S1 = {αa1} = {α〈1, 0, 0〉} = {〈α, 0, 0〉}, where α ∈ R,

i.e., S1 is equivalent to the traditional x-axis when we assign coordinate axes to R3. Similarly,
consider the set {a1 = 〈1, 0, 0〉,a2 = 〈0, 0, 1〉}. The span of this set is

S2 = {α1a1 + α2a2|α1, α2 ∈ R}

which is equivalent to the xz-plane in R3.

1.7. LINEAR INDEPENDENCE, SPAN, BASIS AND DIMENSION 27

The reader is familiar with the three vectors i = 〈1, 0, 0〉, j = 〈0, 1, 0〉 and k = 〈0, 0, 1〉 and
the role they play for the space E3: these vectors span the entire space since given any vector
v = 〈a, b, c〉 ∈ E3, we can write v as a linear combination of {i, j,k}:

〈a, b, c〉 = ai + bj + ck.

Not only do these vectors span E3, they form the smallest set of such vectors, that is, if we
eliminate any of them from the set, we will lose valuable information. In contrast the set of four
vectors {i, j, i + j,k} still span E3 because having access to i + j has not provided us with any
additional capabilities. The latter set is an example of a linearly dependent set of vectors. In
fact we say a set of vectors {a1,a2, ...,am} forms a linearly independent set if

α1a1 + α2a2 + ... + αmam = 0 if and only if α1 = α2 = ... = αm = 0. (1.29)

To test this definition on the set {i, j,k} we construct the linear combination in (1.29), namely,
α1i + α2j + α3k, which equals 〈α1, α2, α3〉. The only way this vector can equal the zero vector
is for all three coefficients, α1, α2 and α3 to vanish. Hence, the set of vectors {i, j,k} is linearly
independent. To see that the set {i, j, i + j,k} is dependent, it suffices to construct a linear
combination in (1.29) for which some of the α’s are nonzero. One such linear combination (with
α1 = α2 = 1, α3 = −1 and α4 = 0) is

i + j− (i + j)

which vanishes. Hence, this set of vectors is linearly dependent.
A set of vectors is said to form a basis for a linear space if the set is linearly independent and

it spans the space. The number of vectors in a basis constitutes the dimension of that space.
The set {i, j,k}, for example, forms a basis for E3. Similarly the set {i + j, j + k,k + i} forms a
basis for E3 (see Problem (4) below) because this set is linearly independent and spans E3.

By components of a vector b ∈ En in a basis {aa,a2, ...,an} we mean the set of scalars α1,
α2, ..., αn such that b = α1a1 + α2a2 + ... + αnan and write

b = 〈α1, α2, ..., αn〉, (1.30)

and refer to (1.30) as the representation of b in terms of the basis {a1,a2, ...,an}. We will refer
to {e1 = 〈1, 0, 0, ...0〉, e2 = 〈0, 1, 0, ..., 0〉, ..., en = 〈0, 0, 0, ..., 1〉 as the standard or the Cartesian
basis in En.

Problems 1.7

1. Show that the two vectors 〈1, 1〉 and 〈1,−1〉 are linearly independent, while the two vectors
〈1, 1〉 and 〈2, 2〉 are not.

2. Identify geometrically the span of the following set of vectors:

(a) S1 = {〈1, 0, 0〉}.
(b) S2 = {〈1, 0, 0〉, 〈0, 1, 0〉}.
(c) S3 = {〈1, 0, 0〉, 〈0, 0, 1〉}.
(d) S4 = {〈1, 1, 0〉, 〈0, 1, 1〉}.

28 CHAPTER 1. MATRIX ALGEBRA

3. Show that set {a,b}, where a = i + j and b = i − j, forms a basis for E2. Consider the
vector c ∈ E2 defined as c = 〈2,−1〉 in the standard basis (that is c = 2i − j). Find the
components of c in terms a and b.

4. Show that the set of vectors {i + j, j + k,k + i} forms a basis for E3.

5. Consider the vector 〈1, 1, 1〉 in the standard basis in E3. Find the components of this vector
in the basis defined in Problem 4.

1.8 Row Reduction and Gaussian Elimination

In Section 1.5 we discussed the system of algebraic equations Ax = b and its solution x = A−1b
when A is invertible. It turns out that the process we described in the section on inverse of
matrices is expensive numerically, especially when the size of this matrix is large. In this section
we introduce an alternative method that is considerably more efficient and computationally
economical.

From our experience with manipulating equations in a system of algebraic equations




a11x1 + a12x2 + ... + a1nxn = b1,
a21x1 + a22x2 + ... + a2nxn = b2,

.................................. = ...,

.................................. = ...,
an1x1 + an2x2 + ... + annxn = bn,

(1.31)

we know that the following operations do not alter the solution to (1.31):

1. Exchanging two equations,

2. Multiplying an equation by a nonzero number,

3. Multiplying an equation by a number and adding it to another equation.

We now replace (1.31) with the augmented n× n + 1 matrix



a11 a12 a1n | b1

a21 a22 a2n | b2

... | ...

... | ...
an1 an2 ann | bn




(1.32)

where the | is used to separate the matrix of coefficients [aij] from the input vector b. Our goal
is to extend the above equation operations to the rows of (1.32) and row reduce this matrix to
an upper triangular form




a′11 a′12 a′1n | b′1
0 a′22 a′2n | b′2
... | ...
... | ...
0 0 a′nn | b′n




. (1.33)

1.8. ROW REDUCTION AND GAUSSIAN ELIMINATION 29

The latter system is equivalent to system of algebraic equations




a′11x1 + a′12x2 + ... + a′1,n−1xn−1 + a′1nxn = b′1,
a′22x2 + ... + a′2,n−1xn−1 + a′2nxn = b′2,

... = ...,
... = ...,

a′n−1,n−1xn−1 + an−1,nxn = b′n−1,
a′nnxn = b′n,

(1.34)

Assuming a′nn 6= 0 the last equation yields xn = b′n/a′nn. Having the value of xn in hand, we
consider the next to last equation in (1.34) and solve for xn−1:

a′n−1,n−1xn−1 + a′n−1,nxn = b′n−1 =⇒ xn−1 =
1

a′n−1,n−1

(b′n−1 −
a′n−1,n

a′nn

b′n).

Continuing with this backward substitution idea, we arrive at formulas for xn−2, xn−3, all
the way back to x1.

To see this method used in a concrete example, consider the system of linear equations




x + y + z + w = 6,
2x− 3y + z + w = −1,

z − 3x + w = 0,
2x− y = w

(1.35)

which is equivalent to 


1 1 1 1 | 6
2 −3 1 1 | −1

−3 0 1 1 | 0
2 −1 0 −1 | 0


 . (1.36)

Beginning with first row, we use row operations and convert every entry below a11 to zero: we
multiply the first row by −2 and add it the second row, multiply the first row by 3 and add to
the third row, and multiply the first row by −2 and add to the fourth row to get the equivalent
matrix 



1 1 1 1 | 6
0 −5 −1 −1 | −13
0 3 4 4 | 18
0 −3 −2 −3 | −12


 .

Next we move to the second row of the above matrix and make the entries below the (2, 2) entry
zero: Multiply the second row by 3

5 and add to the third row, and multiply the second row by
− 3

5 and add to the fourth row to get the equivalent matrix




1 1 1 1 | 6
0 −5 −1 −1 | −13
0 0 17

5
17
5 | 51

5
0 0 − 2

5 − 12
5 | − 21

5


 .

30 CHAPTER 1. MATRIX ALGEBRA

The latter system is equivalent to



1 1 1 1 | 6
0 −5 −1 −1 | −13
0 0 1 1 | 3
0 0 −7 −12 | −21


 .

To complete the row reduction phase of this method, we multiply the third row of the latter
matrix by 7 and add to the fourth row to get




1 1 1 1 | 6
0 −5 −1 −1 | −13
0 0 1 1 | 3
0 0 0 −5 | 0


 . (1.37)

We are now ready to apply the backward substitution part of the algorithm: The last row
is equivalent to −5w = 0, or w = 0. The third row is equivalent to z + w = 3 which results in
z = 3. Similarly, we arrive at y = 2 and x = 1.

The concepts we have introduced here, row reduction and backward substitution, provide us
with a method, called Gaussian Elimination, for solving for solutions of Ax = b. Gaussian
Elimination has two significant properties. First, the steps involved in implementing this method
typically require a reasonable number of additions and multiplications, especially when a large
number of the entries of the matrix of coefficients A vanish, a scenario that happens often in
the discretization of partial differential equations we encounter in the later chapters. The second
property of this method is its iterative character, which results in relatively simple computer
cODEs. Most modern software packages have internal commands that implement a version of
this algorithm. MATLAB’s rref command, for example, takes a matrix such as (1.36) and returns
the row reduced echelon form (hence “rref”) form of (1.36). This form, which is equivalent to
(1.36), goes one step beyond (1.37) by converting the n×n block of (1.37) to the identity matrix.
The extra steps that lead to such a form require that in each step of our Gaussian Elimination,
we not only make the entries below the diagonal zero, but apply the same strategy to the entries
above the diagonal. The following commands in MATLAB lead to the row reduced echelon form of
(1.36):

A=[1 1 1 1 6;2 -3 1 1 -1;-3 0 1 1 0;2 -1 0 -1 0];
B=rref(A)

MATLAB returns

B =

1 0 0 0 1
0 1 0 0 2
0 0 1 0 3
0 0 0 1 0

Note that the solution to (1.36), namely, x = 1, y = 2, z = 3, and w = 0 appears in the last
column of the B above.

1.8. ROW REDUCTION AND GAUSSIAN ELIMINATION 31

The success of Gaussian Elimination (and by extension rref) is intimately related to invert-
ibility of A. When A is invertible, where Ax = b has a unique solution, the row reduction
methodology works extremely well. This technique, however, is also robust when it is applied to
systems of algebraic equations where A is not invertible, or when A is not a square matrix. To
better understand the variety of cases that appear in the general case, we introduce the concept
of the rank of a matrix, which will enable us to write down a few results in compact form.

Given an m × n matrix A, let R be the span of the m row vectors of A. The rank of A,
denoted by ρ(A), is the dimension of R. Put in a slightly different way, ρ(A) is the maximal
number of linearly independent rows of A. In general, ρ(A) ≤ m. When ρ(A) = m, we say A
has full rank. When A is a square m×m matrix, it turns out that A is invertible if and only if
ρ(A) = m.

When ρ(A) < m the system of equations Ax = b may have infinitely many solutions or no
solutions at all. For example, the 2× 2 system

x + y = 1, 2x + 2y = 2. (1.38)

has infinitely many solutions (x = a, y = 1 − a, for any real-valued a) since clearly the two

equations in (1.38) are the same. The matrix A =
[

1 1
2 2

]
is singular and has rank ρ(A) = 1.

The key idea that characterizes the multiplicity of solutions in (1.38), in particular, as well
as for general systems, turns to be the relation between ρ(A) and the rank of the augmented

matrix [A|b]. For (1.38) the augmented matrix is
[

1 1 1
2 2 2

]
, and the ranks of both A and its

augmented matrix are one, an important indicator of when a system with a deficient rank ends
up having infinitely many solution – In general when ρ(A) = ρ([A|b]), the system Ax = b
will have infinitely many solutions. When, on the other hand, ρ(A) < ρ([A,b]), the system
will not have any solutions at all. An evidence of this feature can be seen in the system

x + y = 1, x + y = 0. (1.39)

where now the augmented matrix is
[

1 1 1
2 2 0

]
, which has rank 2 while ρ(A) is still one, and

of course (1.39) does not have any solutions. The above discussion is significant enough that we
state is as a theorem:

Theorem 1.8.1: Consider the system Ax = b. If

1. A is m×m and nonsingular, then x = A−1b is its unique solution.

2. A is m× n and ρ(A) = ρ([A|b]), then the system has infinitely many solutions.

3. A is m× n and ρ(A) < ρ([A|b]), then the system has no solutions.

One of the interesting, and somewhat unintuitive, properties of the rank of a matrix is that
ρ(A) = ρ(AT), i.e., the columns and rows of a matrix span the same linear space. In follows
then that the rank of an m× n matrix A satisfies

ρ(A) = min(m,n).

A word of caution about using rref with systems that do not have full rank. Note that when
we apply rref to (1.38)

32 CHAPTER 1. MATRIX ALGEBRA

rref([1 1 1; 1 1 0])

MATLAB returns

ans =

1 1 0
0 0 1

In the absence of any other warning statements, the user must conclude from this output that
(1.33) has no solutions since the second row of the output states 0 = 1. While when we apply
rref to (1.37)

rref([1 1 1;2 2 2])

we receive

ans =

1 1 1
0 0 0

The second row is equivalent to 0 = 0, which indicates that the system is equivalent to a single
equation (x + y = 1), which of course has infinitely many solutions.

Problems 1.8

1. Consider the following systems of equations. Use Gaussian elimination to determine if each
system has a unique solution, infinitely many solutions or no solution. Use rref to verify
the results.

(a)
{

2x + y = 1,
x− 3y = −2.

(b)





x + y + z = 1,
x− 3y + z = 2,

z − 3x = 0

(c)





x + y + z = 1,
x− y + 3z = 0,

2x + 4z = 1.

2. Consider the system
{

ax + y = b,
x + ay = 0,

where a and b are real numbers.

(a) Determine all values of a for which this system has a unique solution, i.e., when the
system is non-singular.

(b) For each value of a for which this system is singular, determine all values of b for which
i) the system has infinitely many solutions, and ii) no solution.

1.9. EIGENVALUES AND EIGENVECTORS 33

1.9 Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors of matrices constitute some of the most important tools that ma-
trix algebra offers in analyzing physical problems. By definition, given an n × n matrix A an
eigenvalue-eigenvector pair (λ, e), with e 6= 0, of A satisfies

Ae = λe. (1.40)

Geometrically, one can think of an eigenvector as a vector whose direction remains invariant
under the action of A. To gain an appreciation of this point, consider the matrix A given by

A =
[

1 2
2 1

]
. (1.41)

Let y = Ax. If x = 〈x1, x2〉, then y, image of x under the action of A, is

y = 〈x1 + 2x2, 2x1 + x2〉.
Typically what A does to each vector x is to stretch (or compress) it as well as rotate it through
an angle. In fact if we consider the set of all x’s having magnitude one, which trace a circle of
radius 1 in the (x1, x2) plane, the images Ax trace an ellipse (see Figure 1.2). To see this, note
that the circle can be parameterized by

x = 〈x1, x2〉 = 〈cos t, sin t〉, t ∈ [0, 2π).

The image of this curve is the ellipse

y = 〈y1, y2〉 = 〈x1 + 2x2, 2x1 + x2〉 = 〈cos t + 2 sin t, 2 cos t + sin t〉, t ∈ [0, 2π).

The following program in MATLAB graphs the above circle and ellipse:

clf
t=0:2*pi/100:2*pi;
ezplot(’cos(t)’,’sin(t)’);
hold on
ezplot(’cos(t)+2*sin(t)’,’2*cos(t)+sin(t)’);

Most of the vectors x and their images Ax have different directions. For example, the vector
〈1, 0〉 has been mapped to 〈2, 1〉 by A. By contrast, two vectors, corresponding to the bisectors
of the quadrants don’t seem to have changed directions – the vector e1 = 〈1, 1〉 is mapped to
〈3, 3〉, and e2 = 〈−1, 1〉 is mapped to 〈−1, 1〉. To be more precise,

A

[
1
1

]
= 3

[
1
1

]
, and A

[−1
1

]
= −

[−1
1

]
.

Therefore (3, e1) and (−1, e2) are the two eigenvalue-eigenvector pairs for A.
To compute eigenvalues and eigenvectors of any matrix we appeal to the definition (1.40).

Note that Ae = λe can be written as

(A− λI)e = 0, (1.42)

34 CHAPTER 1. MATRIX ALGEBRA

Figure 1.2: The circle and its image under the action of the matrix defined in (1.41).

where I is the n×n identity matrix. The above system is a special one in that if it has a unique
solution e, then e must be 0 since 0 trivially satisfies (1.42). On the other hand, if e is to be an
eigenvector, it must be a nonzero vector. We conclude then that the solution to (1.42) cannot be
unique. After appealing to Theorem 1.5.1, we see that A− λI must be singular, or equivalently,
λ must be a solution to

det(A− λI) = 0. (1.43)

The quantity det(A− λI) is an n-th order polynomial in λ and since every such polynomial has
n roots, counting multiplicity, any n× n matrix has n eigenvalues. These roots may be complex
even if A has all real coefficients.

Returning to the earlier 2×2 example, A =
[

1 2
2 1

]
, we determine A’s eigenvalues by setting

det(A− λI) = det(
[

1− λ 2
2 1− λ

]
) = λ2 − 2λ− 3

to zero. So λ1 = 3 and λ2 = 1 are the two eigenvalues of A, as was observed earlier.
We determine eigenvectors of a matrix by solving (1.42) using Gaussian elimination. For

example, to obtain the eigenvector associated with λ = 3 in the above example we construct
(A− λI)e = 0 as the augmented matrix

[−2 2 | 0
2 −2 | 0

]
(1.44)

Note that ρ(A) = ρ([A|0) = 1, so by Theorem 1.8.1 the above system will have infinitely many
solutions. In fact, it should be clear that the two rows in (1.44) correspond to identical algebraic

1.9. EIGENVALUES AND EIGENVECTORS 35

equations. Concentrating on the first row, we see that, with e1 = 〈x1, x2〉, x1 and x2 satisfy the
linear equation −2x1 + 2x2 = 0. If we let x1 = c, an arbitrary constant, then x2 = c. Thus

e1 = c

[
1
1

]
.

In a similar fashion we see that e2 satisfies (A + I)e2 = 0 or

[
2 2 | 0
2 2 | 0

]
(1.45)

which results in

e2 = c

[
1

−1

]
.

The factor c in the above formulas for the eigenvectors is arbitrary, indicating geometrically that
the entire lines defined by the equations x1 = x2 and x1 = −x2 remain invariant under the action
of A. Often c is selected in such a way to render the eigenvector e a unit vector, i.e., c is chosen
so that ||e|| = 1.

The MATLAB command eig computes eigenvalues and eigenvalues of this matrix.

[V,D]=eig([1 2;2 1])

returning

V =

-0.7071 0.7071
0.7071 0.7071

D =

-1 0
0 3

Note that columns of V are the eigenvectors of A (with |c| = 1√
2
, yielding a unit vector for each

eigenvector), and that D contains the eigenvalues. The command eig is a very powerful command
since computing eigenvalues and eigenvectors of a matrix could be quite tedious as some of the
problems at the end of this section will demonstrate. To get a glimpse of the power of eig we
apply this operation to compute the eigenvalues and eigenvectors of the 6 × 6 Hilbert matrix,
namely, A = [aij] where aij = 1/(i + j − 1).

A=hilb(6)
[V,D]=eig(A)

which results in

36 CHAPTER 1. MATRIX ALGEBRA

A =

1.0000 0.5000 0.3333 0.2500 0.2000 0.1667
0.5000 0.3333 0.2500 0.2000 0.1667 0.1429
0.3333 0.2500 0.2000 0.1667 0.1429 0.1250
0.2500 0.2000 0.1667 0.1429 0.1250 0.1111
0.2000 0.1667 0.1429 0.1250 0.1111 0.1000
0.1667 0.1429 0.1250 0.1111 0.1000 0.0909

V =

-0.0012 -0.0111 0.0622 0.2403 -0.6145 0.7487
0.0356 0.1797 -0.4908 -0.6977 0.2111 0.4407

-0.2407 -0.6042 0.5355 -0.2314 0.3659 0.3207
0.6255 0.4436 0.4170 0.1329 0.3947 0.2543

-0.6898 0.4415 -0.0470 0.3627 0.3882 0.2115
0.2716 -0.4591 -0.5407 0.5028 0.3707 0.1814

D =

0.0000 0 0 0 0 0
0 0.0000 0 0 0 0
0 0 0.0006 0 0 0
0 0 0 0.0163 0 0
0 0 0 0 0.2424 0
0 0 0 0 0 1.6189

Although it may appear from D that the first two eigenvalues of A are zero, they are not. To see
a more accurate representation of D, enter the following lines:

format long
D

which shows that the first eigenvalues are in fact λ1 = 0.00000010827995 and λ2 = 0.00001257075712.
Returning to the definition of an eigenvalue, the determinant of A − λI for a general n × n

matrix will be an n-th order polynomial on λ. By the Fundamental Theorem of Algebra this
polynomial will have n roots, λ1, λ2, ..., λn, counting multiplicity, which may be complex. Several
of the problems below explore the connection between the eigenvalues of A and its entries aij .

Problems 1.9

1. Find the eigenvalues and eigenvectors of the following matrices. Verify the results in MATLAB
when appropriate.

(a)
[

3 1
1 3

]

1.9. EIGENVALUES AND EIGENVECTORS 37

(b)
[

3 2
1 3

]

(c)
[

3 −1
1 3

]

(d) The 2× 2 identity and zero matrices.

(e)
[

0 1
a b

]

(f)
[

a 1
1 a

]

(g)
[

a b
b a

]

(h)
[

a −b
−b a

]

2. Find the eigenvalues and eigenvectors of the following matrices. Verify the results in MATLAB
when appropriate.

(a)




3 1 0
1 3 0
0 0 1




(b)




1 1 0
1 0 1
0 1 1




(c)




0 1 0
0 0 1
1 2 3




(d)




a 0 0
0 b 0
0 0 c




3. Let A =
[

a b
c d

]
. Let λ1 and λ2 be its eigenvalues. Show that λ1 + λ2 = a + d and

λ1λ2 = detA.

4. Let A =




a11 a12 a13

a21 a22 a23

a31 a32 a33


. Let λ1, λ2 and λ3 be its eigenvalues. Let tr(A), called the

trace of A, be the sum of the entries on A’s diagonal. Show that λ1 + λ2 + λ3 = tr(A) and
λ1λ2λ3 = detA.

It turns out the above result holds for general n× n matrices, that is, if

A =




a11 a12 a1n

a21 a22 a2n

...

...
an1 an2 ann




,

38 CHAPTER 1. MATRIX ALGEBRA

and {λ1, λ2, ..., λn} are its n eigenvalues, counting multiplicity, then tr(A) =
∑n

i=0 λi,
detA =

∏n
i=1 λi.

1.10 concluding remarks

The discussion in this section on matrix algebra is just a brief introduction to this important
topic, arguably the most important area of applied mathematics, especially when considering its
applications to numerical computations. The interested reader should continue consulting the
texts listed at the end of this chapter for more complete treatment of linear algebra.

Chapter 2

Differential and Integral Calculus

In this section we develop the essentials concepts from differential and integral calculus and
discuss the role they play in this text in the context of geophysical fluid dynamics. We will also
use this opportunity to hint at the issues we will face when we need to approximate the typical
rates of change that appear in the governing equations of motion.

2.1 Derivative

The standard definition of the derivative of f , a function of one variable, at the point x = a is

f ′(a) = lim
h→0

f(a + h)− f(a)
h

(2.1)

when that limit exists. Alternative ways of defining the same quantity are

f ′(a) = lim
h→0

f(a)− f(a− h)
h

(2.2)

f ′(a) = lim
h→0

f(a + h)− f(a− h)
2h

(2.3)

or

f ′(a) = lim
h→0

f(a + 2h) + f(a + h)− 2f(a)
3h

, (2.4)

just a few formulas, out of infinitely many such formulas, that lead to determining f ′(a). We use
the concept of derivative primarily to relate the rates of growth various functions in a physical
process. In this context it is not significant which of the definitions in (2.1) – (2.4) we use to
develop our arguments. This choice becomes quite significant, however, in our second applica-
tion of the definition of derivative, namely when we need to approximate f ′(a) by one of the
many “rise-over-run” ratios on the right-side of (2.1)-(2.4). In the context of solving differential
equations, a subject we will take up next, which approximation of f ′(a) in (2.1)–(2.4) is selected
could have profound impact on the accuracy of the numerical schemes one develops.

39

40 CHAPTER 2. DIFFERENTIAL AND INTEGRAL CALCULUS

Higher order derivatives of f are defined analogously, by applying the formulas in (2.1)–(2.4)
to lower order derivatives. For example, f ′′(a) is determined as

f ′′(a) = lim
h→0

f ′(a + h)− f ′(a)
h

. (2.5)

We may apply any of the formulas in (2.1)–(2.4) to the right-side of (2.5) to arrive at formulas
for f ′′(a) that only involve function evaluations. For instance

f ′′(a) = lim
h→0

f(a + h)− 2f(a) + f(a− h)
h2

(2.6)

and

f ′′(a) = lim
h→0

f(a + 2h)− f(a + h) + f(a)
h2

(2.7)

result from applying (2.1) and (2.2) (see the Problem 8 at the end of this section).
Partial derivatives of a function f , which depends on several independent variables, are defined

precisely as laid out in (2.1) and its equivalent forms because the partial derivative of f with
respect to one of its independent variables, say x, is the rate of change of f when x is allowed
to vary while all other independent variables are kept constant. For simplicity let us assume
f is a function of three variables, denoted by x, y and z, in a domain D, a subset of R3. Let
P = (a, b, c) be a point in the domain at which we are interested in determining f ’s the rate of
change in the x direction. This quantity, which we denote by ∂f

∂x or by fx, is obtained as follows:

∂f

∂x
|P = lim

h→0

f(a + h, b, c)− f(a, b, c)
h

, (2.8)

if the limit exists. We obtain ∂f
∂y and ∂f

∂z in a similar fashion:

∂f

∂y
|P = lim

h→0

f(a, b + h, c)− f(a, b, c)
h

,
∂f

∂z
|P = lim

h→0

f(a, b, c + h)− f(a, b, c)
h

. (2.9)

Higher order derivatives of f are obtained by multiple application of the definition of differenti-
ation. So, fxx|P is obtained by first computing fx at an arbitrary point (x, y, z) in the domain
and then applying (2.8) to fx:

fxx|P =
∂2f

∂x2
= lim

h→0

fx(a + h, b, c)− fx(a, b, c)
h

. (2.10)

Similarly,

fyx =
∂2f

∂y∂x
|P = lim

h→0

fx(a, b + h, c)− fx(a, b, c)
h

. (2.11)

As the reader may suspect, the order of differentiation in expressions such as fxy and fyx do
not matter, at least for the large class of functions f that we encounter in typical applications in
this text. The standard texts on Advanced Calculus, several of which are listed at the end of this
chapter, devote a substantial amount of effort in developing the right mathematical theorems that
ensure the well-posedness of the topics we have discussed; for example, under what conditions on
f does the limit in (2.1) exist so that we can be assured that the function f is differentiable at

2.1. DERIVATIVE 41

P . And when can be sure that the order of differentiation in (2.11) is immaterial, an assertion
that seems natural and should always hold, but is somewhat surprising that there are plenty of
counterexamples (see Problem 14 for one such example), although these examples are relatively
pathological and do not appear very often in nature.

Problems 2.1

1. Consider the function f(x) = x2. Use (2.1) and (2.2) to show that f ′(a) = 2a and f ′′(a) =
2a.

2. Consider the function f(x) = x2 + bx + c, where a, b and c are constants. Use (2.3) and
(2.4) to show that f ′(d) = 2d + b.

3. Use (2.1) to show that nxn−1 is the derivative of xn, where n is a positive integer. Also,
show that f ′′(a) = n(n− 1)an−2.

4. Use (2.1) to show that cos x is the derivative of sin x.

5. Consider the function f(x) = |x|. Compute f ′(1), f ′(−1) and f ′(0), if they exist.

6. Consider the function f(x) = |x|x. Determine f ′(x).

7. Consider the function f(x) = x sin 1
x when x 6= 0. Define f(0) = 0. Is f continuous

at x = 0? (Remark: Recall that a function f is continuous at x = a if and only if
limx→a f(x) = f(a).) Is f differentiable at x = 0?

8. Derive the formulas in (2.6) and (2.7) from (2.1) and (2.2).

9. The composition of two functions f and g, denoted by f ◦ g is defined by

(f ◦ g)(x) = f(g(x)) (2.12)

as long as the range of g and the domain of f are compatible enough for (2.12) to make
sense. The Chain Rule of differentiation provides a formula for differentiating f ◦ g. It
states

(f ◦ g)′(x) = f ′(g(x))g′(x). (2.13)

Use the Chain Rule to differentiate sin 2x, sin(x2),
√

x3 + 1 and ln 1
cos x .

10. Consider the function f(x, y) = x2 + 3y2 − xy. Determine

i) fx(1, 2), ii) fy(1, 2), iii) fxx(x, y), iv) fyy(a, b), v)
∂2f

∂x∂y
.

11. Find all a and b, both constants, so that f(x, y) = ax2 + by2 satisfies the equation

fxx + fyy = 0.

12. Find all a and b, both constants, so that u(x, y) = sin ax cos by satisfies the equation

uxx − uyy = 0.

42 CHAPTER 2. DIFFERENTIAL AND INTEGRAL CALCULUS

13. Consider the complex-valued function h(t, x) = eiωt+kx where i =
√−1 and ω and k are

constants. Determine ht, htt, htx and hxx.

14. Let f(x, y) = xy(x2−y2)
x2+y2 if (x, y) 6= (0, 0) and 0 otherwise. Show that fxy(0, 0) = −1 but

fyx(0, 0) = 1.

2.2 Taylor Polynomial and Series

The Taylor polynomial is one of the main tools in developing approximate formulas to represent
functions. This concept is typically applied when one has local information about a function,
the information consisting of knowledge of the functional value and several of its derivatives at
a single point x = x0 in the domain. Single each derivative represents the slope of the tangent
line to the original function, this information can be used to build a linear approximation to
the function, thus obtaining a formula that serves as a reasonable approximation as long as one
applies it only near x0. Repeating this procedure for the various derivatives of f at x0, one
obtains a polynomial approximation to f .

To see this procedure in a concrete setting, consider a function f in a domain (a, b) and a
point x0 ∈ (a, b). Assuming that f(x0), f ′(x0), f ′′(x0), ..., f (n)(x0) are given. Then the n-th
order polynomial

Pn(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0

2!
(x− x0)2 + ... +

f (n)(x0)
n!

(x− x0)n (2.14)

is the n-th order Taylor Polynomial approximation of f . As the reader can easily verify, the
function f and all of its derivatives of up to order n agree with the corresponding values of Pn.
That is

f(x0) = Pn(x0), f ′(x0) = P ′n(x0), f ′′(x0) = P ′′n (x0), ..., f (n)(x0) = P (n)
n (x0).

A standard theorem from Calculus gives an excellent estimate on the error one makes when one
considers Pn in place of f . This error is proportional to the n + 1 derivative of f but evaluated
at a point ξ, somewhere between x and x0:

f(x) = Pn(x) +
f (n+1)(ξ)
(n + 1)!

(x− x0)n+1, ξ ∈ (x0, x). (2.15)

The term f(n+1)(ξ)
(n+1)! (x − x0)n+1 is referred to as the remainder and its absolute value in the

domain (a, b) provides insight on the amount of error one makes when approximating f by Pn.
As an example, consider the 7-th order Taylor polynomial approximation of the function

f(x) = sin x about x0 = 0. The formula in (2.14) gives

P7(x) = x− x3

3!
+

x5

5!
− x7

7!

with the remainder sin ξ
8! x8, with ξ ∈ (0, x). Since | sin ξ| ≤ 1 the maximum error we sustain

by replacing f with P7 in the interval (0, a) is a8

8! . When a = 1, say, this error is less than
0.00002. The following MATLAB program plots f and P7 on the interval (0, 2π), showing how
well P7 approximates f on the interval (0, 1) and beyond, but that the approximation begins to
deteriorate when x > 5 or so (see Figure 2.1):

2.2. TAYLOR POLYNOMIAL AND SERIES 43

Figure 2.1: The function sin x and its 7-th order Taylor Polynomial approximation.

clf
x=0:0.01:2*pi;
plot(x,sin(x));
hold on
z=zeros(size(x));
for i=1:4

z=z+(-1)^(i-1)*x.^(2*i-1)/factorial(2*i-1);
end
plot(x,z)
set(gca,’XTick’,0:pi/2:2*pi)
set(gca,’XTickLabel’,{’0’,’pi/2’,’pi’,’3pi/2’,’2pi’})
ylabel(’sin(x) and P_7(x)’)
title(’Plot of sin(x) and its Taylor Polynomial’)
text(2*pi-1,-25,’P_7(x)\rightarrow’,’HorizontalAlignment’,’left’)

One the important applications of the Taylor polynomial is in computing the truncation
error of finite difference schemes, which we will study in detail later, when we approximate
the derivative of a function by any of the several right-sides in formulas (2.1) – (2.4). For example,
formula (2.1) suggests that we replace f ′(a) by the ratio

∆f(a, h) =
f(a + h)− f(a)

h
. (2.16)

The expression in (2.16) converges to f ′(a) as h approaches zero but now we can find out the
rate of this convergence as a function of h. Define the function g by g(h) = f(a + h) and expand

44 CHAPTER 2. DIFFERENTIAL AND INTEGRAL CALCULUS

g about h = 0 to get

g(h) = g(0) + g′(0)h + ... = f(a) + f ′(a)h +
f ′′(a)

2!
h2 + h.o.t (2.17)

where h.o.t. stands for higher order terms in h. Returning to the definition of ∆f in (2.16), we
see that

∆f(a, h)− f ′(a) =
f ′′(a)

2!
h + h.o.t.

where now h.o.t. stands for terms in h with powers equal or higher than two. Since the remain-
der ∆f(a, h) − f ′(a) is proportional to h (and assuming that f ′′(a) does not vanish, generally
speaking), we say the truncation error of the difference scheme given by ∆f is first order. Some
of the problems at the end of this section deal with computing the truncation errors in the other
definitions of f ′(a) in (2.2)–(2.4), as well as for higher-order differential operators.

The process of obtaining an n-th order polynomial approximation of a function f can of
course be implemented for any n as long as f is smooth and differentiable. If it turns out that
the function f is in fact infinitely many times differentiable, we can push this process to its limit
by allowing n approach infinity and obtain an infinite series representation of f :

f(x) =
∞∑

n=0

f (n)(a)
n!

(x− a)n. (2.18)

This series representation behaves very well for a large class of functions, including the familiar
ones such as exponential, trigonometric and rational functions, but one must be considerably
more careful when using (2.18), as compared with (2.14), since we now must deal with the
prospect of the convergence of the right-side of (2.18), a rich subject of analysis treated in several
of the books cited in the references. Since we do not make much use of the Taylor series in the
applications we encounter in this text, we will not pursue further the discussion of that subject.

Problems 2.2

1. Compute the 3rd, 5th and 7th order Taylor polynomial approximations of the function
f(x) = e−x sin x about x = 0 and plot the graphs of each approximation against the
original f over the interval (0, 4).

2. Apply the Taylor polynomial method to determine the order and the truncation error of
each of the following finite-difference approximations for f ′(a):

(a) ∆f(a, h) = f(a)−f(a−h)
h ,

(b) ∆f(a, h) = f(a+h)−f(a−h)
2h ,

(c) ∆f(a, h) = f(a+2h)+f(a+h)−2f(a)
3h .

3. Apply the Taylor polynomial method to determine the order and the truncation error of
the finite-difference approximation

f(a + h)− 2f(a) + f(a + h)
h2

for f ′′(a).

2.3. FUNCTIONS OF SEVERAL VARIABLES AND VECTOR FIELDS 45

2.3 Functions of Several Variables and Vector Fields

The physical quantities we study in this text are represented mathematically by functions of
several variables or by vector fields. Pressure, salinity, density and temperature are examples of
physical entities that are represented by scalars that depend on several space dimensions and on
time. Velocity, acceleration and wind stress are examples of vector quantities that typically vary
with space and time. The results and theorems we develop in this section relate rates of change
of these quantities and provide information about their local behavior.

We begin by considering f , a function of several variables, and address questions about the
various rates of change of f and how they relate to surfaces along which f remains constant. For
simplicity let f depend on only two independent variables x and y; the results we discuss readily
generalize to higher dimensions. The gradient of f , denoted by ∇f , is defined by

∇f = 〈∂f

∂x
,
∂f

∂y
〉. (2.19)

The directional derivative of f at the point P = (a, b) in the direction e, a unit vector, is
denoted by df

de and defined by the relation

df

de
= ∇f |

P
· e. (2.20)

Recall that the dot product of two vectors a and b provides information about the angle θ
between the two vectors because

a · b = ||a|| ||b|| | cos θ|. (2.21)

Returning to (2.20) we note that | dfde | = | ∇f |
P
· e | = ||∇f |

P
|| ||e|| | cos θ|. Keeping P fixed for

the time being, and noting that ||e|| = 1, we deduce that the directional derivative of f at P
in the direction of e reaches its maximum when | cos θ| = 1, or when∇f and e are parallel, i.e.,
when

e =
1

||∇f ||∇f,

and consequently the maximum directional derivative is ||∇f ||. This result is significant enough
that we summarize it in a theorem.

Theorem 2.3.1 (Direction of Steepest Ascent):
Let f be a differentiable function of its arguments. Let P be a point in its domain. Then the

quantity df
de achieves its largest value when e = 1

||∇f ||∇f and that this value is ||∇f ||. Similarly,
df
de achieves its minimum −||∇f || when e = − 1

||∇f ||∇f , which we refer to as the direction of
steepest descent.

The contour level (or the level set) of a function f is the set of all points in the domain of
f at which f remains constant. Assuming, again without loss of generality, that f depends on
only two independent variables, the contour level of f is defined by

{(x, y)| f(x, y) = const.}. (2.22)

46 CHAPTER 2. DIFFERENTIAL AND INTEGRAL CALCULUS

The following argument shows that ∇f and its contour level must be orthogonal: Let C be
a contour of f with k the constant such that f(x, y) = k. Let (x(t), y(t)), t ∈ (a, b), be the
parameterization of this curve, that is,

f(x(t), y(t)) = k, for all t ∈ (a, b).

Differentiate both sides of the above expression to arrive at

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
= 0, for all t ∈ (a, b),

which can be rewritten as
∇f · 〈dx

dt
,
dy

dt
〉 = 0

signifying that ∇f and 〈dx
dt , dy

dt 〉 are orthogonal. Since the vector 〈dx
dt , dy

dt 〉 is tangential to the
contour level C, we have shown that ∇f and C are orthogonal. We summarize this discussion
as a theorem.

Theorem 2.3.2 (Contour Levels and Gradients): Level curves (surfaces) of a function
f and its gradient are orthogonal.

The observation we have made about the gradient of f and its contours is easily captured in
MATLAB by the following example. Here f(x, y) = e−x sin y.

clf;
[x,y]=meshgrid(0:0.2:3,0:0.15:pi);
z=exp(-x).*sin(y);
[qx,qy]=gradient(z,0.2,0.15);
contour(x,y,z);
hold on
quiver(x,y,qx,qy);

See Figure 2.2 for the output of the above program. The color bar on the right-side of the
figure shows the range of contour values, in this case ranging from 0 to 1; Applying MATLAB’s
surf command will shed more light on why the contours appear as they are. Also note that the
gradient vectors are clearly orthogonal to the associated contour levels.

The distribution of the gradient vectors in Figure 2.2 is an example of a vector field, namely,
an assignment of vectors to positions P in a domain. A substantial part of this text will be
dedicated in computing velocity vector fields. A velocity vector field is a special collection
of vectors v(x, y, z, t) expressing the tendency a particle, located at position (x, y, z) at time t,
possesses in order to move in the direction designated by v. Since position and velocity are
intimately related through the expressions

dx

dt
= u(x, y, z, t),

dy

dt
= v(x, y, z, t),

dz

dt
= w(x, y, z, t), (2.23)

where u, v and w are the components of v, these equations provide us with a system of ordinary
differential equations whose solution will lead to particle trajectories of the flow induced by the
velocity field. Solving equations like (2.23) is the subject of the final section of this chapter.

2.3. FUNCTIONS OF SEVERAL VARIABLES AND VECTOR FIELDS 47

Figure 2.2: The contour and gradient vectors of the function f(x, y) = e−x sin y.

MATLAB’s quiver command, which was used in the code listed above, is the appropriate tool
for displaying vectors in a vector field.

Problems 2.3

1. For each function listed plot the equivalent of Figure 2.2. In each case use surf to plot
the graph of the surface. Experiment with the domain of each function to display regions
where the function undergoes substantial change.

(a) x2 + y2, and sin(x2 + y2).

(b) x2 − y2, and tan(x2 − y2).

(c) x2 + 2y2, and x2 + 10y2.

(d) sinπx sin πy, and sin πx cos πy.

(e) ln(x2 + y2), 1 + ln(x2 + y2), and x + ln(x2 + y2).

2. Determine the direction of steepest descent at the designated points for each of the following
functions.

(a) x2 + y2 at P = (1, 1) and at P = (1, 2).

(b) x2 + 3y2 at P = (a, b).

(c) ln(x2 + y2) at P = (−1, 1).

3. Consider the function f(x, y) = x2 + 3y2 − 2x and the set of points (x, y) on the contour
level 1 (i.e., f(x, y) = 1). Determine the magnitude of steepest descent at each one of these
points, and find the point on this set where this rate of change is minimized.

48 CHAPTER 2. DIFFERENTIAL AND INTEGRAL CALCULUS

4. Verify the following identities:

(a) ∇(f + g) = ∇f +∇g.

(b) ∇(cf) = c∇f , where c is a constant.

(c) ∇(fg) = g∇f + f∇g.

(d) ∇ f
g = 1

g2 (g∇f − f∇g).

5. (Basis in Polar Coordinates) Show that {er, eθ} defined by

er = 〈cos θ, sin θ〉, eθ = 〈− sin θ, cos θ〉 (2.24)

forms a basis for E2.

6. (Gradient in Polar Coordinates) Let F (r, θ) be the representation of f(x, y) in polar
coordinates, that is,

F (r, θ) = f(r cos θ, r sin θ).

Show that
∇f =

∂F

∂r
er +

1
r

∂F

∂θ
eθ, (2.25)

where er and eθ are defined in (2.24).

7. (Basis in Spherical Coordinates) Show that {eρ, eθ, eφ} defined by

eθ = −〈sin θ sin φ, cos θ sin φ, 0〉,
eφ = 〈cos θ cos φ, sin θ cosφ,− sin φ〉,
eρ = 〈cos θ sin φ, sin θ sin φ, cos φ〉,

(2.26)

forms a basis for E3.

8. (Gradient in Spherical Coordinates) Let F (ρ, θ, φ) be the representation of f(x, y, z)
in polar coordinates, that is,

F (ρ, θ, φ) = f(ρ cos θ sinφ, ρ sin θ sinφ, ρ cos φ).

Show that
∇f =

∂F

∂ρ
eρ +

1
ρ

∂F

∂θ
eθ +

1
ρ sin θ

∂F

∂φ
eφ, (2.27)

where eρ, eθ and eφ are defined in (2.26).

2.4 Divergence

Since vector fields vary with position over their domains we need mathematical tools, similar to
the concept of the derivative of a function of a single variable, to analyze their local behavior.
Divergence and Curl are two such tools.

Consider a vector field v in E3. If we represent v by

v = 〈u(x, y, z), v(x, y, z), w(x, y, z)〉 (2.28)

2.4. DIVERGENCE 49

in the standard basis, we then define the divergence of v, denoted by div v or by ∇ · v, as

div v =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
. (2.29)

Note that if we define the del operator, denoted by ∇, as

∇ = 〈 ∂

∂x
,

∂

∂y
,

∂

∂z
〉,

then (4.3) is equivalent to
∇ · v,

that is, the dot product of the “vector” ∇ and the vector v.
The divergence of a vector field provides information about stretching and compression of

space under the action of v. We will make this point precise in the context of conservation of
mass in a later chapter. Here we will bring up one important application of divergence in the
context of two-dimensional vector fields whose divergence vanishes. Consider the vector field

v = 〈u(x, y, t), v(x, y, t)〉 (2.30)

endowed with the property div v = 0, or ∂u
∂x + ∂v

∂y = 0. This property is automatically satisfied
if the components of v are related to a single function ψ by

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (2.31)

Under reasonable conditions (see theorem below) on the smoothness of u and v, it turns out that
when div v = 0 then there exists a function ψ where (2.31) holds. Such a function is called a
Stream Function in fluid dynamics and a Hamiltonian in mathematics. One of the important
features of having a stream function in hand is that ψ remains invariant under the action of
system the differential equations (2.23) when the right-side of (2.23) is time-independent. To see
this, consider the special two-dimensional case of (2.23) in combination with (2.31):

dx

dt
= u(x, y) =

∂ψ

∂y
,

dy

dt
= v(x, y) = −∂ψ

∂x
. (2.32)

Then, with (x(t), y(t)) a solution of (2.23)and ψ = ψ(x(t), y(t)), we have

dψ

dt
=

∂ψ

∂x

dx

dt
+

∂ψ

∂y

dy

dt
=

∂ψ

∂x

∂ψ

∂y
− ∂ψ

∂y

∂ψ

∂x
= 0, (2.33)

which indicates that ψ remains constant along trajectories of (2.23).
Another significant feature of having a stream function in hand is that we can go far in

determining the trajectories of (2.23). This property follows from the special relations in (2.32)
and the fact that the gradient of any function is perpendicular to its contour levels. To see this,
note that

∇ψ · v = 〈∂ψ

∂x
,
∂ψ

∂y
〉 · 〈v1, v2〉 = 〈−v2, v1〉 · 〈v1, v2〉 = 0. (2.34)

50 CHAPTER 2. DIFFERENTIAL AND INTEGRAL CALCULUS

Hence v is perpendicular to ∇ψ, or, equivalently, parallel to ψ = k, k a constant. Since v is
instantaneously tangential to the trajectories of (2.23), we have valuable information about this
system of differential equations in the special case when the system is two-dimensional and its
right-side is independent of t. In this setting the contours of ψ end up being the orbits of (2.23).
We summarize the above discussion as a theorem.

Theorem 2.4.1: Let v be a continuously differentiable two-dimensional vector field with
div v = 0. Then

1. There is a continuously differentiable function ψ(x, y, t) such that the relations in (2.31)
hold.

2. When v (and by extension, ψ) is time-independent, then the orbits of the system of differ-
ential equations in (2.32) and contour levels of ψ coincide.

A point regarding this theorem is worth emphasizing. We have used the term “orbits” of
(2.32), rather than “trajectories”, to call attention to the fact that the statement of the theorem
involves the set of points (x(t), y(t)) (and not (t, x(t), y(t))) – it turns out that the uniqueness
property of trajectories of systems such as (2.23) extend to the orbits of that system when v
does not explicitly depend on t. This property plays a crucial role in the proof of the contention
about the coincidence of orbits and contour levels.

The task of determining ψ in a concrete setting reduces to integrating (2.31). Consider the
example v = 〈y,−x〉, which satisfies the requisite condition div v = 0. To determine ψ we need
to integrate (2.31), which in this example is

y =
∂ψ

∂y
, −x = −∂ψ

∂x
. (2.35)

Integrating the first equation with respect to y yields

ψ(x, y) =
1
2
y2 + f(x),

where f is the constant of integration (with respect to y). Differentiating the latter with respect
to x gives us ∂ψ

∂x = f ′(x), which when compared with (2.35)b, yields f ′(x) = x. Hence f(x) =
1
2x2 + c, with c a universal constant. Hence the stream function for v = 〈y,−x〉 is

ψ(x, y) =
1
2
(x2 + y2) + c.

Since contours of this stream function are concentric circles about the origin, we conclude, fol-
lowing Theorem 2.4.1, that the orbits of the system of differential equations

dx

dt
= y,

dy

dt
= −x

are concentric circles.

Problems 2.4

1. Verify the following identities. All vector fields are assumed smooth enough to allow dif-
ferentiations of all orders needed.

2.4. DIVERGENCE 51

(a) div (v + w) = div v + div w.

(b) div (cv) = c div v, where c is a constant.

(c) div (ρv) = ∇ρ · v + ρ div v, where ρ is a smooth function.

(d) div (∇f) = ∆f , where ∆, the Laplace Operator, is ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .

(e) div (f∇g) = f∆g +∇f · ∇g.

(f) div (f∇g)− div (g∇f) = f∆g − g∆f .

(g) div (∇f ×∇g) = 0.

2. Consider the stream function ψ(x, y) = 1√
2x2−y2

. Determine the associated vector field v.

3. Show that if ψ is stream function and v(x, y) its attendant vector field, then

div (ψv) = 0. (2.36)

4. Consider the velocity field v(x, y) = 〈 y√
x2+y2

,− x√
x2+y2

〉. Show that this velocity field has

a stream function, determine it and use the result of Theorem 2.4.1 and MATLAB to plot v’s
orbits.

5. (Divergence in Polar Coordinates)

(a) Let v be a vector field in E2 with components (u, v) in Cartesian coordinates and
(ur, uθ) in polar coordinates, i.e.,

v = ui + vj = urer + uθeθ,

where er and eθ were defined in (2.24).

i. Show that
ur = u cos θ + v sin θ, uθ = −u sin θ + v cos θ.

ii. Verify that the following formula holds for the divergence of a vector field in polar
coordinates.

div v =
∂ur

∂r
+

1
r
ur +

1
r

∂uθ

∂θ

(b) Let v = ui + vj + wk = urer + uθeθ + wk. Show that

div v =
∂ur

∂r
+

1
r
ur +

1
r

∂uθ

∂θ
+

∂w

∂z
,

where w is the z-component of v.

6. Apply the results in Problem 5 and compute the divergence of each v, first in Cartesian
coordinates and then in polar coordinates.

(a) v = xi + yj.

(b) v = x
x2+y2 i + y

x2+y2 j.

(c) v = y√
x2+y2

i− x√
x2+y2

j.

52 CHAPTER 2. DIFFERENTIAL AND INTEGRAL CALCULUS

(d) v = 1
r3 eθ.

7. Let ψ(x, y) be the stream function of a vector field, represented in the standard Cartesian
basis. Let Ψ(r, θ) be the representation of the same stream function in polar coordinates,
that is,

ψ(x, y) = Ψ(r, θ) (2.37)

where x = r cos θ and y = r sin θ. Show that the relations in (2.31) take the form

ur =
1
r

∂Ψ
∂θ

, uθ = −∂Ψ
∂r

, (2.38)

where ur and uθ are defined in Problem 5.

8. (Laplace Operator in Polar Coordinates) The Laplace operator in Cartesian coordi-
nates has the form

∂2ψ

∂x2
+

∂2ψ

∂y2
+

∂2ψ

∂z2
.

Show that this operator has the form

∂2Ψ
∂r2

+
1
r

∂Ψ
∂r

+
1
r2

∂2Ψ
∂θ2

+
∂2Ψ
∂z2

in polar (cylindrical) coordinates.

9. (Divergence in Spherical Coordinates) Consider the vector field v = uρeρ + uθeθ +
uφeφ. Show the divergence of v is given by the following formula:

∂uρ

∂ρ
+

2
ρ
uρ +

1
ρ

∂uθ

∂θ
+

cot θ

ρ
uθ +

1
ρ sin θ

∂uφ

∂φ
.

10. (Laplace Operator in Spherical Coordinates) Show that the Laplace operator (see
Problem 8 for definitions) has the form

∂2Ψ
∂ρ2

+
2
ρ

∂Ψ
∂ρ

+
1
ρ2

∂2Ψ
∂θ2

+
cot θ

ρ2

∂Ψ
∂θ

+
1

ρ2 sin2 θ

∂2Ψ
∂φ2

in spherical coordinates.

2.5 Curl and Vector Fields

Given a vector field v in E3 we define the curl of v, denoted curl v or more commonly by ∇×v,
as the following vector

∇× v = 〈∂w

∂y
− ∂v

∂z
,
∂u

∂z
− ∂w

∂x
,
∂v

∂x
− ∂u

∂y
〉. (2.39)

Symbolically, this definition can be written as the determinant of the 3× 3 matrix

∇× v = det




i j k
∂
∂x

∂
∂y

∂
∂z

u v w


 . (2.40)

2.5. CURL AND VECTOR FIELDS 53

The curl of a vector field provides information about the tendency for rotation and spin in
particles whose motion is influenced by v. A typical example to keep in mind is provided by
v = 〈y,−x〉 where as we saw in the last section, induces a motion in the shape of concentric
circles about the origin. Its curl

∇× 〈y,−x, 0〉 = 〈0, 0,−2〉 = −2k (2.41)

reinforces this point because−2k points to a clockwise rotation in the xy-plane (clockwise because
of the coefficient of k is negative). When v is a velocity vector field, ∇×v is called the vorticity
of v and is often denoted by ω

The curl operation is one of three analytical tools, counting gradient and divergence as the
other two, at our disposal to study the local behavior of a function of several variables or a vector
field. When these operations combine they often provide detailed information about the structure
of vector fields. For example, when a two-dimensional vector field v has a stream function ψ and
is irrotational, that is, its curl vanishes, then ψ must satisfy Laplace’s equation

∆ψ = 0. (2.42)

To see this, let v = 〈∂ψ
∂y ,−∂ψ

∂x 〉 and note that ∇× v = 〈0, 0,−∆ψ〉. Thus, the curl of v vanishes
if and only if (2.42) holds. In general, however, the vorticity of a typical flow is non-zero and
flows are rotational. When a flow is two-dimensional, its vorticity takes the form

ω = f(x, y, t)k.

If, in addition, this flow is incompressible, then its stream function ψ(x, y, t) satisfies the Poisson
Equation

−∆ψ = f. (2.43)

The curl of a vector field v also determines whether v is endowed with a scalar potential or
a vector potential. A function φ is called a (scalar) potential for v if

v = ∇φ. (2.44)

Alternatively, a vector-valued function Ψ is called a (vector) potential for v if

v = ∇×Ψ. (2.45)

Generally speaking, vector fields have neither scalar nor vector potentials. But when a vector field
possesses such a potential, its study is often reduced to analyzing less complicated mathematical
equations. The conditions for the existence of such potentials are explored in the problems at
the end of this section.

Problems 2.5

1. Show that equations (2.31), which define the relationship between v and its stream function
ψ, when ψ exists, are equivalent to

v = ∇× (ψk).

2. For each vector field determine whether v is divergence-free, and compute its curl:

54 CHAPTER 2. DIFFERENTIAL AND INTEGRAL CALCULUS

(a) v = 〈y − z, x− z, x + y〉.
(b) v = 〈2y,−3x + xy〉.
(c) v = 〈ax, by〉, where a and b are constants.

(d) v = 〈 αy
x2+y2 ,− βx

x2+y2 〉, α and β are constants.

(e) v = 〈y,− sin x〉.
(f) v = 〈x2 − y2, xy〉.

3. Verify the following the identities:

(a) div(curl Ψ) = 0. Hence, returning to the definition of a vector potential (see (2.45)),
incompressibility of v is a necessary condition for the existence of a vector potential
Ψ.

(b) ∇ × (∇φ) = 0. According to this identity the necessary condition for v to have a
scalar potential φ is ∇× v = 0.

(c) curl(φv) = grad φ× v + φ curl v.

(d) div (v ×w) = w · curl v − v · curl w.

(e) curl (φv) = φ curl v +∇φ× v.

(f) ∇× (∇× v) = ∇(∇ · v)−∆v where ∆v = 〈∆u, ∆v,∆w〉.
4. (Curl in Cylindrical Coordinates) Following the approach of Problem 5 of section 2.4,

let v = urer + uθeθ + wk and show that

∇× v = (
1
r

∂w

∂θ
− ∂uθ

∂z
)er + (

∂uρ

∂z
− ∂w

∂r
)eθ + (

∂uθ

∂r
+

1
r
uθ − 1

r

∂ur

∂θ
)k

is the curl of v in polar-cylindrical coordinates.

5. (Curl in Spherical Coordinates) Following the approach of Problem 9 of section 2.4,
let v = uρeρ + uθeθ + uφeφ and show that

∇×v =
1
ρ
(
∂uφ

∂θ
+cot θuφ− 1

sin θ

∂uθ

∂φ
)eρ+(

1
ρ sin θ

∂uρ

∂φ
−∂uφ

∂ρ
−1

ρ
uφ)eθ+(

∂uθ

∂ρ
+

1
ρ
uθ−1

ρ

∂uρ

∂θ
)eφ

is the curl of v in spherical coordinates.

2.6 Integral Theorems

Integration and differentiation are inverse operations. Each operation has its own utility and
place in analysis. The derivative of a function provides local behavior information about that
function – this information is precise but is generally confined to a small neighborhood of the
point at which the derivative is computed. By contrast, an integral of a function over an interval
provides information that is global but only in an averaged sense. In the context of functions of
several variables and vector fields, when integration and differentiation are combined properly,
the result is often quite powerful.

2.6. INTEGRAL THEOREMS 55

The line integral of a vector field v over a curve C, denoted by
∫

C
v · dr, is defined by

∫

C

v · r =
∫ b

a

v|
C
· r′(t) dt, (2.46)

where r is a parametrization of C, that is, points P on C are end-points of vectors r(t) as t
ranges over the interval (a, b):

C = {(x(t), y(t), z(t))| r(t) = 〈x(t), y(t), z(t)〉, t ∈ (a, b)}.

Since the integrand in (2.46) is the dot product of two vectors, one of which, r′, is tangential
to C, the line integral in (2.46) measures to what extent the vector field v deviates from being
tangential to C – if v and r′ are orthogonal, say, the contribution of v ·r′ to the integrand is zero,
while if v is parallel with r′, this contribution is optimal. On the whole, the integral in (2.46)
gives some information about the disposition of v relative to C. When v represents a force field,
(2.46) measures work, while when v represents a velocity field and C is a closed curve, which
will be defined shortly, (2.46) measures circulation.

As an example, consider the vector field v = 〈 y√
x2+2y2

,− x√
x2+2y2

, 0〉 and the curve C given

by r(t) = 〈cos t, sin t, 0〉, t ∈ (0, π
2), a quarter circle traversed in the counterclockwise direction.

The line integral (2.46) of v over C is

∫

C

v · dr =
∫ π

2

0

〈 sin t√
cos2 t + 2 sin2 t

,− cos t√
cos2 t + 2 sin2 t

, 0〉 · 〈− sin t, cos t, 0〉 dt =

=
∫ π

2

0

1√
cos2 t + 2 sin2 t

dt = −1.3110.

The last integration was carried in MATLAB:

F=@(t) -1./(cos(t).^2+ 2*sin(t).^2).^(1/2);
quad(F,0,pi/2)

Continuing with this example, let C be the completed curve with t ∈ (0, 2π). This curve is an
example of a smooth simple closed curve, for which the tangent vector at every point exists
and where the curve intersects itself only once, in this case when its beginning touches its end.
For such a curve we use the notation

∮
C

to emphasize that C is a closed curve. As stated earlier,
the quantity

∮
C

v · dr, which in this case equals −5.2441, is the circulation of v about C.
We note in passing that quad, which performs numerical integration (quadrature) in MATLAB,

is quite efficient with integrands that are not highly oscillatory. By contrast, the function quadl
is the suitable integrator to use when the integrand rapidly oscillates.

The surface integral of a vector field v over a surface S, denote by
∫ ∫

S
v · dS, is defined by

∫ ∫

S

v · dS =
∫ ∫

D

v · (ru × rv) dudv (2.47)

where r(u, v) is the parametrization of the surface S, and hence ru× rv is normal to the surface,
and D is the domain of this parametrization. For example, when S is the surface of the northern

56 CHAPTER 2. DIFFERENTIAL AND INTEGRAL CALCULUS

hemisphere of radius 1, then D = {(u, v)| 0 ≤ u < 2π, 0 ≤ v < π
2 }, i.e., u and v are the standard

longitude and co-latitude and r is

r(u, v) = 〈cos u sin v, sin u sin v, cos v〉.

Note that ru × rv = 〈cosu sin v, sin u sin v, cos v〉, a radial vector, which is of course normal to
the surface of the sphere.

The computation of a surface integral always reduces to computing a double integral, as
described in (2.47). The physical interpretation of this quantity is that of flux when v is a
velocity vector field – since v has dimensions of length over time, and du dv has dimensions of
length squared, the combination v · ru × rv has dimensions of volume over time, or flux (note
that ru and rv are dimensionless). As an example consider v = x2k, which, as a velocity field,
describes a flow in the z-direction whose strength varies with the horizontal component of the
position of each particle. To compute the flux of this flow through the unit northern hemisphere,
we compute

∫ 2π

0

∫ π
2

0

〈0, 0, cos2 u sin2 v〉 · 〈cos u sin v, sin u sin v, cos v〉 du dv =

=
∫ 2π

0

∫ π
2

0

cos2 u sin2 v cos v du dv = 1.0472,

a conclusion we reach by either computing this integral analytically or by using MATLAB:

F=@(u,v) (cos(u).^2.*sin(v).^2.*cos(v));
dblquad(f,0,2*pi,0,pi/2)

One of the main applications of the line and surface integrals is in the context of the gen-
eralization of the “Fundamental Theorem of Calculus” in higher dimensions. This theorem in
one-space dimension relates f and its derivative f ′ in the familiar identity

∫ b

a

f ′(x) dx = f(b)− f(a), (2.48)

relating the average value of f ′ over the domain (a, b) to the net “flow” of f through the boundary.
There are two analogues of this theorem in higher dimensions, the Stokes theorem and the
Divergence Theorem, which we now state.

Theorem 2.6.1 (Stokes)
Let v be a smooth vector field defined in a domain D ⊂ R3. Let S be a surface contained in

D with boundary C. Then the following identity holds:
∮

C

v · dr =
∫ ∫

S

∇× v · dS, (2.49)

where the parametrization of C and S need to be compatible in the following sense: The curve C
and S are parametrized according to the right-handed rule so that when the curve C is traversed
in the direction of the parametrization, the normal to S always points to the left.

2.6. INTEGRAL THEOREMS 57

Note that this identity involves a double integral of a derivative of v, in this case the curl of
v, balanced by the integral of v itself, where the latter integration is over the boundary of S. Its
similarity to (2.48) cannot be overemphasized.

As stated earlier when v is a velocity vector field of a fluid flow, the quantity∇×v is called the
vorticity of the fluid flow. The Stokes Theorem relates the ”flux of the vorticity”, the quantity
on the right-side of (2.49), to its circulation of the flow, the quantify on the left-side of (2.49).
This identity plays a crucial role in providing insight into “vortex lines” and their dynamics, an
important concept in rotating fluid flows.

The second theorem involves a surface integral as well.

Theorem 2.6.2 (Divergence or Gauss)
Let v be a smooth vector field defined in a domain D ⊂ R3. Then the following identity holds:

∫ ∫ ∫

D

div v dV =
∫ ∫

∂D

v · dS, (2.50)

where ∂D is parameterized in such a way that its normal always points to the outside of D.
As was the case with the Stokes Theorem, the Divergence Theorem relates the integral of a

derivative of v, in this case its divergence, to the net change of v on the boundary. This theorem
plays a key role in the development of the governing equations of motion because it will show us
how to establish conservation laws of mass, linear momentum and energy by relating the internal
changes in physical quantities to their net influx of flow through the boundary.

In addition to the applications already alluded to, the Stokes and Divergence theorems give
intuitive interpretations of the curl and divergence operations when they are combined with the
Mean Value Theorem. We consider (2.49) first. Let P be a fixed point in the domain of v with S
a surface passing through P , which for simplicity we assume it to be a plane. Consider a square
in that plane centered at P , and remove the rest of the plane for the remainder of this discussion.
We are now in the setting of Theorem 2.6.1 with S a square centered at P and C consisting of
four edges that constitute the square. Consider a sequence of squares Sn, concentric at P , and
shrinking to P as n approaches infinity. Divide both sides of (2.49) by the area of Sn and take
the limit of both sides as the area of Sn approaches zero (with n approaching infinity):

lim
n→∞

1
∆Sn

∮

Cn

v · dr = lim
n→∞

1
∆Sn

∫ ∫

Sn

∇× v · dS. (2.51)

We note that the integral on the right-side in (2.51) is equivalent to
∫ ∫

Dn

∇× v ·Nn du dv

where Dn is the domain of parametrization of Sn and Nn the normal (i.e., ru× rv) to the square
Sn. Note that Nn’s direction is fixed, although its length depends on n. By the Mean Value
Theorem

1
∆Dn

∫ ∫

Dn

∇× v ·Nn du dv = (∇× v ·Nn)|Pn (2.52)

where Pn is a point in Dn. But limn→∞ Pn = P and limn→∞Nn = N, a unit normal to the
original surface S. Returning to (2.51) we have

(∇× v ·N)|P = lim
n→∞

1
∆Dn

∮

Cn

v · dr. (2.53)

58 CHAPTER 2. DIFFERENTIAL AND INTEGRAL CALCULUS

The above result gives a precise relationship between
∮

C
v · dr, the circulation of v, and its

vorticity ∇× v.
A similar application to (2.50) results in the following identity:

(div v)|P = lim
n→∞

1
∆Vn

∫ ∫

Sn

v · dS (2.54)

where Vn is a sequence of regions, all containing the point P and shrinking to P as n approaches
infinity. This result gives a geometric interpretation of how the divergence of a vector field at a
point P is related to flux per unit volume of that flow in a small neighborhood of P .

Problems 2.6

1. Verify the Divergence Theorem in the following setting: Let v = 〈x, y, z〉 and D a hemi-
sphere of radius 1 centered at the origin, i.e., D = {(x, y, z)|x2 + y2 + z2 ≤ 1, z ≥ 0}.

2. Verify the Stokes Theorem in the following setting: Let v = x2k and S the surface of the
northern hemisphere given by x2 + y2 + z2 = 1 and z > 0.

3. (Leibniz’s formula) An important extension of the Fundamental Theorem of Calculus,
(2.48) and its variation d

dt (
∫ t

c
f(η) dη) = f(t), is to the case when the integrand and the

limits of integration vary with respect to the parameter of differentiation. Consider the
function g defined as

g(t) =
∫ b(t)

a(t)

f(t, η) dη. (2.55)

Using the Chain Rule of Differentiation, compute g′(t) and show that

∂

∂t
(
∫ b(t)

a(t)

f(t, η) dη) =
∫ b(t)

a(t)

∂f

∂t
(t, η) dη + b′(t)f(t, b(t))− a′(t)f(t, a(t)). (2.56)

(Hint: Write g as g(t) =
∫ b(t)

c
f(t, η) dη − ∫ a(t)

c
f(t, η) dη, where c is an arbitrary but fixed

constant.)

Chapter 3

Ordinary Differential Equations

The analysis of the models we consider almost always reduces to finding solutions to ordinary
differential equations (ODEs). In this section we will review some of the fundamental concepts
associated with ODEs and introduce a few basic approximate techniques for obtaining these
solutions when analytic solutions are not available. An added goal in this section is to provide
enough background to motivate the use of MATLAB’s powerful suite of ODE solvers, including
ode45. Some of the techniques discussed here are then extended to solving Partial Differential
Equations (PDEs).

Before proceeding to the general techniques for solving ODEs, we generalize the two concepts
of linear independence and linear space from matrix algebra to functions. Consider a set C of
functions {φ1, φ2, ..., φn}. We say C (or equivalently, the functions φi’s) is linearly independent
on the interval (a, b) if

c1φ(x) + c2φ2(x) + ... + φn(x) = 0 for all x ∈ (a, b)

if and only if c1 = c2 = ... = cn = 0. (3.1)

For example, the set of functions {sin πx, sin 2πx, ..., sin nπx} is linearly independent on the
interval (0, 1), while {sin πx, sin 2πx, 2 sin πx− sin 2πx} is not.

We say C, a set of functions, forms a linear space

1. if f ∈ C and g ∈ C, then f + g ∈ C,

2. if f ∈ C and c a scalar (real or complex), then cf ∈ C.

The concepts of span, basis and dimension generalize verbatim to space of functions. Conse-
quently, the linear space

C = {
N∑

i=1

ai sin iπx| ai ∈ R},

is an N -dimensional space of functions. In a sense C is equivalent to the linear space of N -
dimensional vectors in EN where we can think of each element of C, a1 sin πx+ a2 sin 2πx+ ...+
an sin nπx, as the vector 〈a1, a2, ..., an〉. With this perspective the space of functions spanned by
the basis {sin iπx}, i = 1, ..., N is in one-to-one and onto correspondence with the space EN .

59

60 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

3.1 Linear ODEs

Consider the differential equation

y′′ + ay′ + by = f(x) (3.2)

where a and b are constants, and f is a known function. This equation is second order, because
the highest order derivative present in (3.2) is second order, is linear because all terms involving
the unknown function y enter linearly in this equation, and nonhomogeneous if f is nonzero.
Typically equation (3.2) is supplemented by the two initial conditions

y(x0) = y0, y′(x0) = y1, (3.3)

or the two boundary conditions

y(c) = α, y(d) = β. (3.4)

In either case one typically finds the general solution to (3.2) and then applies the initial or
boundary conditions to find the exact solution. The general solution to (3.2) is obtained in two
steps: first one determines the general solution (sometimes called the complementary solution)
of the homogeneous part

y′′ + ay′ + by = 0, (3.5)

and second a particular solution yp of (3.2), by any method available. The general solution of
(3.2) is then the sum of yc and yp:

y(x) = yc(x) + yp(x). (3.6)

Because (3.5) is linear and has constant coefficients, its general solution is a linear combination
of exponential functions eλx. Substituting this expression into (3.2) leads to the second order
polynomial λ2 + aλ + b whose roots, λ1 and λ2, when distinct, yield two linearly independent
solutions of the homogeneous equation (3.5), from which we obtain the general solution yc:

yc(x) = c1e
λ1x + c2e

λ2x (3.7)

When λ1 = λ2 = λ, however, we construct two linearly independent solutions eλx and xeλx, and
the general solution to (3.5) is

yc(x) = c1e
λx + c2xeλx. (3.8)

We note that λ1 and λ2 in (3.7) may be complex numbers. When a and b in (3.2) are real-
valued constants, and λ1 and λ2 have ended up being complex-valued, the latter must be complex
conjugates of each other, i.e., λ1 = γ + δi and λ2 = λ̄1. In that case the two functions eγx cos δx
and eγx sin δx form two linearly independent and real-valued solutions of (3.5) so that

yc(x) = c1e
γx cos δx + c2e

γx sin δx (3.9)

is the general solution to (3.5).
As mentioned earlier, we obtain a particular solution yp to (3.2) by any means possible,

including a judicious guess. Often this forcing term ends up being of sinusoidal type, as will
be the case in the forcing terms induced by the prevailing winds in most of the models we will

3.1. LINEAR ODES 61

consider, and we will apply a simple ansatz, as we will show by an example, based on the general
form of the forcing term itself to arrive at yp. Once (3.6) is determined, we apply the initial
conditions (3.3) or the boundary conditions (3.4) to compute c1 and c2 in any of the formulas
(3.7), (3.8) or (3.9).

As an example, consider the initial value problem

y′′ + 0.1y′ + 3y = 2 sin 3x, y(0) = y′(0) = 0. (3.10)

The homogeneous part of (3.10) is

y′′ + 0.1y′ + 3y = 0, (3.11)

which, after substituting eλx, leads to the polynomial equation λ2 + 0.1λ + 3 = 0 whose roots
are λ1 = −0.05 + 1.7313i and −0.05− 1.7313i (which is MATLAB’s output to roots([1 0.1 3]).
Thus yc, the complementary solution, takes the form

yc(x) = e−0.05x(c1 cos 1.7313x + c2 sin 1.7313x). (3.12)

To find a particular solution yp we try

yp(x) = A sin 3x + B cos 3x, (3.13)

which consists of the forcing term sin 3x itself and all of its derivatives (i.e., cos 3x and sin 3x).
We substitute the ansatz in (3.13) into (3.10) and equate the coefficients of sin 3x and cos 3x on
either side of (3.10) to get the following set of algebraic equations in A and B:

−6A− 0.3B = 2, −6B + 0.3A = 0, (3.14)

resulting in A = −0.332502 and B = −0.0166251. Hence, the general solution to (3.10) is

y(x) = e−0.05x(c1 cos 1.7313x + c2 sin 1.7313x)− 0.332502 sin 3x− 0.0166251 cos 3x. (3.15)

The constants c1 and c2 are found by applying the initial data in (3.10):

0 = y(0) = c1 − 0.0166251, 0 = y′(0) = −0.05c1 + 1.7313c2 − 0.997506

or c1 = 0.016625 and c2 = 0.57664. Hence,

y(x) = e−0.05x(0.016625 cos 1.7313x + 0.57664 sin 1.7313x)− 0.332502 sin 3x− 0.0166251 cos 3x.
(3.16)

is the solution to (3.10). The following commands in MATLAB lead to Figure 3.1.

f=@(x)exp(-0.05*x).*(0.016625*cos(1.7313*x)+0.57664*sin(1.7313*x))+ ...
-0.332502*sin(3*x)-0.0166251*cos(3*x);
ezplot(f,[0,2*pi])

Problems

1. Find the general solution of the following ODEs:

62 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

Figure 3.1: The solution to (3.10).

(a) y′′ + 3y′ + 2y = 0.

(b) y′′ − 4y′ + 4y = 0.

(c) y′′ + 16y = 0.

(d) y′′ + 4y = 3 sin 2x.

(e) y′′ − 3y′ + 4y = 2ex + 3 cos x.

2. Find the solution of the following IVPs:

(a) y′′ + 2y′ + y = 5 cos 2x, y(0) = y′(0) = 0.

(b) x′′ + x = sin 2t, x(0) = 0, x′(0) = 1.

3. Find the solution of the following BVPs:

(a) y′′ + 4y′ + 3y = 1, y(0) = 1, y(2) = −1.

(b) y′′ − y = sin t, y′(0) = 0, y(3) = 0.

3.2 General Systems of ODEs

The equation we discussed in the previous section is an example of a much larger class of ordinary
differential equations of the form

y′ = f(x,y), y(x0) = y0. (3.17)

3.2. GENERAL SYSTEMS OF ODES 63

Higher order equations such as (3.2) can be converted to a first-order system like (3.17) by simply
renaming the various derivatives in (3.2): To illustrate consider the n-th order equation

dnz

dxn
= f(x, z, z′, z′′, ..., z(n−1)), z(x0) = z0, z′(x0) = z1, ..., z(n−1) = zn−1.

Define a new variable y = 〈y1, y2, ..., yn〉 by

y1 = z, y2 = z′, y3 = z′′, ..., yn =
dn−1z

dxn−1
,

which results in the following n equations for the components of y:

y′1 = y2, y′2 = y3, ..., y′n−1 = yn, y′n = f(x, y1, y2, ..., yn), (3.18)

with the initial data
y1(x0) = z0, y2(x0) = z1, ..., yn(x0) = zn−1. (3.19)

This scheme when applied to (3.2) leads to the following first-order system: Let y1 = y and
y2 = y′. Then

y′1 = y2, y′2 = −ay1 − by2 + f(x), (3.20)

or in matrix form

y′ = f(x,y), where y =
[

y1

y2

]
, f =

[
y2

−ay1 − by2 + f(x)

]
, with y0 =

[
y0

y1

]
. (3.21)

The qualitative theory of differential equations deals with conditions on f to guarantee ex-
istence and uniqueness of solutions to (3.17) and the asymptotic behavior of these solutions
as x approaches infinity. We first deal with sufficient conditions that guarantee existence and
uniqueness.

Let the function f in (3.17) be continuous in x and y in domain D ⊂ R×En, and Lipschitz
continuous in y, that is, there is a constant M , perhaps depending on x, such that

||f(x,y2)− f(x,y1)|| ≤ M ||y2 − y1||, (3.22)

for y1 and y2 in the domain of f . Then a fundamental theorem of ordinary differential equations
(see Ref. 3.18.1) states that a unique solution of (3.17) exists for x in a neighborhood of x0.
Moreover, either this solution exists for all x or the solution y will blow-up in ”finite-time”, that
is, there is an L such that

lim
x→L

||y(x)|| = ∞. (3.23)

Interestingly, since solutions of linear equations such as (3.10) are combinations of exponential
functions, finite-time blow-up is not an option for them. For nonlinear equations, however, this
behavior is common as seen in the example

y′ = −y2, y(0) = −1, (3.24)

a Riccati-type equation, whose exact solution is y(x) = 1
x−1 , which blows up as x approaches 1.

Note that the function −y2 is smooth in all of R and there is no hint of the blow-up behavior by
examining the right-side of (3.24).

64 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

The Lipschitz property quoted above seems to be necessary for the uniqueness property. As
a counterexample, consider the equation y′ =

√
y with y(0) = 0, which has the two distinct

solutions

y(x) ≡ 0 and y(x) =
x2

4
. (3.25)

The problem with this equation is that its right-side,
√

y, has infinite slope at y = 0, the initial
value, and cannot support a bound such as (3.22) for any M .

3.3 MATLAB’s ode45

We digress momentarily from our development of the theory of ODEs to present the syntax for
MATLAB’s ode45 because, unlike the linear ODEs we discussed earlier, in this text we will often
be dealing with nonlinear ODEs whose analytical solutions are intractable. We will be discussing
in some detail in the next several sections how to generate approximate numerical solutions to
nonlinear ODEs, but before addressing the mathematical development of numerical schemes, we
describe here how to use ode45, an accurate and efficient ODE-solver, because we will resort to
this tool in this chapter as a benchmark when we introduce some elementary numerical schemes
for solving ODEs. In a later section we will also see how to use ode45 with the method of lines
to solve partial differential equations.

Consider the initial-value problem (IVP)

y′ = f(t, y), y(t0) = y0.

Here we may have a single equation, i.e., y may be a scalar, or a system of ODEs where y is
vector in En. The syntax for using ode45 on this IVP is

[TOUT,YOUT] = ODE45(ODEFUN,TSPAN,Y0)

where ODEFUN defines the right-side of the ODE (more on this later), TSPAN defines the domain
of t, typically (t0, T), and Y0 contains the initial data. The quantities TOUT and YOUT contain the
output of ode45. As an example consider the IVP

y′ = −y2 + t, y(0.1) = −0.3.

The following lines in MATLAB will result in an approximate solution of this problem in the interval
(0.1, 4):

%
% Use the inline command to define f
%
f=inline(’-y.^2 + t’, ’t’, ’y’);
%
% Apply ode45
%
[t, y] = ode45(f, [0.1 4], -0.3);
%

3.3. MATLAB’S ODE45 65

The output in stored in t and in y. What ode45 has done is to use its technique to break up the
t values in the interval (0.1 4) into smaller subintervals, with endpoints that we label (ti, ti+1)
and then proceeded to compute yi and each grid point ti, where yi is an excellent approximation
of y at ti. The values of ti and yi are stored in t and y. These vectors have equal length (try
length(t) and length(y) to see the size of these vectors) and can be plotted against each other
using the plot command:

plot(t,y)

A close look at t shows that these grid points are not uniform, that is, the distance ti+1 − ti
varies with i. This grid-size adaptivity is actually one of the special features of ode45, to which
we will return later in the chapter.

Applying ode45 to a system of ODEs is similar. The one difference arises in the difficulty
with using the inline command when defining the right-side of the ODEs, which is rather
cumbersome when it comes to cancatenating expressions. Instead we will use the M-file utility
of MATLAB as described in the following example. Consider the system

x′ = y, y′ = −0.1y − sin y + cos t, x(0) = 1, y(0) = 2.

We intend to solve this IVP and obtain an approximation to the solution (x(t), y(t)) for t ∈ (0, 3).
To that end, we first define the right-side of the ODEs in an M-file (called rhs.m for later
reference) in MATLAB:

function yprime=rhs(t,y);
%
yprime = [y(2); -0.1*y(2)-sin(y(2))+cos(t)];

We apply ode45 to rhs.m as follows:

[t,y]=ode45(’rhs’,[0 3],[1 2]);

or by entering

[t,y]=ode45(@rhs,[0 3],[1 2]);

The output is stored in t and in y. We can choose to plot each component of y versus t by
entering

plot(t,y(:,1)) % or
plot(t,y(:,2))

or plot the phase-plane diagram (x versus y components) by

plot(y(:,1),y(:,2))

A particularly useful option within ode45 is odeplot (which is used in combination with ODEset).
This tool generates the graphs of the time plots of the output variables and places circles at the
evaluated points. The output of

[t,y]=ode45(@rhs,[0 3],[1 2],ODEset(’OutputFcn’,@odeplot));

66 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

Figure 3.2: The output of odeplot when used within ode45.

is shown in Figure 3.2. Equally useful option in ode45 is odephas2 which generates the phase-
plane portrait of a two-dimensional system of ODEs. The output of

[t,y]=ode45(@rhs,[0 30],[1 2],ODEset(’OutputFcn’,@odephas2));

is shown in Figure 3.3. Note the t domain in the latter figure.

Problems

1. Use ODE45 to solve the following IVPs:

(a) y′′ + 2y′ + y = sin t, y(0) = 1, y′(0) = 0 in the interval (0, 10).

(b) y′′ + 2ty′ + y2 = cos t, y(0) = 0, y′(0) = 0 in the interval (0, 4).

2. Plot the graphs of the solutions of the following systems of ODEs:

(a) x′1 = x2 − x1, x′2 = 2x1 + 3x2, x1(0) = 1, x2(0) = −1.

(b) x′1 = x2−x2
1

x2
1+x2

2
, x′2 = x1+x2

x2
1+x2

2
, x1(0) = 0, x2(0) = 1.

3. The Lorenz system of equations, which displays complex and chaotic behavior, is

x′ = σ(y − x), y′ = x(ρ− z)− y, z′ = xy − βz, x(0) = x0, y(0) = y0, z(0) = z0,

where σ, ρ and β are physical constants. Plot the graphs of the solutions for the parameter
values and initial positions listed:

3.4. ASYMPTOTIC BEHAVIOR AND LINEARIZATION 67

Figure 3.3: The output of odephas2 when used within ode45.

(a) σ = ρ = 1, β = 0.1 and x0 = y0 = 0, z0 = 1 with t ∈ (0, 100).

(b) σ = ρ = 1, β = −0.1 and x0 = y0 = 0, z0 = 1 with t ∈ (−100, 100).

(c) Let σ = 10, ρ = 28, x0 = y0 = 0, z0 = 1 and t ∈ (0, 100). Plot the graph of the
solution when

i. ρ = 20.
ii. ρ = 28.
iii. ρ = 90.
iv. ρ = 100.

4. The ABC, or the Arnold-Beltrami-Childress, flow is defined by the following system of
ODEs:

x′ = A sin z + C cos y, y′ = B sin x + A cos z, z′ = C sin y + B cosx.

Let A = 1, B = 0.1, C = −0.2 and (x0, y0, z0) = (0.1, 0.2, 0.1). Plot the graph of the
solution for t ∈ (0, 5).

3.4 Asymptotic Behavior and Linearization

An important feature of analyzing fluid flows, especially in the context of the main theme of this
text, the geophysical fluid flows, is understanding how the long-time behavior of currents depend
on the various physical parameters in play. The qualitative theory of ODEs is particularly well-
suited for this effort, and in the setting of nonlinear ordinary differential equations, linearization

68 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

of the ODE system about solutions provides a critical tool. We introduce this concept for the
system of two equations in two unknowns

dx

dt
= f(t, x, y),

dy

dt
= g(t, x, y), (3.26)

although the ideas generalize readily to higher dimensional settings. We call the system in
(3.26) autonomous if f and g do not explicitly depend on t. Most of the development below
is dedicated to autonomous ODEs. Also, as is common in mathematics, we will often refer to
(3.26) as a dynamical system, and to the xy-plane as its phase plane.

We say a point (a, b) is an equilibrium point of (3.26) if

f(t, a, b) = 0, g(t, a, b) = 0, (3.27)

for all t. Note that when (a, b) that satisfies (3.27), the functions

x(t) ≡ a, y(t) ≡ b (3.28)

form a solution to (3.26), which we will refer to as an equilibrium solution.
We say a solution z(t) = 〈x(t), y(t)〉 of (3.26) is stable (often called Liapunov stable) if

solutions of (3.26) that start out close to z(t) remain close to this solution for all time. To be
precise, we say z is a stable solution of (3.26) if for every ε > 0 there is a δ > 0 such that

if ||z̄(0)− z(0)|| < δ then ||z̄(t)− z(t)|| < ε for all t > 0, (3.29)

where z̄ is a solution of (3.26).
The concept of stability of solutions of ODEs has been studied extensively and several conse-

quences of this working definition have been derived to aid a user determine whether a solution
is stable (see the references cited at the end of this section). We will elaborate on these ideas in
the context of equilibrium points (3.27) and equilibrium solutions (3.28) for autonomous systems
where it turns out that linearization and Taylor expansion about an equilibrium point are the
main tools of analysis. Before developing these ideas we emphasize one important feature about
the definition of stability in (3.29), that the bound on the distance between z and z̄ is to hold
for all t > 0 and not just for t in a finite interval. The latter is not much of a restriction on
a dynamical system, since all that is required is continuity of the solution as a function of its
initial condition, which is referred to as continuous dependence on initial data in the mathe-
matical literature. Continuous dependence on initial data is a property of the dynamical system
in (3.26) and typically holds for all solutions of such a system, stable or not, under rather mild
assumptions on f and g in (3.26). Satisfying (3.29), however, is a property of individual solutions
(equilibrium points) as we will see shortly.

Let (a, b) be an equilibrium point of the autonomous system

x′ = f(x, y), y′ = g(x, y). (3.30)

Let z = 〈x, y〉 be the equilibrium solution and let z̄ = 〈a + εx̄(t), b + εȳ(t)〉 be a perturbation of
z, with the understanding that ε is a small number. Since z̄ is a solution of (3.30) we have

εx̄′ = f(a + εx̄(t), b + εȳ(t)), εȳ′ = g(a + εx̄(t), b + εȳ(t)). (3.31)

3.4. ASYMPTOTIC BEHAVIOR AND LINEARIZATION 69

We expand the right-sides of (3.31) about ε = 0 to get (recalling that f(a, b) = g(a, b) = 0)

x̄′ =
∂f

∂x
|(a,b) x̄ +

∂f

∂y
|(a,b) ȳ + ε(

1
2

∂2f

∂x2
|(a,b) x̄

2 +
∂2f

∂x∂y
|(a,b) x̄ȳ +

1
2

∂2f

∂y2
|(a,b) ȳ

2) + h.o.t. (3.32)

where h.o.t. stands for terms involving ε2 and above. A similar expression holds for ȳ′:

ȳ′ =
∂g

∂x
|(a,b) x̄ +

∂g

∂y
|(a,b) ȳ + ε(

1
2

∂2g

∂x2
|(a,b) x̄

2 +
∂2g

∂x∂y
|(a,b) x̄ȳ +

1
2

∂2g

∂y2
|(a,b) ȳ

2) + h.o.t. (3.33)

The linear part of the above equations

x̄′ =
∂f

∂x
|(a,b) x̄ +

∂f

∂y
|(a,b) ȳ, ȳ′ =

∂g

∂x
|(a,b) x̄ +

∂g

∂y
|(a,b) ȳ, (3.34)

contains the information of immediate interest, the argument being that the remaining terms,
which depend on ε, remain small as time evolves. This observation ends up being the case for
a large class of ODEs as long as the initial data associated with (3.30) is close enough to the
equilibrium point. We now proceed to derive the precise conditions needed to arrive at this
result.

The linearized system in (3.34) has the matrix form

x′ = Ax where x =
[

x̄
ȳ

]
and A =

[
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

]

(a,b)

. (3.35)

The solutions of (3.35) are combinations of exponential functions. We seek them in the form

x(t) = eλtv (3.36)

where λ and v are constants and yet to be determined. Substituting (3.35) into (3.35) yields
the algebraic system Av = λv, which states that the pair (λ,v) is an eigenvalue-eigenvector pair
associated with A. As discussed in Section 1.9, the eigenvalues of A are roots of the polynomial

det (A− λI)

and the associated eigenvector is found by applying Gaussian Elimination to

Ax = λx.

The general solution of (3.35) will be a linear combination of the special solutions in (3.36),
analogueous to our development of solutions of the second order ODE in (3.2). We are not
considering all of the mathematical complications that could arise regarding here, but as the
reader can imagine, the same issues that arose for (3.2), such as real versus complex-valued
solutions, and multiplicity of eigenvalues, also manifest themselves for (3.35). Suffice it to say
that these mathematical complications can be addressed (see Ref. 3.18.4 for details). The key
feature to keep in mind, however, is that these issues do not alter the conclusion we will derive
below regarding the stability of the equilibrium point (a, b).

Returning to (3.36) we note that the long-time behavior of this expression depends critically
on the sign of the real part of λ: If all eigenvalues of A have the property that Re λ < 0 then we

70 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

expect that the perturbation of the equilibrium point (a, b) will approach zero as time evolves,
leading us to conclude that (a, b) is stable, while if one of these eigenvalues has its real part
positive, then any perturbation of (a, b) will eventually grow and the equilibrium point (a, b)
will be unstable. The case of Re λ = 0 remains ambiguous and arguments that draw upon the
nonlinearities in (3.26) must be brought to bear in the analysis of such an equilibrium point. We
summarize this discussion in the following theorem.

Theorem 3.1 (Stability of Equilibrium Points)
Consider the autonomous system of differential equations (3.30) with the point (a, b) as its

equilibrium point. Let A, λ and v be defined as in (3.35). Then the equilibrium solution x = 〈a, b〉
of (3.30) is stable in accordance with (3.29) if all eigenvalues of A have negative real parts. This
equilibrium solution is unstable if any of the eigenvalues of A has a positive real part.

As an example of the utility of Theorem 3.1, consider the system of equations

x′ = y, y′ = −α sin x− βy, (3.37)

where α and β are non-negative. Note that all points of the form (nπ, 0), n = 0,±1,±2, ... are
equilibrium points of this system. Since f(x, y) = y and g(x, y) = −α sin x− βy, the matrix A is

A =
[

0 1
−α cos nπ −β

]
(3.38)

where a = nπ. The eigenvalues of this matrix are

λ1(n) =
1
2
(−β −

√
β2 − 4α cos nπ), λ2(n) =

1
2
(−β +

√
β2 − 4α cosnπ). (3.39)

We first consider the equilibrium solution 〈0, 0〉. The two eigenvalues at n = 0 are λ1(0) =
1
2 (−β −

√
β2 − 4α) and λ2(0) = 1

2 (−β +
√

β2 − 4α). If β is small enough so that β2 − 4α < 0,
then both λ1 and λ2 are both complex and Re λi < 0 so that (0, 0) is stable in this case. If β
is large enough so that β2 − 4α > 0 then both eignevalues are real and negative. In this case
also the equilibrium point (0, 0) is stable, although as Figures 3.4 and 3.5 show, the behavior of
the system near the origin differs in the two cases. This spiral in Figure 3.4 is due to the fact
that eigenvalues of the linearization about 〈0, 0〉 are complex-valued when α = 0.3 and β = 0.1,
while in Figure 3.5, with α = 0.3 and β = 1, the orbits of (3.37) are attracted to the origin
without undergoing any oscillations, underscoring the strength of the dissipation in this case.
The equilibrium solution 〈π, 0〉 has eigenvalues 1

2 (−β−
√

β2 + 4α) and 1
2 (−β+

√
β2 + 4α), which

are both real, one negative and the other positive. This equilibrium point is therefore unstable,
as is also clear from Figures (3.4) and (3.5).

The two Figures 3.4 and 3.5 are the output of the following two MATLAB M-files:

%%% odedef.m %%%
function yprime=odedef(t,y);
global alpha beta
yprime=[y(2); -beta*y(2)-alpha*sin(y(1))];

%%% main.m %%%
global alpha beta

3.4. ASYMPTOTIC BEHAVIOR AND LINEARIZATION 71

Figure 3.4: The phase plane for (3.37) with α = 0.3, β = 0.1.

Figure 3.5: The phase plane for (3.37) with α = 0.3, β = 1.

72 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

alpha=0.3; beta=1;
for i=-5:2:5
[t,y]=ode45(@odedef,[0 30], [i 0]);
plot(y(:,1),y(:,2))
hold on
end
title([’\alpha = ’,num2str(alpha),’,’, ’\beta = ’,num2str(beta)])
xlabel(’x’)
ylabel(’y’)

Problems

1. Find all equilibria of the following ODEs and determine their state of stability:

(a) x′ = y, y′ = −y + 0.1x.

(b) x′ = y, y′ = −x + x2.

(c) y′′ + 0.1y′ + y − y3 = 0.

2. Characterize the state of stability of the equilibria of the following ODEs in terms of the
various parameters listed:

(a) x′′ + ax′ + bx = 0.

(b) y′′ + ay′ + y + b2y3 = 0.

3.5 Motion of Parcels of Fluid in MATLAB

In this section we present a MATLAB program that provides visual information of the behavior of
solutions of a two- and three-dimensional systems of ordinary differential equations. The main
idea is to take snapshots of a flow under the action of a system of ODEs such as

x′ = f(t, x, y), y′ = g(t, x, y), x(0) = x0, y(0) = y0, (3.40)

when we follow the development of a parcel of fluids whose initial state is typically a disk, when
the problem is two dimensional as in (3.40), or a ball for the three-dimensional extension of this
system. The program outlined below is written for a fundamental flow in fluid dynamics, flow
past a cylinder, where the flow is induced by the stream function ψ

ψ(x, y) = y − y√
x2 + y2

. (3.41)

Applying the formulas (2.32), where u = ∂ψ
∂y and v = −∂ψ

∂x , we find that f and g in (3.40) are

f(t, x, y) =
1− x2 + y2

(x2 + y2)2
, g(t, x, y) =

−2xy

(x2 + y2)2
. (3.42)

The program below leads to Figure 3.6. The main program, labeled parcel.m, calls on fpc.m
for the definitions of the right-sides of (3.42). It follows the evolution of seven parcels, which

3.5. MOTION OF PARCELS OF FLUID IN MATLAB 73

are located in a column at x = −2 and are initially in the shape of identical circles. The flow is
from left to right, so as the ODEs influence the motion of each particle, these parcels react to the
obstacle downstream, a circle of radius 1 centered at the origin – this idealized flow is intended
to simulate the flow around an infinite cylinder and is assumed to be two-dimensional. This
simulation shows the degree of stretching and rotation of each parcel – note that this behavior is
by no means homogeneous and that parcels closer to the origin undergo considerably more severe
deformations than the ones farther away.

The program below takes advantage of MATLAB’s ode45, a differential equation solver that we
have used already and whose properties we will discuss in detail throughout the text.

%%% fpc.m %%%
% This program defines the differential equations.
function yprime=fpc(t,y)
%
term=1/(y(1)^2+y(2)^2)^2;
%
yprime=[1-(y(1)^2-y(2)^2)*term; -2*y(1)*y(2)*term];
%
%%% parcel.m %%%
% This program plots snapshots of 7 parcels of fluids.
clf
noofparcels=7
n=40; % number of points on the boundary of each parcel
tfinal=1; % time increment between snapshots
m=5; % number of snapshots
pts=0:0.01:pi;
circle=[cos(pts);sin(pts)]’; % The obstacle, in this case a disk of radius one
plot(circle(:,1),circle(:,2));
set(gca,’DataAspectRatio’,[1 1 1]); % setting the aspect ratio
hold on
h=0;
t=0:1/n:1;
for i=1:noofparcels

data1=-2+0.1*cos(2*pi*t);
data2=0.2+h+0.1*sin(2*pi*t);
plot(data1(:),data2(:));
for k=1:m

sol=[];
for j=1:n+1
[tt,y]=ode45(’fpc’,[0 tfinal],[data1(j) data2(j)]);

sol=[sol;y(length(tt),:)];
end
plot(sol(:,1),sol(:,2))
hold on

data1 = sol(:,1); data2=sol(:,2);
end

74 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

Figure 3.6: The image of parcels of fluid as they negotiate their pathways around a cylinder.

h=h+0.3;
end
title(’Flow past Cylinder’)
xlabel(’x’)
ylabel(’y’)

Problems

1. Execute the MATLAB programs in this section to generate Figure 3.6.

2. Show that the flow past cylinder, defined by (3.42), is incompressible and irrotational.

3. Adapt the parcel deformation program of this section to apply to the following velocity
fields. Select several initial circular parcels of your own choosing and track their deformation
over time. Determine in each case if the flow is incompressible or irrotational.

(a) v = 〈y,−x〉.
(b) v = 〈 y√

x2+y2
,− x√

x2+y2
〉.

(c) v = 〈 y
x2+y2 ,− x

x2+y2 〉.
(d) v = 〈y,−0.1y − sin x〉.

4. For each stream function ψ defined below derive the associated velocity field and apply
the parcel deformation program to it. Select several initial circular parcels of your own
choosing and track their deformation over time.

3.6. NUMERICAL METHODS 75

(a) ψ = sin x sin y.

(b) ψ = 2 sin 3x cos 4y − 0.5 sin 4y cos 3x− 1.3 cos 3x cos 4y.

5. Generalize the parcel deformation program of this section to three-dimensional flows v =
〈f, g, h〉, which lead to the system of three ODEs

dx

dt
= f(t, x, y, z),

dy

dt
= g(t, x, y, z),

dz

dt
= h(t, x, y, z).

Apply the resulting program to the ABC Flow defines in Problem 4 of Section 3.3.

3.6 Numerical Methods

The MATLAB function ode45 is one of several numerical schemes designed for solving systems of
differential equations. To appreciate how accurate and powerful ode45 is, we now review the
some of the basic ideas that have been developed for solving differential equations. We carry out
this discussion for the simplest of differential equations, namely,

y′ = λy, (3.43)

supplemented with a side condition
y(t0) = y0. (3.44)

The exact solution to (3.43)–(3.44) is

y(t) = y0e
λ(t−t0), (3.45)

which grows unboundedly when Re λ > 0 as t approaches infinity, while it remains bounded when
Re λ ≤ 0. The motivation behind a numerical approximation of (3.43) – (3.44) is to capture the
basic features of this system as accurately as possible.

We begin by recalling the various definitions of derivatives presented in (2.1) – (2.4). These
formulas offer several choices to replace y′(t) in (3.43) by a finite difference formula. Three
commonly used formulas, and their corresponding titles, are

y(t + h)− y(t)
h

, forward difference, (3.46)

y(t)− y(t− h)
h

, backward difference, (3.47)

y(t + h)− y(t− h)
2h

, centered difference. (3.48)

Each of these formulas, when substituted into (3.43), results in a Finite Difference Equation
(FDE). We are able to solve these FDEs in a similar fashion that we obtained the analytic
solution (3.45) of the ODE in (3.43). Comparison of the exact solution to each approximate
solution obtained from the three FDEs will shed considerable light on the properties of the three
finite difference formulas (3.46) – (3.48).

We begin with the analysis of the forward difference method we obtain by replacing the y′

term in (3.43) by (3.46) – the resulting FDE is often referred to as the Euler method or scheme.

76 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

Without loss of generality, let t0 = 0 and consider a finite time interval [0, T) as the domain
for the independent variable t. Discretize this domain into n subintervals by choosing the n + 1
equidistant points

t0 = 0, t1 = h, t2 = 2h, ..., tn = nh = T, (3.49)

so that h = T
n . We denote by yi the approximate value for y(ti), replace y′(ti) in (3.43) by

(yi+1 − yi)/h, and solve for yi+1 and get the FDE

yi+1 = (1 + λh)yi, (3.50)

where i ranges from 0 to n − 1, and y0 is given. We seek the general solution to (3.50) in the
form

yi = γi, (3.51)

which we substitute into (3.50) and arrive at γ = (1 + λh). Hence the general solution to (3.50)
is yi = c(1 + λh)i for any constant c. The initial condition (3.44) determines the constant c as
y0. Hence, the unique solution to the initial-value problem (3.50) is

yi = y0(1 + λh)i, i = 0, 1, ..., n. (3.52)

We observe that the sequence yi in (3.52) actually converges to y(t) for some t if n approaches
infinity. To see this, recall that the limit definition of ea (that limm→∞(1 + a

m)m = ea) suggests
that the limit of (3.52) as n approaches infinity is y0e

λt: let t∗ be a fixed point in [0, T) and
consider the index i so that limn→∞ ih = t∗ – Note that both i and h in this expression depend
on n, and although the existence of this limit may not be obvious, a little experimentation with
the definitions of h = T

n and i should convince the reader that there is a sequence t(n) = ih such
that t(n) → t∗. With t(n) in hand, we consider the following sequence of equalities:

lim
n→∞

(1 + λh)i = lim
n→∞

(1 +
λT

n
)

nt(n)
T = lim

m→∞
(1 +

λt(n)
m

)m = eλt∗ .

Hence
lim

n→∞
yi = y(t∗),

which is reassuring in that we can be confident that the forward finite difference scheme will, at
least theoretically, converge to the exact solution if we are allowed to discretize the interval (0, T)
with as fine a mesh as we wish. In this sense we say that the forward finite difference scheme is
consistent with the initial value problem (3.43)–(3.44).

Unfortunately we don’t have the luxury of taking the time-step h as small as we wish and at
some point we must confront the reality of implementing this scheme on a computing platform
with hardware limitations. We thus need to analyze the finite difference scheme further in terms
of its practicality. One of the practical attributes of any numerical scheme is the requirement of
the stability of that scheme.

Definition 3.6.1 A scheme is said to be stable if the approximate sequence {yi} is bounded,
that is, there is a constant M such that |yi| < M for all 0 ≤ i ≤ n and n approaching infinity.
In the next section we will apply this definition to understand the restrictions on the forward
difference scheme.

3.7. STABILITY ANALYSIS OF NUMERICAL SCHEMES 77

Figure 3.7: The forward finite difference (Euler) method applied to y′ = −4y.

3.7 Stability Analysis of Numerical Schemes

Returning to (3.52), we see that
|yi| = |y0| |(1 + λh)|i.

The above sequence is bounded if and only if |1 + λh| ≤ 1 (recall that ai is unbounded in i if
|a| > 1). Mindful that λ may be complex, let λ = a + bi, where now i =

√−1. The inequality
|1 + λh| ≤ 1 is equivalent to (a, b) satisfying (a + 1

h)2 + b2 ≤ 1
h2 . Geometrically, this expression

is equivalent to the point (a, b), i.e., λ, being located inside a circle of radius 1
h and centered

at (− 1
h , 0) in the complex plane. Putting it a little differently, for a fixed h, the forward finite

difference scheme is stable for (3.43)–(3.44) if and only if the physical parameter λ is bounded
by the circle of 1

h and centered at (− 1
h , 0).

The above result is somewhat surprising in how restrictive it is. It states that the range of
physical parameters for which we should trust the forward finite difference scheme is limited to
the interior of the above disk in the left-half complex plane. In particular this region excludes
all λ = iω where ω is any nonzero real number, which are quite important parameter values in
many physical problems.

As the experiments below show, the forward Euler scheme performs well when the stability
property holds but behaves poorly when it is violated.

Figure 3.7a shows the graphs of the approximate and exact solutions of y′ = −4y with y(0) = 1
in the interval [0, 2) with n = 20. Here λ = −4 is within the disk of radius 1

h = 10, centered
at (− 1

h , 0) = (−10, 0). The approximate solution, where circles on its graph denote computed
values, provides a good estimate of the solution, although it consistently underestimates the exact
solution. Figures 3.7b and 3.7c show the absolute and relative errors as functions of t, indicating
a trend of worsening error for the relative error as t increases. Figure 3.8 shows the exact solution

78 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

Figure 3.8: The forward finite difference (Euler) method applied to y′ = −19y.

and its approximation for the initial value problem y′ = −19y, y(0) = 1. Now while λ = −19
is still inside the region of stability of the Euler method, it is close to the boundary of this
region and we note the oscillatory behavior in the computed solution. Note, however, that the
computed values still remain bounded as predicted by the stability analysis. Also, the absolute
error remains relatively small, whereas the relative error, displayed in log scale, is quite large.
Figure 3.9 shows the output for the case where λ = −21 where now the stability of the scheme
is violated. Note the deterioration in the sizes of the absolute and relative errors.

3.8 MATLAB Programs for the Forward Finite Difference Method

We digress momentarily to discuss how Figures 3.7 – 3.9 were obtained in MATLAB. The following
lines, when applied to formula (3.52), result in Figure 3.7:

clf;
% Parameter Definitions
%
lambda=-4;
y0=1;
T=2;
n=20;
h=T/n;
i=0:n; % defines the index
t=i*h; % defines the t domain
%

3.8. MATLAB PROGRAMS FOR THE FORWARD FINITE DIFFERENCE METHOD 79

Figure 3.9: The forward finite difference (Euler) method applied to y′ = −21y.

% Analytic solution of the FDE
%
y=y0*(1+lambda*h).^i;
%
% Plotting output
%
subplot(1,3,1)
plot(t,y,’-o’)
hold on
%
% Exact solution and its plot
%
exact=exp(lambda*t);
plot(t,exact);
xlabel(’t’)
ylabel(’y’)
title([’Euler’’s method with n = ’,num2str(n)])
%
% Computing the various measures of error
%
error=abs(exact-y);
subplot(1,3,2)
plot(t,error)
title(’Absolute Error’)

80 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

xlabel(’t’)
ylabel(’Absolute Error’)
relerr=abs((exact-y)./y);
subplot(1,3,3)
plot(t,relerr)
title(’Relative error’)
xlabel(’t’)
ylabel(’Relative Error’)

The above program uses the analytic solution of the FDE (3.50). Unfortunately, in most of the
problems we encounter we won’t have the luxury of determining the analytic solution of the
underlying FDE. It turns out that with a little care, we can actually obtain the same outcome
by implementing the FDE (3.50) directly into MATLAB. To that end we replace the line

y=(1+lambda*h).^i;

with the following lines

y=[y0];
oldy=y0;
factor=1+lambda*h;
for j=1:n-1

newy=factor*oldy;
y=[y;newy];
oldy=newy;

end

The above code uses two important features of MATLAB. One, the for ... end loop capability,
which allows us to repeat the lines in between for and end as often as the index j runs through
its counter (in this case j begins with 1 and ends at n-1 with the default increment of 1). The
second feature is employed in the line y=[y;newy] – notice that the vector y is first initialized
outside of the for ... end loop, at that stage having a single entry, namely, y0, and then its
value is updated each time the loop is executed. The line y=[y;newy] allows us to enlarge the
size of the vector y by appending the newly computed newy to it each time the loop is executed.

Given a general initial value problem

y′ = f(t, y) y(0) = y0,

the associated forward difference approximation for y′(ti) leads to

yi+1 = yi + hf(ti, yi), i = 0, 1, ...

which can be implemented in MATLAB as follows:

% Define parameter values n, T, h, y0, i, as before. The function f needs to
% defined either usinh the inline command or in an M-file
%
y=[y0];
oldt=0;

3.9. STABILITY ANALYSIS OF NUMERICAL SCHEMES (CONTINUED) 81

for j=1:n-1
newy=oldy + h*f(oldt,oldy);
y=[y;newy];
oldt=oldt+h;
oldy=newy;

end;

3.9 Stability Analysis of Numerical Schemes (continued)

Returning now to the discussion of stability analysis, we discover that the analysis presented for
the forward finite difference method leads to a different result when applied to the backward
difference method, which is derived when the formula (see (3.47))

y(t)− y(t− h)
h

,

is used to replace y′(t). Applying this formula to the differential equation y′ = λy results in the
FDE

yi =
1

1− λh
yi−1, i = 1, 2, ..., n, with y0 = given, (3.53)

whose solution is
yi =

y0

(1− λh)i
, i = 1, 2, ... (3.54)

This scheme is stable if |yi| is bounded, which is guaranteed if | 1
1−λh) | ≤ 1 or

|1− λh| ≥ 1.

As before we let λ = a + bi and observe that the above inequality holds if

(1− ah)2 + b2h2 ≥ 1 (3.55)

which always holds if a = Re λ ≤ 0 (note that the inequality (3.55) is satisfied for any (a, b)
located outside of a circle of radius 1

h and centered at (1
h , 0).) Thus the region of stability of the

backward Euler scheme is considerably larger than the forward Euler scheme. In particular this
region includes any λ = iω, ω ∈ R.

Figure 3.10 shows the exact and approximate solutions to y′ = −4y, y(0) = 1 using the
Backward Euler method, where we have used the same parameter values for T and n as before.
Figures 3.11 and 3.12 show the same circumstances for the ODEs y′ = −19y and y′ = −29y, re-
spectively. Notice that in all three cases the approximate solution remains bounded, the absolute
error is relatively small, while the relative error in the latter two cases are substantially large.

The Euler and backward Euler methods are first order schemes in that the residual between
the exact solution y(ti) and yi is proportional to h, which we usually denote by O(h). To see
this point in the case of the Euler scheme, let L(y) denote the finite difference operator in this
scheme, that is,

L(y(ti)) =
y(ti+1)− y(ti)

h
− λy(ti). (3.56)

82 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

Figure 3.10: The backward finite difference (Euler) method applied to y′ = −4y.

Figure 3.11: The backward finite difference (Euler) method applied to y′ = −19y.

3.9. STABILITY ANALYSIS OF NUMERICAL SCHEMES (CONTINUED) 83

Figure 3.12: The backward finite difference (Euler) method applied to y′ = −29y.

Of interest to us is the impact of this operator on the exact solution of (3.43), that is, when
y(t) = y0e

λt. The expression L(y0e
λt) will not vanish in general so we are interested in estimating

how far this expression is from zero. This residual is called the Truncation Error of the Euler
scheme. In general, for any finite difference scheme L(y), the truncation error of that scheme is
the value of L(y) when the analytic solution y of the differential equation is used in the evaluation
of L(y). For the Euler scheme and (3.56) we have (recall t0 = 0)

L(y(ih)) =
yi+1 − yi

h
− λyi =

y((i + 1)h)− y(ih)
h

− λy(ih). (3.57)

Applying Taylor’s formula to y(ih + h) we have

y(ih + h) = y(ih) + hy′(ih) +
h2

2
y′′(ih) + ...,

so that

L(y(ih)) =
y(ih + h)− y(ih)

h
− λy(ih) = y′(ih) +

h

2
y′′(ih) + h.o.t− λy(ih), (3.58)

where h.o.t. stands for higher order terms in h. Since y is the analytic solution of (3.43), we have
y′(ih) = λy(ih). (3.58) now reduces to

L(y(ih)) =
h

2
y′′(ih) + h.o.t (3.59)

Because the leading term of the truncation error depends on the first power of h we call the Euler
method a first order method. It can be shown similarly that the backward Euler method is also
first order, while the scheme we get from the centered difference formula (3.48) is second order.

84 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

The methods we have described in this section are just two methods for obtaining approximate
solutions to (3.43)–(3.44). They are easily extended to general initial value problems

y′ = f(t, y), y(t0) = y0 (3.60)

and to systems of equations
y′ = f(t,y), y(t0) = y0, (3.61)

which we will explore in the problems at the end of the section. A more important point, however,
is the generalization of these methods to numerical schemes that have larger regions of stability
and are higher order, as well as methods that are adaptive, i.e., methods that take advantage of
variations in f and the solution of the initial value problem in (3.61) to adapt the discretization of
the domain [0, T) to variable step-size h. We will take up several of these schemes in the projects
at the end of this chapter, but conclude this section by pointing out that MATLAB’s ode45, in
conjunction with several other ODE solvers available in MATLAB, already incorporates state-of-
the-art advances made in this field and provides us with one of the most accurate, powerful and
versatile numerical schemes for solving initial value problems involving ODEs.

Problems 3.6

1. Alter the MATLAB code presented in this section and obtain Figures 3.11 and 3.12.

2. Apply the Forward Euler scheme to the following initial value problems. In each case
compare the approximate solution to the exact solution.

(a) y′ = 0.1y, y(0) = 2, T = 2, n = 10, n = 50 and n = 100.
(b) y′ = −0.1y + 1, y(0) = 2, T = 2, n = 10, n = 50 and n = 100.

3. Apply the Backward Euler scheme to the problems listed in Problem 2.

4. Apply the Centered difference formula in (3.48) to (3.43)–(3.44). Find the region of stability
and the truncation error of this scheme.

5. Apply the Forward Euler method to (3.60) to obtain the formula

yi+1 = yi + hf(ti, yi), y0 = given. (3.62)

Write a MATLAB program to implement this scheme to the following initial value problems.
Compare the approximate solution to the analytic solution or the one obtained from ode45.

(a) y′ = cos t sin y, y(0) = π
2 , T = 4π, n = 100.

(b) y′ = cos(ty), y(0) = 0, T = 4π, n = 100.

6. Repeat Problem (5) for the Backward Euler scheme.

7. Consider the system of equations

y′ = f(t, x, y), y′ = g(t, x, y), x(t0) = x0, y(t0) = y0. (3.63)

Show the Forward Euler method for this system is given by

xi+1 = xi + hf(ti, xi, yi), yi+1 = yi + hg(ti, xi, yi), (3.64)

with x0 and y0 given in (3.63). Apply this result to the following systems of equations.
Compare the graph of each approximate solution with the one obtained by using ode45.

3.10. BOUNDARY VALUE PROBLEMS AND THE SHOOTING METHOD 85

(a) x′ = y, y′ = − sin x, x0 = 0, y0 = 1, T = 2π, n = 100.

(b) x′ = y√
x2+y2

, y′ = − x√
x2+y2

, x(0) = −2, y(0) = 0, T = 3, n = 100.

(c) Repeat Problem 7 for the Backward Euler scheme.

3.10 Boundary Value Problems and the Shooting Method

As evidence of the versatility of MATLAB and its ode45 function, in this section we present a
MATLAB code that combines two numerical techniques designed to solve an important problem
in applied mathematics, namely that of obtaining a solution to a Boundary Value Problem
(BVP) of the form

x′ = f(t, x, y), y′ = g(t, x, y), x(0) = a, x(T) = b. (3.65)

Note that (3.65) is a boundary value problem because we have specified the value of x at t = 0
and at t = T , as opposed to specifying the values of x and y at t = 0. The function ode45 is
designed to solve initial value problems, as are the Euler and backward Euler methods described
in the previous section, and our main task is to convert (3.65) to an appropriate initial value
problem to which we can apply ode45. The technique we will employ is called the Shooting
Method, whereby in place of solving (3.65) we solve the initial value problem (IVP)

x′ = f(t, x, y), y′ = g(t, x, y), x(0) = a, y(0) = y0. (3.66)

The solution 〈x(t), y(t)〉 we obtain in this way will probably not satisfy the boundary condition

x(T) = b, (3.67)

unless we are very lucky. Our objective will be to experiment with y0 in (3.66) and compute
x(T) for each new guess of y0 and try to minimize the residual x(T)− b as a function of y0. The
heart of the shooting method is in what was just described: we think of the quantity x(T) − b
as a function of y0 and seek a zero of this function. The program listed below accomplishes this
task. It involves three MATLAB M-files, RightSide.m, ShootFirst.m and Bisection.m. The M-file
RightSide.m makes the ODEs in (3.65) accessible to MATLAB. The second M-file ShootFirst.m
uses RightSide.m with ode45 and solves the IVP (3.66) and returns the value x(T) − b. The
third M-file, Bisection.m implements the Bisection Method and computes a root of x(T)− b
as y0 varies.

The bisection method is one of the simplest algorithms for finding zeros of a function y = f(x).
Its implementation is based on the notion that if f is continuous on an interval (a, b) with f having
different signs at a and b, then f must have a zero in (a, b). To find such a point we begin by
evaluating f at the midpoint m = a+b

2 and comparing the sign of this value with those of f(a)
and f(b). The next step of the algorithm is to replace the interval (a, b) by either (a,m) or by
(m, b) depending on whether f(a)f(m) < 0 or f(b)f(m) < 0. We then repeat this process, that
is, consider the midpoint of the new interval and proceed to compare the evaluation of f at this
point relative to the endpoints. It is easy to see that the algorithm always converges and that
at each step of the algorithm, the length of the interval containing the zero is cut in half. The

86 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

program below lists the three M-files whose execution in MATLAB leads to Figure 3.10. This code
is written for the system

x′ =
y√

x2 + y2
, y′ = − x√

x2 + y2
, x(0) = −3, x(10) = 2. (3.68)

%%% Rightside.m %%%

function yprime=RightSide(t,y);
term=1./(sqrt(y(1).^2+y(2).^2));
yprime=term.*[y(2); -y(1)];

%%% ShootFirst.m %%%

function target=shootfirst(a,boundaryvalue)
[t y]=ode45(’RightSide’,[0 10],[-3 a]);
target=y(length(t),1)-boundaryvalue;

%%% Bisection.m %%%

function root=bisection(a0,b0,boundaryvalue,n)
a=a0:0.1:b0;
l=length(a);
b=[];
for i=1:l

b=[b shootfirst(a(i),boundaryvalue)];
end
b1=b(1:l-1);
b2=b(2:l);
y=b1.*b2;
[z,j]=min(y)
z
left=a(j);right=a(j+1);
for i=1:n

mid=(left+right)/2;
term1=shootfirst(left,boundaryvalue);
term2=shootfirst(mid,boundaryvalue);
if term1*term2 < 0

right = mid;
else left=mid;

eval([’left = ’,num2str(left),’, mid = ’, num2str(mid),
’, right = ’, num2str(right)])

end
end
root=mid;

The starting point of this algorithm requires a guess for a and b, which we arrive at by running

3.10. BOUNDARY VALUE PROBLEMS AND THE SHOOTING METHOD 87

Figure 3.13: The output of the shooting algorithm.

ShootFirst.m at various values of a until we obtain a negative target value and a positive one.
The trials ShootFirst(-3, 2) and ShootFirst(1,2) give us the appropriate a and b. With
this information in hand, we next apply Bisection.m:

Bisection(-3,1,2,10)

which gives us ten iteration of the bisection algorithm, leading to the target value of -2.0483.
Having found the right shooting value for y0 we run the following lines in MATLAB to get Figure
3.10:

[t,y]=ode45(’FirstShoot’,[0 10], [-3 -2.0483])
plot(y(:,1),y(:,2))
set(gca,’DataAspectRatio’,[1 1 1])

Problems 3.10

1. Apply the shooting method to find the solution to the following boundary value problems:

(a) x′ = y, y′ = −x, x(0) = 0, x(π
2) = 1. Compare the approximate solution to the exact

solution of this problem – note that this system of ODEs is equivalent to the second
order ODE x′′ + x = 0.

(b) x′ = y, y′ = − sin x, x(0) = 0, x(π) = 1.
(c) x′ = y, y′ = −0.1y − sin x + 0.2 cos 3t, x(1) = 0, x(2π) = 2.
(d) x′′ + (1 + t2)x = 0, x(−1) = 0, x(1) = 1. Recall that any second order ODE x′′ =

f(t, x, x′) can be converted to a system of first order equations by defining a new
variable y with x′ = y and noting that y′ = f(t, x, y).

88 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

Figure 3.14: The output of the shooting algorithm for the Blasius equation (3.69).

2. Modify the shooting method to apply to the following BVPs:

(a) y′′ = f(t, y, y′), y(a) = y1, y′(b) = y2.

(b) y′′ + 4y = 0, y(0) = 1, y′(1) = 0.

(c) y′′ + 0.1y′ + sin y = 0, y′(1) = 1, y(2) = 3.

(d) x′′ + x′ + (1− x2) = 0, x′(0) = 0, x′(1) = 1.

(e) yy′′ + y2 = 0, y(0) = 1.1, y(3) = 4.

3. A well-known problem in the flow past a flat plate, called the Blasius Boundary Layer
problem, is modelled by the BVP

f ′′′ + ff ′′ = 0, f(0) = f ′(0) = 0, f ′(∞) = 1. (3.69)

Modify the shooting method to apply to (3.69). See Figure 3.14 for the expected output.
(Hint: First convert (3.69) to a system of three ODEs by defining y1 = f , y2 = f ′, y3 = f ′′,
and noting that y′1 = y2, y′2 = y3 and y′3 = −y1y3. Next modify the Bisection.m file to
apply the shooting method on y3 with the range (0.3, 0.5), which is the range along which
y2 − 1 changes sign. It is sufficient to replace the domain t ∈ (0,∞) with (0, 10) because
the system converges to its equilibrium very quickly. Use MATLAB’s legend command to
get the legend shown in Figure 3.14.)

3.11. PROJECT A: MODIFIED EULER METHOD 89

3.11 Project A: Modified Euler Method

The backward finite difference method is based on the difference formula (3.47). When this
formula is applied to the nonlinear equation

y′ = f(t, y), y(0) = y0, (3.70)

it leads to the nonlinear difference equation

yi = yi−1 + hf(ti, yi), i = 1, 2, 3... (3.71)

Because this equation depends implicitly on yi, we need to take an extra step of inverting (3.71)
before proceeding to find its general solution. Instead of taking that route, an alternative ap-
proach is to replace the yi on the right-side of (3.71) by a formula involving lower-indexed yi’s.
One way to accomplish this is to replace the yi on the right-side with its approximation using
the forward finite difference yi−1 + hf(ti−1, yi−1):

yi = yi−1 + hf(ti, yi−1 + hf(ti−1, yi−1)),

where now the difference equation is explicit in yi. Another approach is to first write the slope
f(ti, yi) as the average of the slopes at (ti−1, yi−1) and (ti, yi)

yi = yi−1 +
h

2
(f(ti−1, yi−1) + f(ti, yi))

and then introduce the forward finite difference formula on the right-side:

yi = yi−1 +
h

2
(f(ti−1, yi−1) + f(ti, yi−1 + hf(ti−1, yi−1 + hf(ti−1, yi−1))). (3.72)

The motivation behind the averaging approach actually comes from re-setting (3.70) in its integral
form:

y(t + h)− y(t) =
∫ t+h

t

f(s, y(s)) ds. (3.73)

The integral on the right-side of (3.73) can be approximated in several ways. The simplest one
would be to replace the integrand f(s, y(s)) by the constant value hf(t, x(t)), thus obtaining the
forward Euler method, or by the constant value hf(t + h, y(t + h)) to get the backward Euler
method. Alternatively, we could approximate the integral by the area of the trapezoid with
vertices (t, 0), (t, f(t, y(t))), (t + h, f(t + h, y(t + h))) and (t + h, 0), which is

h

2
(f(t, y(t)) + f(t + h, y(t + h))),

which is the basis of (3.72).
The formula in (3.72) is known as the Modified Euler Method which we now state slightly

differently. This method is an example of a predictor-corrector algorithm, where one typically
applies a known method (in this case the forward Euler method) to get a first approximation to
the output, and then uses other means (in this case the averaging of the slopes) to correct this
value further.

90 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

(Modified Euler Method)
The difference equation for the Modified Euler Method is

y0 = given, yi = yi−1 +
h

2
(s1 + s2) (3.74)

where s1 and s2 are the approximate slopes at (ti−1, yi−1) and (ti, yi + hs1), or

s1 = f(ti−1, yi−1), s2 = f(ti, yi + hs1). (3.75)

The following MATLAB code will implement this scheme:

%
% Initialize t, T, y0, n,
% f is defined by an M-file or by the inline command
%
h = T/n;
h2=h/2;
out = [t y0];
y=y0;
for i=1:n

s1=f(t,y);
t=t+h;
pred=y+h*s1;
s2=f(t,pred);
y=y+h2*(s1+s2);
out=[out; t y];

end

1. Consider the differential equation

y′ = y2 + sin t, y(0) = 1. (3.76)

Write a MATLAB program to compute yi with n = 10 and T = 0.8.

The first five entries of the output of this program are

0 1.0000
0.0800 1.0899
0.1600 1.2037
0.2400 1.3485
0.3200 1.5349

Figure 3.15 shows the output of this program versus ode45’s.

2. Modify this program to allow for n = 100 and compare the result with the ode45 output.

3. Analyze this problem as T approaches 1. What happens to the ode45 output? And what
happens to the output of the Modified Euler Method?

4. Apply the Taylor expansion formula to show that the Modified Euler Method is second
order and determine its truncation error.

3.12. PROJECT B: RUNGE-KUTTA METHODS 91

Figure 3.15: The Modified Euler Method applied to y′ = y2 + sin t, y(0) = 1 and its comparison
with the output from ode45.

3.12 Project B: Runge-Kutta Methods

The modified Euler method is a second–order finite difference scheme whose implementation
requires function evaluations of f but does not rely on evaluating any of the derivatives of f .
Methods having this property are quite desirable and attempts have been made to construct
higher order methods which rely only the evaluation of the known right-side of the system of
ODEs y′ = f(t,y). These methods are collectively referred to as Runge–Gutta schemes.
The fourth–order Runge–Gutta scheme is very similar to the modified Euler method in that its
implementation requires computing predictors and corrector. For the scalar equation y′ = f(t, y),
this scheme’s finite difference formula is

yn+1 = yn +
h

6
(s1 + 2s2 + 2s3 + s4), (3.77)

where the term that multiplies h is essentially a weighted average of the slopes of the tangent
lines to the solution at t, at t + h

2 and at t + h. Here we give the formulas for si’s and refer the
reader the references at the end of this chapter for details. The term s1 is the slope y′ of the
solution at tn, where we use the ODE to determine y′:

s1 = f(tn, xn). (3.78)

The term s2 estimates the slope at the midpoint tn + h
2 ; Euler’s method is used to compute yn+ 1

2
:

s2 = f

(
tn +

h

2
, xn +

h

2
s1

)
. (3.79)

92 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

The term s3 is a correction of this predicted value where s2 replaces s1:

s3 = f

(
yn +

h

2
, yn +

h

2
s2

)
. (3.80)

the term s4 is a correction of the slope at tn+1 using s3:

s4 = f(tn+1, yn + hs3). (3.81)

We will not justify why this scheme works as well as it does, although the reader is encouraged
to apply Taylor’s formula to the difference equation (3.77) that this method does lead to a
fourth-order scheme.

Algorithm 3.12.2 (Runge–Kutta Method)
The difference equation for the 4th-order Runge–Kutta method is given by (3.77), where the

slopes si’s are defined by (3.78)–(3.81).

The modified Euler and the 4th-order Runge–Kutta methods generalize in a straightforward
manner to systems of ODEs. The finite difference formulas (3.74) and (3.77) are simply applied
to each differential equation in a given system.

In addition to 4th-order Runge–Kutta method just described, MAT LAB’s ode45 incorporates
adaptivity in selecting its step size at each step n. Stepsize adaptivity results in an algorithm
that is considerably more efficient in solving systems of ODEs especially when the solution
behaves quite differently in various parts of the domain. For example, the solution y(t) of
the initial value problem y′ = y2 with y(0) = 1 is y(t) = 1

1−t , which becomes undefined as t
approaches 1. Hence, we expect that we need to use more grid points near t = 1 to represent
the solution accurately relative to the neighborhood of t = 0, where the function 1

1−t is well-
behaved. The goal of adaptivity is to devise an alogorithm to anticipate the change in behavior
of the solution to adjust the step size h to achieve desired accuracy while keeping the function
evaluations to a minumum.

Typically adaptive schemes keep track of two error tolerances, the minimum and maximum
errors of the method, while computing the solution at the n-th iteration step. Regardless of
which of the several methods we discussed earlier are being implemented, we can compute two
approximate values at tn, one with step size h, which we denote by yn, and the other with step
size h

2 and denoted by zn. We generally expect that the value of zn to be a more accurate
approximation of the exact solution. The difference between yn and zn is then compared to the
minimum and maximum tolerance errors. If this difference falls between the tolerance errors, yn

is a reasonable approximation and we proceed with the scheme using h as the step size. If the
difference is below the minimum tolerance error, then yn is a reasonable value but we double
the step size for the next iteration. If, on the other hand, the difference in yn and zn is above
the maximum tolerance error we suspect that the solution may be going through a region of
sharp transition, reject both yn and zn, go back to the n− 1 stage and recompute the preceding
quantities with h replaced with h

2 . ODE45, and other ODE solvers within MATLAB, take advantage
of adaptivity and implement scenarios similar to what was just discussed and provide tools that
are quite efficient in solving for solutions of systems that are well-behaved or undergo sharp
transitions.

3.12. PROJECT B: RUNGE-KUTTA METHODS 93

Problems

1. Apply the modified Euler method and obtain a table of values for the following differential
equations. Use a step size h and a number of iterations n of your own choosing. In each
case compare the output with the solution from ode45.

(a) y′ = −y + 1, y(0) = 0.

(b) y′ = −y2 + t(1− t), y(0) = 1.

(c) y′ = t sin y, y(π) = −1.

2. Write a MATLAB program to implement the fourth–order Runge–Kutta scheme for the
initial value problem y′ = f(t, y), y(t0) = y0. The program should be structured to access
f through an M-file. As always, the first few lines of the program should introduce the
parameter values n, h, etc. It should output a table of values for tn and yn. apply this
program to the following IVPs while using a step size h and a number of iterations n of
your own choosing. In each case compare the output with the solution one obtains from
MATLAB.

(a) y′ = −2y + t, y(0) = 0.

(b) y′ = − sin y + 1
t , y(1) = 0.

(c) z′ = z2, z(0) = 0.1.

(d) y′ = tan y, y(0) = π
4 .

3. Develop MATLAB program for the 4th-order Runge–Kutta scheme for the 2× 2 system

x′ = f(t, x, y), y′ = g(t, x, y).

Apply this program to the following systems. Use h, n, and initial conditions of your own
choosing. In each case graphically compare the output with that of ode45.

(a) x′ = y, y′ = −x.

(b) x′ = x− 2y, y′ = x + 2y.

(c) x′ = y, y′ = − sin x.

(d) x′ = y, y′ = −0.1y − sin x.

(e) x′ = 1− x2−y2

(x2+y2)2 , y′ = − 2xy
(x2+y2)2 .

4. (Higher Order Taylor Methods) Euler’s method is an example of a class of methods
known as Taylor methods, whose difference equation is derived from an application of the
Taylor series. We note that x(t + h) and x(t) are related by

x(t + h) = x(t) + hx′(t) +
h2

2!
x′′(t) +

h3

3!
x′′′(t) + · · · . (3.82)

When x is a solution of the differential equation x′ = f(t, x) we can replace the derivatives
of x in (3.82) by f and its partial derivatives. For example, when we terminte the series
in (3.82) after just two terms and replace x′ with f , we end up with Euler’s method, i.e.,
Euler’s method is equivalent to a first–order Taylor method.

94 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

(a) Show that the difference equation we get from the second–order Taylor method (i.e.,
keeping only the first three terms on the right–hand side of (3.82)) is

xn+1 = xn + hf |(tn,xn) +
h2

2
(ft + ffx)|(tn,xn) . (3.83)

(Hint: Differentiate x′ = f(t, x) with respect to t to show that x′′ = ft + fxf .)

(b) Let x′ = sin x+t+1 with x(0) = 0. First use Euler’s method with h = 0.01 and obtain
an approximate solution in the interval (0, 10). Next write a program for the second–
order Taylor method and determine an approximate solution in the same interval.
Graph these two approximate solutions with the output of ode45 for comparison.

(c) Find the difference equation for the third–order Taylor method.

3.13. PROJECT C: BOUNDARY VALUE PROBLEM U ′′ = F (X), U(0) = U(1) = 0. 95

3.13 Project C: Boundary Value Problem u′′ = f(x), u(0) =
u(1) = 0.

Consider the BVP
u′′ = f(x), u(0) = u(1) = 0. (3.84)

In this project a finite difference scheme is applied to (3.84) to obtain its approximate solution.

1. Show that

u(x) = −x

∫ 1

0

∫ s

0

f(τ) dτ ds +
∫ x

0

∫ s

0

f(τ) dτ ds) (3.85)

is the exact solution of (3.84).

2. Let (0, x1, x2, ..., xn−1, xn, 1) be a discretization of the interval (0, 1), define the step-size
h = xi − xi−1 and let ui stand for u(xi). Use Taylor’s formula to show that

u′′(xi) =
1
h2

(ui+1 − 2ui + ui−1) +
h2

12
u′′′′(xi) + ... (3.86)

The expression
1
h2

(ui+1 − 2ui + ui−1) (3.87)

is a three-point approximation of u′′(xi). The formula in (3.86) shows that this approxima-
tion has an h2 local truncation error (denoted by O(h2)), assuming u′′′′ is a well-behaved
function.

3. Approximate the original BVP in (3.84) with the finite-difference approximation

ui+1 − 2ui + ui−1 = h2fi, i = 1, 2, ..., n, (3.88)

where fi = f(xi). Show that the system of n simultaneous equations in (3.88) is equivalent
to Au = f where

A =




−2 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0 ... 0
...
0 ... 0 1 −2 1 0
0 0 1 −2 1
0 0 1 −2




, u =




u1

u2

u3

...
un−2

un−1

un




, f =




h2f1

h2f2

h2f3

...
h2fn−2

h2fn−1

h2fn




.

(3.89)
Note that u0 = un+1 = 0 from the boundary conditions.

4. Write a MATLAB program to solve (3.89) when f(x) = 100 sin πx. Plot the graphs of the
approximate and the exact solution on the same screen and compare with Figure 3.16. Hint:
Look up the syntax for diag to come up with the following convenient way of entering A
into MATLAB:

96 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

Figure 3.16: The approximate solution to u′′ = 100 sin πx, u(0) = u(1) = 0 and its exact solution
when n = 10. The absolute and relative errors are 0.0684 and 0.0068, respectively.

3.13. PROJECT C: BOUNDARY VALUE PROBLEM U ′′ = F (X), U(0) = U(1) = 0. 97

vec1=ones(n,1);
vec2=ones(n-1,1);
A = -2*diag(vec1)+diag(vec2,1)+diag(vec2,-1);

5. Consider the BVP u′′ = f(x) subject to the boundary conditions u(0) = a and u(1) = b.

(a) Find the exact solution of this problem.

(b) Discretize this BVP to obtain the equivalent of (3.89).

(c) Apply the results to the BVP u′′ = x sin x with u(−1) = 1 and u(2) = −3.

6. Consider the BVP u′′ = f(x) subject to the boundary conditions u(0) = a and ux(1) = b.

(a) Find the exact solution of this problem.

(b) Discretize this BVP to obtain the equivalent of (3.89).

(c) Apply the results to the BVP u′′ = x
1+x2 with u(1) = −1 and ux(3) = 2.

7. Apply the above method to the BVP

u′′ + λu = f(x), u(0) = 0, u(1) = 0. (3.90)

Show that the matrix A in (3.89) must be replaced by

A =




−2 + λh2 1 0 0 0
1 −2 + λh2 1 0 0
0 1 −2 + λh2 1 0 ... 0
...
0 ... 0 1 −2 + λh2 1 0
0 0 1 −2 + λh2 1
0 0 1 −2 + λh2




Apply this method to the BVP u′′ + 4u = (1 − 4x2) sin πx, u(0) = u(1) = 0 to obtain an
approximate solution similar to the one in Figure 3.17. This solution is remarkably clsoe
to the exact solution of the problem, which can readily be obtianed using any symbolic
manipulator such as Mathematica. If the reader has access to this software, then

DSolve[{u’’[x] + 4 u[x] == (1 - 4 x^2)*Sin[Pi*x], u[0] == 0,
u[1] == 0}, u[x], x]

leads to the expression

1
(−4 + π2)3

(16π
(−4 + π2

)
x cos(πx) + 16π

(−4 + π2
)
csc(2) sin(2x)+

(
64x2 − 16π2

(
2x2 + 1

)
+ π4

(
4x2 − 1

)− 48
)
sin(πx))

for the exact solution. The plot of this function and the approximate solution by our
method is shown in Figure (3.17). This figure is obtained by executing the following lines
in MATLAB:

98 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

clear all
clf
n=10;
lambda=4;
h=1/(n+1);
x=h:h:1-h;
vec1=ones(n,1);
vec2=ones(n-1,1);
A=(-2+h^2*lambda)*diag(vec1)+diag(vec2,1)+diag(vec2,-1);
f=h^2*(1-4*x’.^2).*sin(pi*x’);
u=A\f;
plot(x,u)
exact=(1/(-4 + pi^2)^3)*(16*pi*(-4 + pi^2)*x.*cos(pi*x) +
16*pi*(-4 + pi^2)*csc(2)*sin(2*x) + ...

(-48 + 64*x.^2 - 16*pi^2*(1 + 2*x.^2) + pi^4*(-1 + 4*x.^2)).*sin(pi*x));
plot(x,exact,’*’, x, u, ’+r’)
legend(’exact’,’approximate’,’location’,’NorthWest’)
error=max(abs(exact-u’));
relerr=error/max(abs(exact));

3.13. PROJECT C: BOUNDARY VALUE PROBLEM U ′′ = F (X), U(0) = U(1) = 0. 99

Figure 3.17: The approximate solution to u′′+4u = (1−4x2) sin πx, u(0) = u(1) = 0 and its exact
solution when n = 10. The absolute and relative errors are 0.00083 and 0.0221, respectively.

100 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

3.14 Project D: The Method of Line

The method of lines is an effective numerical technique for solving a large number of Partial Dif-
ferential Equations (PDEs). The main strategy in this method is to replace the spatial derivatives
in a PDE by finite differences while leaving the temporal derivatives intact. This process con-
verts such a PDE to a large system of simultaneous ODEs, which can then be addressed by the
techniques we have been studying in this chapter. In this project we will discuss the details of
the method of lines for the heat equation

ut = λuxx (3.91)

and present a program in MATLAB for solving the resulting system of ODEs.
The function u(x, t) in (3.91) is the temperature in a heat–conducting rod at the point x and

at time t. The constant λ is a lumped parameter that contains the density, specific heat, and
the thermal conductivity of the material. Equation (3.91) is supplemented with the boundary
conditions

u(0, t) = u(l, t) = 0, (3.92)

which state that the two ends of the rod of length l are kept at temperature zero (ice), and initial
data

u(x, 0) = u0(x). (3.93)

We begin by subdividing the interval (0, l) into n equal subintervals. Let {x1, x2, . . . , xn−1} be
the set of n− 1 equidistant points in the interval (0, l), with

h = xi − xi−1, (3.94)

the step–size. Note that h = l
n .

We recall the formula

uxx(x, t) = lim
h→0

u(x + h, t)− 2u(x, t) + u(x− h, t)
h2

. (3.95)

Using the above center–difference approximation of uxx, we approximate uxx(xi, t) by

1
h2

(
u(xi+1, t)− 2u(xi, t) + 2u(xi−1, t)

)
. (3.96)

Returning to the heat equation, we now replace the exact expression

ut(xi, t) = λuxx(xi, t),

by

ut(xi, t) =
1
h2

(u(xi+1, t)− 2u(xi, t) + u(xi−1, t)) . (3.97)

where we have used (3.96) in place of uxx(xi, t). We have succeeded in constructing a linear
system of ODEs to approximate the original PDE (3.91). To illustrate this point better, set
n = 4 and let us write out the differential equations in (3.97). In this example, h = l

4 and

x1 =
l

4
, x2 =

l

2
, x3 =

3l

4
. (3.98)

3.14. PROJECT D: THE METHOD OF LINE 101

Let ui(t) ≡ u(xi, t). Then (3.97) is equivalent to

u′1 =
16
l2

(u2 − 2u1) , u′2 =
16
l2

(u3 − 2u2 + u1) , u′3 =
16
l2

(−2u3 + u2) , (3.99)

where we used the boundary conditions (3.92) to set u0 and u4 equal to zero. The initial data
for the linear system in (3.99) is calculated from (3.93):

u1(0) = u0

(
l

4

)
, u2(0) = u0

(
l

2

)
, u3(0) = u0

(
3l

4

)
. (3.100)

In practice we need to consider more points than just three in order for (3.97) to represent a
good approximation to (3.91). It should be clear, however, that the larger n is the larger the
dimension of the linear system in (3.97). We now present a program in MATLAB that uses
ode45 and solves this system of equations. This program is written with the following set of
parameters:

l = 1, n = 40, u0(x) = sin πx, λ = 0.01. (3.101)

The exact solution u(x, t) of (3.91) with the initial data given in (3.101) is

u(x, t) = e−λπ2t sin πx. (3.102)

global n h matrix lambda;
nographs=5; lambda = 0.1;
n=40;h=1/n;
%
x=1/n:1/n:1-1/n;
vector1=ones(size(1:n-2));
vector2=ones(size(1:n-1));
matrix1=diag(vector1,-1);
matrix2=diag(vector1,1);
matrix3=diag(vector2);
matrix=matrix1+matrix2-2*matrix3;
%
u0=sin(pi*x);
x=[0 x 1];
%
for i=1:nographs
[t,u]=ode45(’oneDheat’,0.1*(i-1),0.1*i,u0,10^(-7));
approximate=[0 u(length(t),:) 0];
subplot(211)
plot(x,approximate)
title([’1D Heat Equation, Method of Line, n=’,num2str(n)]);
hold on
subplot(212)
exact=exp(-lambda*pi*pi*t(length(t)))*sin(pi*x);
plot(x,exact-approximate)
xlabel(’Error’)

102 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

hold on
u0 = u(length(t),:);
end
hold off

This M-file calls on another M-file, identified as oneDheat.m in the program, which contains
the definition of the right–hand side of the equivalent of (3.99) when n = 40. The listing of
oneDheat.m is

function uprime=oneDheat(t,u);
%
global n h matrix lambda;
uprime=(lambda/h^2)*matrix*u;

1. Create the two M-files mol1d.m and oneDheat.m containing the above listings. Study
carefully the syntax of this program, especially the role played by matrix in mol1d.m,
which is then used in oneDheat.m. Execute mol1d.m in MATLAB. Compare your output
with Figure 3.18.

2. Change n to 10 and execute mol1d.m. How significantly does the output differ from Figure
3.18? Change n to 100 and repeat this part.

3. The exact solution of the initial boundary value problem (3.91)–(3.92) with initial data

u(x, 0) = sin πx + sin 2πx + sin 3πx (3.103)

is

u(x, t) =
3∑

n=1

e−n2π2t sin nπx. (3.104)

Alter mol1d.m appropriately to allow for this initial data and execute this program in
MATLAB. Compare the output with Figure 3.19.

4. Consider the initial-boundary value problem

ut = uxx + u, u(0, t) = u(1, t) = 0

and
u(x, 0) = sin πx.

Make appropriate changes to mol1d.m to accommodate the addition of the linear term to
the heat equation. Obtain the analogue of Figure 3.18a.

5. Consider the initial-boundary value problem

ut = uxx − 2u, u(0, t) = u(1, t) = 0

and
u(x, 0) = sin πx.

Make appropriate changes to mol1d.m to accommodate the term −2u. Obtain the analogue
of Figure 3.18a.

3.14. PROJECT D: THE METHOD OF LINE 103

Figure 3.18: The graph of u(x, t) with u(x, 0) = sin πx.

Figure 3.19: The graph of u(x, t) with u(x, 0) =
∑3

n=1 sin nπx.

6. Consider the nonlinear initial-boundary value problem

ut = uxx + u2, u(0, t) = u(1, t) = 0

and
u(x, 0) = sin πx.

Make appropriate changes to mol1d.m to accommodate the addition of the u2 term to the
heat equation. Obtain the analogue of Figure 3.18a.

104 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS

3.15 References

3.16 Linear Algebra and Matrix theory

1. Strang, Gilbert, “Linear Algebra and its Application”, 3rd edition, Brooks/Cole Publishing,
1988.

2. Strang, Gilbert, “Introduction to Linear Algebra”, 3rd edition, Wellesley Cambridge Press,
2003.

3. Nakos, George, and David Joyner, “Linear Algebra with Applications”, Brooks/Cole Pub-
lishing, 1998.

4. Malek-Madani, Reza, “Advanced Engineering Mathematics with Mathematica and Mat-
lab”, Addison-Wesley, 1998.

5. Golub, Gene, and Charles Van Loan, “Matrix Computations”, The Johns Hopkins Univer-
sity Press, 3rd edition, 1996

3.17 Advanced Calculus

1. Marsden, Jerome, E., Anthony Tromba, Karen Pao, Fredrick Soon, “Vector Calculus”, 5th
edition, W. H. Freeman and Co., 2004.

2. Fulks, Watson, “Advanced Calculus”, 3rd edition, Wiley Interscience, 1973.

3. Malek-Madani, Reza, “Advanced Engineering Mathematics with Mathematica and Matlab”,
Addison-Wesley, 1998.

3.18 Differential Equations

1. Hale, Jack, “Ordinary Differential Equation”, Wiley Interscience, 1972.

2. Malek-Madani, Reza, ”Advanced Engineering Mathematics with Mathematica and Mat-
lab”, Addison-Wesley, 1998.

3. Moin, Parviz, “Engineering Numerical Analysis”, Cambridge University Press, 2001.

4. Trefethen, Lloyd, N., “Spectral Methods in MATLAB”, SIAM, 2000.

Chapter 4

Equations of Motion of Fluid
Dynamics

In this chapter we develop the equations of motion for fluid flows in an inertial coordinate
system and present examples of exact solutions of this fundamental set of equations. We also
develop the same equations in a rotating coordinate system, the equations of Geophysical Fluid
Dynamics, and concentrate on the properties that characterize motions of fluids in an inertial
frame from the ones in a rotating frame.

4.1 Flow Representations – Eulerian and Lagrangian

As is common in the mathematical formulation of fluid dynamics, we distinguish between two
ways of viewing motion, one where the measurements of the various physical quantities are made
while keeping position fixed, and the other when the same physical quantities are measured as
functions of a fixed particle. We refer to the first representation as Eulerian and the second as
Lagrangian.

To make these ideas precise, let X denote a (fluid) particle with x the position it occupies at
time t. Let p be the vector-valued function that maps X into x:

x = p(t,X). (4.1)

Function p is called the motion or the deformation of the flow. The velocity and acceleration
of this motion, denoted by V and A, are defined by

V(t,X) =
∂p
∂t

and A(t,X) =
∂2p
∂t2

. (4.2)

Functions V and A defined in (4.1) are part of the Lagrangian representation of the motion; these
quantities are computed in reference to the current placement of a particle. This representation
is particle-centric in the sense that the instruments that actually perform the measurements are
moving with the particle. By contrast, we define v and a by

v(t,x) = V(t,X) and a(t,x) = A(t,X), (4.3)

105

106 CHAPTER 4. EQUATIONS OF MOTION OF FLUID DYNAMICS

where x and X are related through the motion (4.1). Thus the relations in (4.3) can be re-written
as

V(t,X) = v(t,p(t,X)) and A(t,X) = a(t,p(t,X)). (4.4)

The following example explores the relationship between V and v. Consider the two-dimensional
motion p = 〈p1, p2〉 given by

x1 = p1(t,X) = X1 + t2X2, x2 = p2(t,X) = X2 − tX1, (4.5)

where each particle X is identified by its position at time 0. In Figure 4.1 we start with a
collection of particles located on a circle of radius one and plot their subsequent positions in the
time interval t ∈ (1, 5), every one unit of time. This figure is obtained by executing the following
program in MATLAB:

clf;
s=0:2*pi/100:2*pi;
X=[cos(s);sin(s)];
plot(X(1,:),X(2,:));
hold on
for i=1:5

x=chi(i,X);
plot(x(1,:),x(2,:));
hold on

end
set(gca,’DataAspectRatio’,[1 1 1]); % setting the aspect ratio

where chi.m is

function x=chi(t,X)

A=[1 t^2; -t 1];
x=A*X;

The velocity field of this motion in its Lagrangian representation is determined by differentiating
(4.5) with respect to t, that is,

V1(t,X) =
∂p1

∂t
= 2tX2, V2(t,X) =

∂p2

∂t
= −X1. (4.6)

The same velocity field in Eulerian representation is determined as follows: Begin by solving the
two relations in (4.5) for X1 and X2:

X1 =
x1 − t2x2

1 + t3
, X2 =

tx1 + x2

1 + t3
. (4.7)

By definition v(t,x) = V(t,X), so we substitute (4.7) in (4.6) to get

v1(t,x) =
2t2x1 + 2tx2

1 + t3
, v2(t,x) = −x1 − t2x2

1 + t3
. (4.8)

4.1. FLOW REPRESENTATIONS – EULERIAN AND LAGRANGIAN 107

Figure 4.1: The motion defined by p1 = X1 + t2X2, p2 = X2− tX1. The figure shows the position
of particles originally located on a circle of radius one and their subsequent positions as time
evolves.

108 CHAPTER 4. EQUATIONS OF MOTION OF FLUID DYNAMICS

It is instructive to see that if we use (4.6) or (4.8), we arrive at the same velocity for a typical
particle, say, X = 〈1, 1〉, at any time t, say t = 2: First, from (4.6), we have

V1(2, 〈1, 1〉) = 4, V2(2, 〈1, 1〉) = −1. (4.9)

Similarly, we find from (4.5) that X occupies the position 〈5,−1〉 at time 2. Thus, using (4.8),
we have

v1(2, 〈5,−1〉) = 4, v2(2, 〈5,−1〉) = −1, (4.10)

which agrees with (4.9).

Problems

1. Find V and v for each deformation.

(a) x1 = X1 + te−tX2, x2 = X2 + te−2tX1.

(b) x1 = X1 + tX2, x2 = X2 − tX1 + tX2.

(c) x1 = X1 + tX1 − tX2, x2 = X2 + tX1 − t2X2.

(d) x1 = X1 + t2X2, x2 = X2 − t2X1.

(e) x1 = X1 + (sin t)X2, x2 = X2 − (1− cos t)X1.

(f) x1 = X1 + f(t)X2, x2 = X2 + g(t)X1.

2. Consider the deformation

x1 = X1 + 2t2X2, x2 = X2 +
1

1 + t
X1.

(a) Let D consist of the set of particles that occupy the disk of radius one centered at the
origin at time 0. Draw the graphs of the image at times t = 1 and t = 2.

(b) Determine the Lagrangian and Eulerian formulations of the acceleration of this motion.

4.2 Deformation Gradient

As Figure 4.1 shows, motions described by (4.1) deform parcels of fluid as time evolves. It is of
particular interest to us to develop tools that measure deformations and eventually relate them
to the forces that act on the parcels of fluid.

We denote by F the gradient of a deformation given by (4.2), that is,

F =
∂p
∂X

. (4.11)

F is a matrix with components Fij = ∂pi

∂Xj
. We will refer to F as the deformation gradient of

the motion. For example, the deformation gradient of p = 〈X1 + te−tX2, X2 + te−2tX1〉 is

F =

[
∂p1
∂X1

∂p1
∂X2

∂p2
∂X1

∂p2
∂X2

]
=

[
1 te−t

te−2t 1

]
. (4.12)

4.2. DEFORMATION GRADIENT 109

The notion of deformation gradient first appears in elementary calculus when formulas are
derived that desrcibe how change of variables affect evaluation of double and triple integrals.
Given a region D, in R2 or R3, and an integrand f , computing

∫
D

f dV is sometimes simplified if
we are able to find a change of variables and convert the region D to a new region D∗ where the
integration over D∗ reduces to iterated integrals. The price for this change of variables shows up
in the new integrand, fJ , where the additional term J is the jacobian of the change of variables.
The original integral and the transformed one are related by

∫

D

f dV =
∫

D∗
fJ dV ∗.

For example, we recall that a double integral
∫ ∫

D
f(x, y) dxdy is transformed into

∫ ∫

D∗
f(r cos θ, r sin θ) rdrdθ,

where the factor r is the determinant of the gradient of the map of the change of variables that
relates rectangular coordinates to polar coordinates, that is, with x = r cos θ and y = r sin θ,
then

J = det
[

∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

]
= r.

The next theorem shows that this notion plays a critical role in fluid flows as well since we
are able to quantify how the time rate of change of any deformation gradient is related to the
deformation gradient itself.

Theorem 4.2.1
Let p be a deformation with F and v as its deformation gradient and velocity respectively.

Then
d

dt
(det F) = (div v) det F. (4.13)

Proof: We present the proof for the two-dimensional case and leave the proof in the three-
dimensional case, which is similar, as an exercise.

Let p ∈ E2. The determinant of F is

det F = F11F22 − F12F21. (4.14)

Differentiate (4.14) with respect to t:

∂

∂t
(det F) =

∂F11

∂t
F22 + F11

∂F22

∂t
− ∂F12

∂t
F21 − F12

∂F21

∂t
. (4.15)

The four derivatives with respect to t are related to the velocity field because Fij = ∂pi

∂Xj
. Since

Vi = ∂p
∂t , we can re-write ∂

∂t (Fij) as ∂Vi

∂Xj
, the gradient of velocity, where the gradient is computed

with respect to particle positions Xj . We can relate this gradient to the gradient of v with

110 CHAPTER 4. EQUATIONS OF MOTION OF FLUID DYNAMICS

respect to x as follows: We recall that V1 = v1(t,x) = v1(t, p(t,X)). Hence, by differentiating
the latter expression with respect to X1, say, we get

∂V1

∂X1
=

∂v1

∂x1

∂p1

∂X1
+

∂v1

∂x2

∂p2

∂X1
. (4.16)

We can therefore express ∂F11
∂t in (4.15) in terms of v:

∂F11

∂t
=

∂v1

∂x1
F11 +

∂v1

∂x2
F21. (4.17)

All other terms on the right-side of (4.15) have a similar form in terms of v (for example,
∂F22

∂t = ∂v2
∂x1

F12 + ∂v2
∂x2

F22). Thus, (4.15) reduces to

∂

∂t
(det F) =

∂v1

∂x1
(F11F22 − F12F21) +

∂v2

∂x2
(F11F22 − F12F21) = (div v)det F, (4.18)

which completes the proof.

An important consequence of Theorem 4.2.1 is that the determinant of F is independent
of t when div v = 0, a property of incompressible materials. The fact that det F is time
independent states that an incompressible material is one for which the area of a parcel of fluid
remains invariant under the two-dimensional deformation of this material, a notion that has a
straightforward extension to three-dimensional flows when area is replaced by volume.

A second consequence of Theorem 4.2.1 is the Transport Theorem stated below. This
formula, which can be thought of as an analog of Leibniz’s formula for functions of several
variables, will allow us to differentiate integrals involving integrands and integration domains
that vary with a variable, say t. To prepare for stating this result, consider a deformation
(motion) p and an arbitrary region Ω in Rn, which is mapped to the region p(t,Ω) by the
motion. Let f(t,x) be a quantity of interest (such as density or pressure), and now consider the
quantity ∫

p(t,Ω)

f(t,x) dx.

The Transport Theorem below shows how one computes the time rate of change of this quantity.

Theorem 4.2.2 (Transport Theorem):
Let f be a sufficiently smooth function of its variables. Let x and X be related by x = p(t,X).

Then
d

dt
(
∫

p(t,Ω)

f(t,x) dx) =
∫

p(t,Ω)

[ft + div (fv)] dx, (4.19)

where v is the velocity field associated with p.

Proof: We consider x = p(t,X) as a change of variables that relates the original domain Ω
to p(t,Ω). With this interpretation we have

∫

p(t,Ω)

f(t,x) dx =
∫

Ω

f(t,p(t,X)) detF dX.

4.2. DEFORMATION GRADIENT 111

Since Ω is time independent, the derivative of the above expression with respect to t can be
passed directly to the integrand:

∂

∂t

[∫

Ω

f(t,p(t,X)) detF dX

]
=

∫

Ω

∂

∂t
[f(t,p(t,X)) detF] dX =

∫

Ω

(ft+gradf ·v) detF+f
∂

∂t
(detF) dX

=
∫

Ω

[ft + grad · v + f(div v)] detF dX

=
∫

Ω

[ft + div (fv)] detF dX

=
∫

p(t,Ω)

[ft + div (fv)] dx.

which completes the proof.
An an application of Theorem 4.2.2 we consider the mass of an arbitrary subregion Ω of a

body of fluid B. With ρ(t,x) representing the density of the fluid at any time t and position x,
we note that

m(t) =
∫

p(t,Ω)

ρ(t,x) dx

is the total mass of the fluid that occupies Ω at time 0 and p(t,Ω) at time t. Since mass is
conserved, we have m′(t) = 0. But, using (4.19), m′(t) is

m′(t) =
d

dt

[∫

p(t,Ω)

ρ(t,x) dx

]
=

∫

p(t,Ω)

[ρt + div (ρv)] dx, (4.20)

which must vanish. The above integral must vanish for every arbitrary subset Ω of the fluid
B, which implies that the integrand must vanish. Hence, conservation of mass reduces to the
following PDE for ρ and v:

ρt + div (ρv) = 0. (4.21)

When the divergence term, div (ρv), in (4.21) is expanded, we end up with

ρt + v · ∇ρ + ρ div v = 0. (4.22)

In analogy with the definitions for v and V, we let R(X) be the density associated with the
particle X. When a fluid particle X is incompressible its density will not change under any
deformation p. Hence, we have

R(X) = ρ(t,p(t,X)).

In that case, since d
dt (R(X)) = 0, we have d

dt (ρ(t,p(t,X)) = 0. The latter reduces to ρt +∇ρ ·v =
0, which when combined with (4.22), leads to

div v = 0 (4.23)

as the PDE that represents conservation of mass when the flow is incompressible. We summarize
the above development as a theorem:

112 CHAPTER 4. EQUATIONS OF MOTION OF FLUID DYNAMICS

Theorem 4.2.3 (Conservation of Mass)
Let ρ and v be the density and velocity field associated with a deformation p. Then ρ and v

must satisfy (4.21)
ρt + div (ρv) = 0.

When the flow is incompressible, the latter PDE further reduces to (4.23)

div v = 0.

Another application of the Transport Theorem is in the context of quantities that are of the
form ρφ, where φ is an arbitrary quantity of interest such as a component of the velocity field,
temperature or salinity. According to this theorem, we have

d

dt

(∫

p(t,Ω)

ρ(t,x)φ(t,x) dx

)
=

∫

p(t,Ω)

(ρφ)t + div (ρφv) dx. (4.24)

After using the conservation of mass relation (4.21), the term (ρφ)t simplifies as

(ρφ)t = ρtφ + ρφt = −φdiv (ρv) + ρφt.

Moreover, since div (ρφv) = φ div (ρv) + ρv · ∇φ, the integral on the right-side of (4.24) reduces
to ∫

p(t,Ω)

ρ(φt + v · ∇φ) dx. (4.25)

Definition 4.2.1 (Material or Total Time Derivative): Given any differentiable function
φ(t,x), we define the Material or Total Time Derivative of φ, denoted by Dφ

Dt as

Dφ

Dt
= φt + v · ∇φ. (4.26)

With this notation, and in light of (4.25),(4.24) is equivalent to

d

dt

(∫

p(t,Ω)

ρ(t,x)φ(t,x) dx

)
=

∫

p(t,Ω)

ρ
Dφ

Dt
dx. (4.27)

We have proved the following theorem.

Theorem 4.2.4: Any differentiable quantity φ(t,x) satisfies the relation (4.27).

When the result of Theorem 4.2.4 is applied to each component of the linear momentum ρv, we
obtain the important identity

d

dt

(∫

p(t,Ω)

ρ(t,x)v(t,x) dx

)
=

∫

p(t,Ω)

ρ
Dv
Dt

dx, (4.28)

which will play a key role in the derivation of the Navier-Stokes equations in a later section.

Problems

4.3. DERIVATION OF EQUATION OF CONSERVATION OF MASS – A HEURISTIC APPROACH113

Figure 4.2: A schematic to illustrate the conservation of mass equation.

1. Prove the result in Theorem 4.2.1 in three-dimensional setting.

2. Given any two differentiable functions f and g, show that

D(fg)
DT

= f
Dg

Dt
+ g

Df

Dt
,

where D
Dt is the material time derivative defined in this section.

3. Let F be the deformation gradient of a two-dimensional flow. Let λ1 and λ2 be the eigen-
values of F . Find relationships between the time-rates of change of λi and the components
of the associated velocity field v.

4.3 Derivation of Equation of Conservation of mass – a
Heuristic Approach

Theorem 4.2.3 summarizes the mathematical consequences of conservation of mass, whether the
fluid is incompressible or not, in terms of the changes in density and the divergence of velocity
field. Here we derive the same results (Equations (4.21) and (4.23)) using a heuristic approach
based on computating the flux of fluid that enetrs and leaves a control volume within the flow.

Let V be a small cube of with sides δx, δy and δz, centered at the P = (a, b, c), a typical
but fixed point in the path of the fluid flow. By the flux of the fluid through V we mean the net
loss of mass in V per unit time. We measure this quantity in two ways: First we measure how
mass is transported across the boundary of V during the small but fixed time interval (t, t + δt).
Next, we compute the change in the mass in V during the same tme interval by observing the
dynamics of the density in V . Since these two approaches must lead to the same value, we will
end up obtaining the relation (4.21).

Without loss of generality, we assume that the faces of V are parallel to the coordinate planes
(see Figure 4.2). Let v = 〈u, v, w〉 denote the velocity field. Each component of v is responsible
for the transport of the fluid through two of the faces of V – for example, v is responsible for
any fluid transport through the faces y = b − δ

2 and y = b + δ
2 . With the density and velocity

represented in their Eulerian form, the net transport through these two faces is

∫ t+δt

t

∫ ∫

S2

ρ(τ, x, b +
δy

2
, z)v(τ, x, b +

δy

2
, z) dS dτ−

∫ t+δt

t

∫ ∫

S1

ρ(τ, x, b− δy

2
, z)v(τ, x, b− δy

2
, z) dS dτ, (4.29)

where S1 and S2 are the two faces of the cube with y = b− δy
2 and y = b + δy

2 . If the dimensions
of the cube are small, we may comfortably apply the Taylor formula to each integrand: ρ(τ, x, b−
δy
2 , z)v(τ, x, b− δy

2 , z) = ρ(τ, x, b, z)v(τ, x, b, z)− ∂
∂y (ρv)|

y=b

δy
2 +. . ., where dots denote terms in δy2

114 CHAPTER 4. EQUATIONS OF MOTION OF FLUID DYNAMICS

and higher. Similarly, ρ(τ, x, b+ δy
2 , z)v(τ, x, b+ δy

2 , z) = ρ(τ, x, b, z)v(τ, x, b, z)+ ∂
∂y (ρv)|

y=b

δy
2 +. . ..

Hence the net transport across the two faces y = b− δ
2 and y = b + δ

2 reduces to

∫ t+δt

t

∫ a+δx/2

a−δx/2

∫ c+δz/2

c−δz/2

(
∂

∂y
(ρv)|

y=b
+ . . .

)
dz dx dτ.

Neglecting the higher order terms from the computation, and assuming that δx, δz, and δt are
small enough that the integrand remains essentially constant on each face and during the time
interval t, t + δt, we replace the above integral by

∂

∂y
(ρv) |

P
δxδyδzδt. (4.30)

Similarly the net loss of mass through the boundaries x = a− δx
2 and x = a+ δx

2 , and z = c− δz
2

and z = c + δz
2 are

∂

∂x
(ρu) |

P
δxδyδzδt and

∂

∂z
(ρw) |

P
δxδyδzδt. (4.31)

Hence, the net transport of mass through the boundaris of the cube is the sum of the above three
expressions, leading to

div (ρv) δxδyδzδt. (4.32)

This concludes the computation of the net transport using the first approach, namely, transport
through the boundaries of the cube. Next we compute the transport of mass during (t, t + δt)
by observing how the changes in the density in the cube V contributes to the net transport. We
begin by noting that

∫ ∫ ∫
V

ρ(t, x, y, z) dx dy dz is the mass of the fluid occupying V at time t,
and

∫ ∫ ∫
V

ρ(t + δt, x, y, z) dx dy dz is the total mass at time t + δt. Naturally, the difference
between these expressions

∫ ∫ ∫

V

ρ(t, x, y, z) dx dy dz −
∫ ∫ ∫

V

ρ(t + δt, x, y, z) dx dy dz, (4.33)

is the net transport of mass. Expression (4.33) can be simpliefied using the same startegy we
applied to (4.29), namely, the Taylor formula to expand ρ(t+δt, x, y, z) as ρ(t, x, y, z)+ ∂ρ

∂t δt+ . . .,
and then approximating the resulting integral in (4.33) by

−∂ρ

∂t
|
P
δxδyδzδt (4.34)

by sonsidering the smallness of all of the dimensions. Equating (4.34) with (4.32) leads to
equation of conservation of mass in (4.21).

Example ??.1 (Incompressibility of Vector Fields A, B and C)
The vector fields A, B and C, which were introduced in the previous section, are all incom-

pressible. We will carry out the computations for vector field B and leave the verification for A
and C to the reader. Vector field B is defined by

v = 〈v1, v2, v3〉 = 〈 y√
x2 + y2

,− x√
x2 + y2

, 0〉. (4.35)

4.3. DERIVATION OF EQUATION OF CONSERVATION OF MASS – A HEURISTIC APPROACH115

Its divergence is
div v = ∂v1

∂x + ∂v2
∂y

= ∂
∂x (y(x2 + y2)−

1
2)− ∂

∂y (x(x2 + y2)−
1
2)

= −xy(x2 + y2)−
3
2 + xy(x2 + y2)−

3
2 = 0.

(4.36)

The equation of conservation of mass is a relation between the density of the material and
the velocity field of a possible motion that the material may undergo. When the flow is two-
dimensional, so that v3 = 0 and v1 and v2 depend on x and y only, and when the material is
incompressible, this equation reduces to

∂v1

∂x
+

∂v2

∂y
= 0. (4.37)

We note that (4.37) is automatically satisfied if v1 and v2 are determined from a scalar function
ψ(x, y) through the relations

v1(x, y) =
∂ψ

∂y
, v2(x, y) = −∂ψ

∂x
. (4.38)

The function ψ is called the stream function for the flow. It has the special property that its
contours (level curves) coincide with the particle paths in the motion. To see this, note that

v · ∇ψ = 〈∂ψ

∂y
,−∂ψ

∂x
〉 · 〈∂ψ

∂x
,
∂ψ

∂y
〉 = 0. (4.39)

Equation (4.39) states that v and ∇ψ are orthogonal. We saw in Section ??, however, that ∇ψ
is orthogonal to the level curves of ψ (see Figure 4.3). Hence, v must be tangent to a level curve
of ψ, which in turn shows that the level curves of ψ are particle paths of the velocity field. We
summarize the preceding discussion in the following theorem.

Theorem ??.2 (Incompressibility and Stream Functions)
Let v be an incompressible two-dimensional vector field. Then there exists a function ψ such

that

v1(x, y) =
∂ψ

∂y
, v2(x, y) = −∂ψ

∂x
, (4.40)

and the curves
ψ = const. (4.41)

are the particle paths of
dx

dt
= v1(x, y),

dy

dt
= v2(x, y). (4.42)

Proof: We note that the system of differential equations

dx

dt
= v1(x, y),

dy

dt
= v2(x, y),

116 CHAPTER 4. EQUATIONS OF MOTION OF FLUID DYNAMICS

Figure 4.3: Trajectories and Stream Lines.

is equivalent to the first order ordinary differential equation

−v2(x, y) + v1(x, y)
dy

dx
= 0. (4.43)

Equation (4.43) is exact in the sense described in Chapter 3 if there is a function ψ that satisfies
(4.38). Theorem ??.1 states that the necessary and sufficient condition for the exactness of (4.43)
is the vanishing of the divergence of v (see equation ?? of Chapter 3).

Equations (4.38) actually point to the computations one needs to carry out in order to deter-
mine ψ once v1 and v2 are known. The following example demonstrates the strategy.

Example ??.2
Consider the velocity field

v1(x, y) =
y

x2 + y2
, v2(x, y) = − x

x2 + y2
. (4.44)

(We leave it to the reader to show that v is divegence-free.) We apply equations (4.38) in order
to compute a stream function for (4.44). We need to find ψ so that

∂ψ

∂y
=

y

x2 + y2
,

∂ψ

∂x
=

x

x2 + y2
. (4.45)

We begin by integrating (4.45a) with respect to y:

ψ(x, y) =
1
2

log(x2 + y2) + f(x), (4.46)

where f is the constant of integration (why is f a function of x?). Since ψ must satisfy equation
(4.45b), we differentiate (4.46) with respect to x and compare the result with (4.45b). It is clear
then that f ′ must be zero. So, up to a constant, the stream function for the flow defined by
(4.44) is given by the stream function

ψ(x, y) =
1
2

log(x2 + y2). (4.47)

The level curves of (4.47), which are circles, are the particle paths of velocity field (4.44).

Problems

1. The heuristic approach presneted in this section was developed for a small volume V in
the shape of a cube centered at P = (a, b, c). Reconstruct this approach with the point P
located instead at

(a) at a vertex on the lower face of the cube.

4.3. DERIVATION OF EQUATION OF CONSERVATION OF MASS – A HEURISTIC APPROACH117

(b) at a vertex on the upper face of the cube.

2. Draw the following vector fields and compute their divergences. Use Mathematica and
compare the plots produced by the computer with your plots.

(a) v(x, y) = xi + yj.

(b) v(x, y) = xi− yj.

(c) v(x, y) = 〈 x√
x2+y2

, −y√
x2+y2

〉.
(d) v(x, y) = 〈sin y, cos x〉.
(e) v(x, y) = log

√
x2 + y2i + yj.

3. Let v(x, y, z) = ∇f(x, y, z) for some scalar function f . Show that if the fluid, whose velocity
field is modeled by v, is incompressible (that is, div v = 0), then f satisfies Laplace’s
equation

∆f = 0. (4.48)

The operator ∆ in this equation, which should not be confused with the ∆ used in the
proof of Theorem ??.1, is defined by

∆f ≡ ∇2f ≡ div(∇f) = ∇ · ∇f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
. (4.49)

The operator

∆ = ∇ · ∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

is called the Laplacian. In many texts the notation ∇ · ∇ is abbreviated by ∇2.

4. Compute the Laplacian of f , ∇2f where f is described below. Verify your result in Math-
ematica.

(a) f(x, y) = 3x2 − 4y2

(b) f(x, y) = y
x

(c) f(x, y) = sin 1
x2+y2

(d) f(x, y) = ln(x2 + y2)

(e) f(x, y) = 1√
x2+y2

(f) f(x, y) = arctan y
x

5. Find the grad(div v) if v is given by the following formulas. Verify your computations in
Mathematica. The quantity r is the magnitude of 〈x, y〉.
(a) v = (x + y)i + (x− y)j

(b) v = x2i + y2j + z2k

(c) v = 1
r 〈x, y〉

118 CHAPTER 4. EQUATIONS OF MOTION OF FLUID DYNAMICS

(d) v = 1
r 〈y,−x〉

(e) v = 1
r2 〈y + ln r,−x− ln r〉.

6. Prove the following identities. Prove your results analytically and also verify them in
Mathematica.

(a) div (ρv) = ρdiv v + v · ∇ρ

(b) div (f∇g) = f∇2g +∇f · ∇g

(c) div (f∇g)− div (g∇f) = f∇2g − g∇2f .

(d) div (∇v ×∇w) = 0.

7. Let ψ(x, y) = 1√
x2+y2

be the stream function of a flow. Find the velocity of the particles

located at (1, 2), (−1, 1), (2, 3), and (−1,−2). Draw a diagram with the points and their
velocity vectors.

8. Let ψ(x, y) = sin(log(x2 + y2)) be the stream function of a flow. Find the velocity of the
particles of the particles located at (1, 0), (0, 1), (−1, 0), (0,−1). Similarly, find the velocity
of the particles located at (2, 0), (0, 2), (−2, 0), (0,−2). Draw these points, together with
their velocity vectors, on the same graph.

9. Prove that if v(x, y) is the velocity field of an incompressible flow with ψ its stream function,
then

div (ψv) = 0. (4.50)

10. Find whether each vector field has a stream function. If it does, find ψ and use it to draw
the particle paths of the flow.

(a) v = 〈y,−x〉
(b) v = 〈2x + y, x− 2y〉
(c) v = 〈x2 + y2,−2xy〉
(d) v = 〈sinx cos y,− cos x sin y〉
(e) v = 〈sinhx sin y,− cosh x cos y〉
(f) v = 〈 y√

x2+y2
,− x√

x2+y2
〉.

11. Let v(x, y) = 〈 y√
x2+y2

,− x√
x2+y2

〉. Verify whether this velocity field has a stream function

and if it does determine it.

12. Let u = w+v where w = 〈c, 0〉, with c a nonnegative constant, and v given by vector field
B.

(a) Show that ψc(x, y) = cy +
√

x2 + y2 is the stream function for this flow.

(b) Use the ContourPlot command of Mathematica and draw the level curves of ψc for
c = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1. Is there any qualitative difference in the level curves
as c varies? Explain.

4.3. DERIVATION OF EQUATION OF CONSERVATION OF MASS – A HEURISTIC APPROACH119

(c) Use NDSolve and plot several particle paths of each flow for the values of c listed
previously. What is the difference between the particle paths when c = 1 and the
other c’s?

13. (Divergence in Polar Coordinates) Consider the the velocity field (see Problem ?? in
Section ??)

v = v1(x, y)i + v2(x, y)j = vrer + vθeθ.

Show that the equation ∇ · v = 0 takes the form

∂vr

∂r
+

vr

r
+

1
r

∂vθ

∂θ
= 0. (4.51)

Remark ??.1: We can determine the divergence of a vector field in polar coordinates
directly in Mathematica. For example, we obtain the divergence of the vector field v =
r2 sin θer − reθ via

<<Calculus‘VectorAnalysis‘

v = {r^2 Sin[theta], -r, 0};
Div[v, Cylindrical[r, theta, z]]

14. Determine the divergence of each velocity field whose representation is given in polar co-
ordinates.

(a) v = reθ

(b) v = sin θeθ

(c) v = r2er

(d) v = r cos θer + r2 sin θeθ

(e) v = f(θ)er + g(θ)eθ

15. (Stream Functions in Polar Coordinates): Let ψ(x, y) be the stream function of a
velocity field v = v1(x, y)i + v2(x, y)j. Let

v = vrer + vθeθ

be the representation of the velocity field in polar coordinates (see Problem ?? of Section
??). Let Ψ be the stream function in polar coordinates, that is

Ψ(r, θ) = ψ(x, y). (4.52)

Starting with equations (4.38), prove that

vr =
1
r

∂Ψ
∂θ

, vθ = −∂Ψ
∂θ

. (4.53)

120 CHAPTER 4. EQUATIONS OF MOTION OF FLUID DYNAMICS

16. (Laplace’s Equation in Polar Coordinates): Use the expressions for the gradient and
the divergence operators in polar coordinates to show that the Laplace’s equation

∆ψ = 0

takes the form
∂2ψ

∂r2
+

1
r

∂ψ

∂r
+

1
r2

∂2ψ

∂θ2
= 0 (4.54)

in polar coordinates.

17. Show that the functions rn sin nθ and rn cos nθ satisfy Laplace’s equation for any constant
n.

18. (The Biharmonic equation) The Navier-Stokes equations form an important system of
equations that governs the motion of many viscous fluids. A special case of this system is
reduced to

∂p

∂x
= µ(

∂2u

∂x2
+

∂2u

∂y2
,

∂p

∂y
= µ(

∂2v

∂x2
+

∂2v

∂y2
,

∂u

∂x
+

∂v

∂y
= 0, (4.55)

where u and v are the horizontal and vertical components of the velocity, p is the pressure,
and µ is the viscosity (assumed constant here). The first two equations follow from the
balance of linear momentum. They are simplified considerably since we have dropped the
inertia terms.

(a) Eliminate p between the first two equations in (4.55). To that end, begin by differen-
tiating the first equation with respect to y and the second with respect to x. Show
that u and v must satisfy

∂3u

∂y∂x2
+

∂3u

∂y3
=

∂3v

∂x3
+

∂3v

∂y2∂x
.

(b) Let w be a four-time differentiable function. Show that

∆(∆w) =
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4
.

Because ∆ is also denoted by ∇2, the biharmonic operator is often denoted by

∇4.

(c) Let ψ be the stream function of the flow in (4.55). Show that ψ must satisfy the
biharmonic equation

∂4ψ

∂x4
+ 2

∂4ψ

∂x2∂y2
+

∂4ψ

∂y4
= 0. (4.56)

Hence, the original system of partial differential equations is reduced to the single
equation

∇4ψ = 0.

19. Determine whether the function ψ is a solution to the biharmonic equation.

4.3. DERIVATION OF EQUATION OF CONSERVATION OF MASS – A HEURISTIC APPROACH121

(a) ψ = sin x cos y

(b) ψ = sinh 2x cos 2y

(c) ψ = sinh x cosh y

(d) ψ = ex+iy

(e) ψ = ln(x2 + y2)

(f) ψ = sin xey

(g) ψ = eax sin ay where a is a constant

122 CHAPTER 4. EQUATIONS OF MOTION OF FLUID DYNAMICS

4.4 Acceleration in Cartesian Coordinates

By definition, acceleration is the time rate of change of velocity. In Lagrangian setting, where
velocity V(t,X) is defined in terms of fluid particles, acceleration A(t,X) is simply

A(t,X) =
∂V
∂t

.

In Eulerian setting, which is the preferred representation in Fluid Dynamics, A, must be written
in terms of position x rather than particle X. As stated earlier, we denote by a the representation
of acceleration in terms of position, noting the relation

a(t,x) = A(t,X),

where x and X are related through the deformation p by x = p(t,X). Hence,

A(t,X) = a(t,p(t,x)).

The previous expression shows the relation between the Lagrangian and Eulerian represen-
tation of acceleration. It does not, however, show how one computes a from v. To obtain that
formula, we note that

v = v(t,x) = v(t,p(t,X)), (4.57)

which shows the explicit dependence of v on t. Differentiating this expression leads to

a =
∂v
∂t

+ v · ∇v. (4.58)

This formula, in terms of the notation D
Dt defined in the previous section, states that acceleration

a is simply the material time derivative of v:

a =
Dv
Dt

.

To see how the formula in (4.58) applies, consider the velocity field v = 〈 y√
x2+y2

,− x√
x2+y2

, 0〉.
The first component of the acceleration, a1, according to formula (4.58), is

a1 =
∂u

∂t
+ v · ∇u = u

∂u

∂x
+ v

∂u

∂y
= − x

x2 + y2
,

and similarly, a2 = − y
x2+y2 , a3 = 0. Hence

a = − 1
x2 + y2

〈x, y, 0〉. (4.59)

Problems

1. Complete the calculations that led to (4.58). Start by writing (4.119) in component form
v = 〈v1, v2, v3〉, then apply the chain rule to differentiate each component to get the
components a1, a2 and a3 of a. Note that v · ∇ = u ∂

∂x + v ∂
∂y + w ∂

∂z .

4.5. STRAIN-RATE MATRIX AND VORTICITY 123

2. Complete the calculations that lead to (4.59), the acceleration of the velocity field v =
〈 y√

x2+y2
,− x√

x2+y2
, 0〉.

3. Compute the acceleration of each velocity field below:

(a) v = 〈y,−x, 0〉.
(b) v = 〈ax + by, cx + dy, 0〉.
(c) v = 〈x− xz, y − yz, z − xy〉.
(d) (ABC Flow) v = 〈A sin z + C cos y, B sin x + A cos z, C sin y + B cosx〉, where A, B

and C are constants.

(e) (Lorenz Flow) v = 〈σ(y − x), x(ρ− z)− y, xy − βz〉, where σ, ρ and β are constants.

4. Determine if any of the accelerations a obtained in the previous problem has a potential p,
that is, a = ∇p. Find p.

5. In each problem below ψ is the stream function of a velocity field v. Compute v and its
associated acceleration a:

(a) ψ(x, y) = 1
2 sin(x2 + y2).

(b) ψ(x, y) = 1
2y2 + sin x.

4.5 Strain-Rate Matrix and Vorticity

Fluid motions are generally not homogeneous, meaning that fluid particles in different positions
often move with different velocities. This nonhomogeneity manifests itself in the form of an
internal frictional or viscous force in the fluid. Different fluids respond differently to frictional
forces. A fluid such as pure water does not react appreciably to such a force whereas in a
lubricant viscous forces are quite dominant in defining the character of the motions this material
can support. In this section we will derive a mathematical quantity that is often associated with
a standard first order model of viscosity in fluids. This description requires computing the rate
of change of v with respect to the spatial variables x.

Let v(t,x) ∈ E3 be the velocity field of a fluid. Let v0 be the velocity of a typical fluid
particle that occupies position x0, i.e., v0 = v(t,x0). In order to develop an intuition about the
influence of v0 on the velocity of the particles occupying any of the neighboring positions to x0,
we expand the original velocity profile in a Taylor series about x0:

v(t,x) = v(t,x0) + (∇v)|x0
(x− x0) + · · · (4.60)

where the ellipses stand for higher order terms in x − x0. The matrix ∇v in (4.60) is the
velocity gradient we encountered in the previous section. Let D and A be the symmetric and
antisymmetric parts of this matrix, that is,

∇v = D + A where D =
1
2
(∇v + (∇v)T), A =

1
2
(∇v − (∇v)T). (4.61)

124 CHAPTER 4. EQUATIONS OF MOTION OF FLUID DYNAMICS

The 3× 3 symmetric matrix D is called the strain-rate matrix and its six independent entries
are related to v by the relations

dij =
1
2
(
∂vi

∂xj
+

∂vj

∂xi
). (4.62)

The matrix A, being anti-symmetric, has only three independent entries since

aii = 0, for i = 1, 2, and 3, (4.63)

and
aij =

1
2
(
∂vi

∂xj
− ∂vj

∂xi
), (4.64)

when i < j, and aji = −aij otherwise. The three entries in (4.64) are closely related to the
components of the vorticity ω = ∇× v; We leave it to the reader to show that

A(x− x0) =
1
2
ω × (x− x0). (4.65)

Hence, as a first approximation, the effect of the velocity vector at x0 on a small neighborhood
surrounding it is expressed by

v(t,x) = v(t,x0) + 2ω × (x− x0) + D(x− x0) + · · · . (4.66)

This equation shows two different geometric effects. First, the term 2ω × (x − x0) represents a
rotation about the axis ω with strength 2||ω|| radians per second. Second, the term D(x − x0)
measures the rate at which the fluid parcel near x0 is being sheared, stretched, or compressed.

Example 4.5.1
Consider the velocity field

v = 〈x, 2y, 0〉. (4.67)

The vorticity of this flow is identically zero while its strain-rate matrix is

D =




1 0 0
0 2 0
0 0 0


 . (4.68)

The system of differential equations that defines the motion is

dx

dt
= x,

dy

dt
= 2y,

dz

dt
= 0, (4.69)

whose solution is
x(t) = x0e

t, y(t) = y0e
2t, z(t) = z0. (4.70)

As the diagonal elements of (4.68) show, a parcel of fluid is stretched twice as far in the y direction
after one unit of time has elapsed. Figure 4.4 shows the impact of the deformation on four fluid
particles whose initial positions are located near the origin. This figure clearly shows that there
is no stretching in the x-direction but there is quite a bit of stretching in the y-direction. Note
that eigenvalues of D are 1, 2 and 0, with eigenvectors 〈1, 0, 0〉, 〈0, 1, 0〉 and 〈0, 0, 1〉, respectively,
predicting the amounts of stretching in the three axes directions. Figure 4.4 is the output of the
following MATLAB program:

4.5. STRAIN-RATE MATRIX AND VORTICITY 125

Figure 4.4: The motion of four particles under the velocity field 〈x, 2y, 0〉.

clear all
clf
t=0:0.01:3;
x=-4:0.5:4;y=-4:0.5:4;
[X,Y]=meshgrid(x,y);
quiver(X,Y,X,2*Y);
hold on
plot(-0.1*exp(t),-0.01*exp(2*t),’b’)
plot(-0.1*exp(t),0.01*exp(2*t),’y’)
plot(0.1*exp(t),-0.01*exp(2*t),’g’)
plot(0.1*exp(t),0.01*exp(2*t),’r’)

Example 4.5.2

126 CHAPTER 4. EQUATIONS OF MOTION OF FLUID DYNAMICS

Consider the velocity field
v = 〈x− 2y, 3x + y〉. (4.71)

The preceding MATLAB program, when appropriately changed for (4.71), leads to Figure 4.5. It
is clear from this figure that under this fluid flow parcels of fluid are rotated as well as they are
stretched, as can be verified from the values of the vorticity and strain-rate matrix for (4.71):

ω = ∇× v = 〈0, 0, 5〉, (4.72)

and

D =




1 1
2 0

1
2 1 0
0 0 0


 . (4.73)

Figure 4.5 is the output of the following MATLAB program:

clear all
clf
t=0:0.01:3;
x=-4:0.5:4;y=-4:0.5:4;
[X,Y]=meshgrid(x,y);
quiver(X,Y,X-2*Y,3*X+Y);
hold on
[t, y]=ode45(@deform2,[0 3],[0.1 0.1]);
plot(y(:,1),y(:,2),’r’)
[t, y]=ode45(@deform2,[0 3],[-0.1 0.1]);
plot(y(:,1),y(:,2),’g’)
[t, y]=ode45(@deform2,[0 3],[0.1 -0.1]);
plot(y(:,1),y(:,2),’b’)

The M-file deform2.m is

function yprime=deform2(t,y);

yprime=[y(1)-2*y(2); 3*y(1)+y(2)];

Example 4.5.3
The following is the syntax for the MATLAB program that delivers the same output as the one

shown in Figure 4.5:

data = [0 0; 1 0;1 1; 0 1;0 0];
plot(data(:,1), data(:,2));
hold
image=[];
for i=1:length(data)

[t,y]=ode45(’diffeqn’,[0 1],data(i,:));
image=[image;y(length(t),:)];
plot(image(:,1),image(:,2));

end

4.5. STRAIN-RATE MATRIX AND VORTICITY 127

Figure 4.5: The motion of four particles under the velocity field 〈x− 2y, 3x + y, 0〉.

128 CHAPTER 4. EQUATIONS OF MOTION OF FLUID DYNAMICS

where the file diffeqn.m called by the main program is

function y=diffeqn(t,x)
%
y=[x(1); 2*x(2)];

In the next section we will use the strain-rate as a measure of the deformation in a fluid flow and
define the response of an ideal fluid in terms of this matrix.

Problems

1. Complete the analysis that leads to equations (4.65), that is, let A be the anti-symmetric
part of ∇v and ω = ∇× v. Show that

Ax =
1
2
ω × x,

for any vector x.

2. Complete the analysis that leads to the approximation formula (4.66), i.e.,

v(t,x) = v(t,x0) + 2ω × (x− x0) + D(x− x0) + · · · .

3. Draw the graphs of the image of the unit circle centered at the origin as t ranges from 0 to
1 at increments of 0.1 for

(a) Example 4.5.1.

(b) Example 4.5.2.

4. In the following problems determine the vorticity vector and strain-rate matrix. Use MATLAB
and draw the graphs of the deformation of the unit circle centered at the origin as t ranges
from 0 to 1 at increments of 0.1.

(a) v = 〈x− y, x + y, 0〉.
(b) v = 〈x, x− y, 0〉.
(c) v = 〈x + y,−2y, 0〉.
(d) v = 〈2x− 3y, 3x− 2y, 0〉.
(e) v = 〈x2 − y2, x + y, 0〉.
(f) v = 〈y/

√
x2 + y2,−x/

√
x2 + y2, 0〉.

(g) v = 〈sinxy, cos xy, 0〉.
5. In the following problems determine the vorticity vector and strain-rate matrix. Alter the

MATLAB program in Example 4.5.1 appropriately to allow for three-dimensional graphics.
Draw the graphs of the deformation of the indicated unit circle as t ranges from 0 to 1 at
increments of 0.1.

4.6. INTERNAL FORCES AND THE CAUCHY STRESS 129

(a) v = 〈2x,−4y, 3z〉. First find the evolution of the unit circle centered at the origin in
the xy-plane. Next, draw the graphs of the deformation of the unit circle centered at
the origin in the xz-plane.

(b) v = 〈2x− z, z − 4y, 3z2〉. Repeat as in the previous problem.

6. In each of the following problems let ψ(x, y) be a stream function with the velocity field
given by v = 〈∂ψ

∂y ,−∂ψ
∂x , 0〉. For each problem begin with a unit circle centered at the origin

and determine its evolution as t varies:

(a) ψ = y − y/(x2 + y2).

(b) ψ = sin x sin y.

(c) ψ = cos x cos y.

(d) ψ = sin x sin y + cos x cos y.

(e) ψ = cos 3x sin 4y + sin 5y + cos 5y.

7. Determine the strain-rate for each of the velocity fields in the previous problem.

8. In each of the following problems let φ(x, y) be the potential function for the velocity field
given by v = ∇φ. For each problem start with fluid particles located at time zero on the
unit circle centered at the origin and determine the evolution of these particles as t varies:

(a) φ = x2 + y2.

(b) φ = x2 − y2.

(c) φ = xy.

(d) φ =
√

x2 + y2.

(e) φ = ln(x2 + y2).

(f) φ = sin 2x cos 3y.

(g) φ = sinh x cosh 2y.

4.6 Internal Forces and the Cauchy Stress

The srain-rate matrix D provides information about the local deformation of a fluid parcel. The
concepts of pressure and viscous forces are the mathematical formulations of how we view
fluid elements respond to these deformations. Our task here is to describe a relationship between
the strain-rate D and the internal forces that act on bodies of fluid when these bodies undergo
deformations. This discussion leads us to the mathematical definitions of traction and stress
in a fluid.

The concept of traction t experienced by a fluid element located at x is defined in terms
of the force exerted at x. To be precise, consider a smooth surface S passing through x. The
smoothness of S guarantees that we can define a unique normal vector n to S at x. The traction
t at a point x, which we may also denote by t(x,n) to emphasize the dependence of t on the
position x and the normal vector n, is the force per unit area experienced by x in the following
sense: if we were to remove a segment of volume V of the fluid in a small neighborhood of x,

130 CHAPTER 4. EQUATIONS OF MOTION OF FLUID DYNAMICS

defined by a small area ∆ located on S “centered” around x and height h in the direction of
n, and still insist that the particle of fluid occupying x experiences the same deformation, we
then need to replace the action of the removed parcel of fluid by a force F. One of the main
assumptions of the discipline of Continuum Mechanics is that this force depends continuously
on the area of the neighborhood and on the normal n. Moreover, it is assumed that the limit of
this force when it is scaled by the area of the neighborhood exists as the area of the neighborhood
approaches zero:

lim
∆→0

1
∆

F(∆) = t(x,n).

This limit, which is precisely the force per unit area acting at x, is the traction t at x.
It follows from the tenets of continuum mechanics that the traction at a point x is solely

determined by the unit normal vector at x. Moreover, a theorem due to Cauchy demonstrates
that the dependence of t on the normal vector is linear. Thus, there is a matrix, denoted by σ,
such that

t(x,n) = σ(x)n. (4.74)

The matrix σ, which is called the Cauchy stress associated with the fluid, depends on the in-
trinsic properties of the fluid, and not on a specific deformation that the fluid may be undergoing.
The reader is encouraged to consult the text by Truesdell and Rajagopal (see Reference [3] at
the end of this chapter), which provides an excellent and complete introduction to this subject.

Once a set of basis vectors for the Euclidean three-dimensional space E3 is chosen, the matrix
defined by the Cauchy stress is represented in that basis by the 3× 3 matrix

σ =




σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


 . (4.75)

The physical interpretation of the coefficients σij is as follows (again, see Reference [3] for more
detailed discussion): Let {i, j,k} be the standard orthonormal basis for E3. Imagine a small cubic
block of fluid, centered at x, with sides parallel with the coordinate planes. Each face of the
block is perpendicular to one of the coordinate axes, thus the directions of the basis vectors ±i,
±j, and ±k constitute unit normals to these faces. The vector σk, which is 〈σ13, σ23, σ33〉, is the
traction vector (force per unit area) experienced on this face. The quantity σ33 is the component
of this vector in the direction normal to the face, while σ13 and σ23 are the components of the
traction vector parallel to the face itself. These quantities measure the extent of shearing the
fluid located at x is undergoing. This discussion, when applied to the other faces of the cube,
provide interpretation for the remaining six σij . Because of their inherent physical attributes,
the diagonal entries of σ, σii, i = 1, 2, 3, are called the normal stresses while the off diagonal
entries, σij , i 6= j are called the shear stresses.

An important property of the Cauchy Stress, which follows directly from the conservation of
Angular Momentum (see Reference [3]), is that the matrix σ is symmetric, that is,

σij = σji

for all i and j.
We define a fluid as an ideal isotropic incompressible fluid if its Cauchy stress σ is

related to its strain-rate D of any deformation it undergoes by the relation (recall that D is the

4.6. INTERNAL FORCES AND THE CAUCHY STRESS 131

symmetric part of the velocity gradient ∇v)

σ = −pI + µD. (4.76)

The function p is called the pressure of the fluid and µ its kinematic viscosity. This relation
is an example of a constitutive law in continuum mechanics, a collection of laws that help
describe how a velocity field v determines the internal forces it induces on the fluid particles
that support the motion. The constitutive law (4.76) is the last piece of information we need to
complete the formulation of the Navier-Stokes equations.

Problems

1. Suppose that the state of stress in a material is given by the hydrostatic pressure p as

σ = −p(x, y, z)I, (4.77)

where I is the identity matrix . Let B, B = (x, y, z), be a fixed but arbitrary point in
the domain of the deformation. Compute the traction at B along planar surfaces parallel
to the coordinate planes (i.e., with unit normals i, j and k). What are the components of
normal and shear stresses in each case?

2. Consider the state of stress in a material given by the Cauchy stress

σ =




x(y + z)− x2 1
2 − y z2

1
2 − y2x 1− yz 0
1 + z −2 −1 + x + z


 . (4.78)

Compute the traction and the normal and shear stresses at the following points and direc-
tions:

(a) n = 〈1, 0, 0〉 and P = (0, 0, 0).
(b) n = 〈1, 1, 1〉 and P = (1,−2, 1).

3. Consider the stress matrix of the previous problem. Consider the position x = 〈1,−1, 1〉.
Let n = 〈cos θ, sin θ, 0〉, with θ ∈ (0, 2π], be a unit normal vector to a one-parameter family
of surfaces passing through x. Compute the normal stress as a function of θ and determine
at which θ this quantity achieves its maximum and minimum.

4. Consider the Cauchy stress of a fluid given by

σ =




ρgx 0 0
0 ρgy 0
0 0 ρgz


 , (4.79)

where ρ is the density of the fluid and g is the acceleration of gravity. Consider a cube of
sides 2 units, centered at the origin, located in this medium. Assume the faces of the cube
are parallel to the coordinate planes. Determine the force exerted by the fluid on the side
S parametrized by

S = {(x, y, z)| − 1 ≤ x ≤ 1, −1 ≤ y ≤ 1, z = −1}, (4.80)

(Hint: Compute
∫ ∫

S
t · dA, where t is the traction on the surface (whose unit outward

normal is n = 〈0, 0,−1〉)

132 CHAPTER 4. EQUATIONS OF MOTION OF FLUID DYNAMICS

5. Consider the Cauchy stress defined in (4.79). Determine the force acting upon the following
surfaces:

(a) The disk x2 + y2 < 1 and z = 1
(b) The rectangular region located in the plane z = 1 with boundaries −1 < x < 1 and

−1 < y < 1
(c) The rectangular region located in the plane y + z = 1 with boundaries 0 < x < 1 and

0 < y < 1
(d) The rectangular region located in the plane y − z = 0 with boundaries 0 < x < 1 and

0 < y < 1
(e) The rectangular region located in the plane x + 2y + z = 1 with boundaries 0 < x < 1

and 0 < y < 1
(f) The hemisphere x2 + y2 + z2 = 1, z > 0
(g) The surface given by x2 + y2 + z2 = 1, x > 0, y > 0, z > 0
(h) The surface given by 2x2 + 3y2 + z2 = 4, z > 0

6. Determine the traction on the plane x + y + z = 1 at the point (0, 1, 0) where σ is given by

σ =



−1 + x + y 0 0

0 −1− x + y 0
0 0 −1 + y


 .

7. Compute the force acting on the disk D, located in the xy-plane, of radius 1 and centered
at the origin, where the Cauchy stress is given in the previous problem.

4.7 Euler and Navier-Stokes Equations

The equations governing the hydrodynamic flow of fluids are derived from the conservations of
mass (see (4.21) and (4.23)) and linear momentum. We have already introduced equation (4.21)

ρt + div (ρv) = 0,

and its counterpart
div v = 0,

when the fluid is incompressible. We now derive the equation that results from the conservation
of linear momentum. This conservation law states that the rate of change of linear momentum
is balanced by the resultant of all forces acting on the fluid, both internal and external. Stating
this in mathematical terms (as always, considering a parcel of fluid Ω that occupies the region
p(t, Ω) at time t)

d

dt

(∫

p(t,Ω)

ρv dx

)
= F, (4.81)

where F stands for the resultant forces. From Theorem 4.2.4 we have

d

dt

(∫

p(t,Ω)

ρv dx

)
=

∫

p(t,Ω)

ρ
Dv
Dt

dx. (4.82)

4.7. EULER AND NAVIER-STOKES EQUATIONS 133

As for the forces acting on a parcel of fluid p(t,Ω), they are of two types: the traction forces,
which the parcel feels through its boundary ∂p(t,Ω), given by the surface integral

∫

∂p(t,Ω)

σ · dA, (4.83)

where σ is the Cauchy stress of the fluid. The second type are the body forces acting on the
parcel of fluid, determined from the triple or volume integral

∫

p(t,Ω)

ρF dx. (4.84)

The expression in (4.83) can be converted to a volume integral over p(t, Ω), by applying the
Divergence theorem, as follows integral

∫

∂p(t,Ω)

σ · dA =
∫

p(t,Ω

div σ dx, (4.85)

where by div σ, the divergence of a matrix, we mean a vector whose i-th component is the
divergence of the i-th row of σ, that is,

(div σ)i =
3∑

j=1

∂σij

∂xj
, (4.86)

where xj is the j-th component of the position x of a fluid particle. We now combine (??), (4.84)
and (4.85) to arrive at ∫

p(t,Ω)

(ρ
Dvi

Dt
−

3∑

j=1

∂σij

∂xj
− ρFi) dx = 0, (4.87)

for every i = 1, 2 and 3 and any arbitrary parcel Ω, which results in the following system of
PDEs since the parcel Ω is arbitrary (and hence the integral in (4.87) vanishes if and only if its
integrand vanishes)

ρ
Dvi

Dt
−

3∑

j=1

∂σij

∂xj
− ρFi = 0, for i = 1, 2, 3, (4.88)

where vi’s are the components of v = 〈u, v, w〉. The system of PDEs in (4.88) takes a special
form when the material is an ideal isotropic incompressible fluid, i.e., when the velocity field v
and the Cauchy stress σ are related by

σ = −pI + µD.

It is not difficult to show that div (pI) = ∇p and div(D) = ∆v, where by ∆v we mean
〈∆u, ∆v, ∆w〉. With these observations, the PDEs in (4.88) reduce to

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇p + µ∆v + ρF. (4.89)

Typically the body force F is the weight of the fluid. The system of equation (4.89) is called the
Navier-Stokes equations of the fluid flow. In applications where one studies fluid motions in a

134 CHAPTER 4. EQUATIONS OF MOTION OF FLUID DYNAMICS

revolving body such as the earth, equations (4.89) must also take into account the contribution
of the Coriolis and the centripetal forces, which we will consider in the next section.

For the special class of fluids for which the kinematic viscosity µ vanishes (or ∆v = 0), the
Navier-Stokes equations reduce to the Euler system of PDEs:

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇p + ρF. (4.90)

We summarize the above discussion in the following theorem, which is stated in the context of
incompressible flows:

Theorem 4.7.1 – (The Euler and Navier-Stokes PDEs for Incompressible Fluids)
The Euler system of PDEs govern motions of incompressible inviscid fluids. These PDEs are

ρ
Dv
Dt

= −∇p + ρF, divv = 0. (4.91)

The Navier-Stokes system of PDEs govern motion of incompressible fluids. These PDEs are

ρ
Dv
Dt

= −∇p + µ∆v + ρF. (4.92)

We end this section by pointing out an important connection between the Euler and the
Navier-Stokes equations. The proof of this result is left to the reader.

Theorem 4.7.2
Let v be the velocity field of an incompressible material. Suppose that v is irrotational. Then

The equations of motion of v reduce to

ρ
Dv
Dt

= −∇p + ρF, divv = 0. (4.93)

Problems

1. Show that div (pI) = ∇p and div(D) = ∆v, where ∆v = 〈∆u, ∆v,∆w〉.
2. Prove Theorem 4.7.2.

3. Show that the stream function ψ of the flow past the cylinder (with F = 0), which is given
by

ψ(x, y) = y − y

x2 + y2
,

satisfies ∆v = 0, and is irrotational. Assuming the fluid is of constant density, find the
pressure p so that the Euler system of PDEs in (4.93) are satisfied.

4. (Linear Flows) Consider the flow of an incompressible viscous fluid whose velocity v
satisfies are

ρ
∂v
∂t

= −∇p + µ∆v, div v = 0, (4.94)

where ρ is constant. Show that

4.8. BERNOULLI’S EQUATION 135

(a) p must satisfy ∆p = 0.

(b) ω = ∇× v satisfies the PDE
∂ω

∂t
= ν∆ω, (4.95)

where ν = µ
ρ .

4.8 Bernoulli’s Equation

In a typical problem the system of PDEs in (4.89) must be augmented by initial conditions, the
state of fluid at time zero, and boundary conditions, which describe how fluid particles that are
located on the boundary react with the boundary – if the boundary is a solid surface, one often
prescribes the no-slip boundary condition v = 0, so that fluid particles that are located on the
surface remain stationary for all time. Another popular boundary condition, often employed
when the model is inviscid (that is, µ = 0 in (4.89) is to assume that the normal component of
the velocity vanishes at the boundary (the so-called slip boundary condition)

v · n = 0

where n is a unit outward normal to the boundary. No matter boundary condition one selects,
Navier-Stokes very difficult to solve. There are very few exact solutions of this system available,
although the ones we do know of are very important in that they provide quite a bit of information
about the nature of solutions of this system.

The challenges we face when attempting to find solutions to (4.94) stem from two sources:
the nonlinear dependence of the acceleration on the velocity, which is due to the presence of
v · ∇v term in the formula (4.58), and complications that arise from the flow domain being
geometrically complex. The complication that arise from the nonlinearity of a prohibits us from
building additional solutions of the Navier-Stokes equations once we have two distinct solutions
in hand, that is, the principle of superposition, which is at the heart of obtaining solutions in the
case of linear problems. A complex geometry, on the other hand, prohibit us from using well-
known analytic function of mathematics as building blocks for constructing solution. As a result,
our strategy in obtaining exact solutions is to look at cases where the flow and/or the domain
are relatively simple. In this section we look at one such special case, the case of irrotational
flows.

Consider an irrotational flow, where by definition the velocity field v satisfies the constraint

∇× v = 0. (4.96)

This relation, which is equivalent to stating ∂vi

∂xj
= ∂vj

∂xi
for all i and j, helps in re-writing the

v · ∇v as
3∑

j=1

∂vi

∂xj
vj =

3∑

j=1

∂vj

∂xi
vj =

1
2

3∑

i=1

∂v2
j

∂xj
=

1
2

∂

∂xi
||v||2. (4.97)

Putting it slightly differently, the nonlinear term v · (∇v) is the gradient of the square of the
fluid speed:

(∇v)v =
1
2
∇||v||2. (4.98)

136 CHAPTER 4. EQUATIONS OF MOTION OF FLUID DYNAMICS

Yet another way of stating this fact is to note that 1
2 ||v||2 serves as a potential for v · ∇v. See

also Problem ??.
A second consequence of the irrotationality of v is that this velocity field must have a potential,

that is, there must exist a function φ whose gradient is the velocity field under consideration:

v = ∇φ. (4.99)

If we further assume that the fluid is homogeneous and the density ρ remains constant, and that
the body force F itself has a potential f , then equation in (4.89) takes the form

∇
(

∂φ

∂t
+

1
2
||v||2 + f +

p

ρ

)
= 0. (4.100)

or equivalently
∂φ

∂t
+

1
2
||v||2 + f +

p

ρ
= const. (4.101)

The above expression is called the Bernoulli equation for incompressible fluids. When the
material is compressible this expression takes the form

∂φ

∂t
+

1
2
||v||2 + f +

∫
dp

ρ
= const. (4.102)

Bernoulli’s equation has several consequences. For one thing, it allows us to compute the
pressure p, say, if we had prior knowledge of the velocity field, and vice versa. Moreover, when
the flow has reached a steady-state, so that ∂φ

∂t = 0, the conserved quantity on the left-side of
(refbernoulli.8) reduces to

1
2
||v||2 + f +

∫
dp

ρ

which gives a precise interpretation of how the increase in the speed of a fluid particle must
be compensated by an equivalent decrease in the pressure field p. This interpretation is closely
related to the concept of “lift” associated with the flow past an airfoil – fluid particles that travel
below the wing, as opposed to those that travel above it, experience different pressure fields. The
net difference in the pressure values translates into the familiar lift of the airfoil.

Problems

1. Let v be an irrotational vector field. Show that ∇× (v · ∇v) = 0, and hence deduce that
the vector v · ∇v must have a potential.

2. Complete the computations that lead to the compressible version of Bernoulli’s equation
(4.102).

3. Consider an irrotational flow of an incompressible fluid which has reached its steady-state.
Suppose that the body forces are negligible. Show that the velocity and pressure must
satisfy

ρ

2
||v||2 + p = const. (4.103)

Use this result and compute the pressure when v is the velocity field of the flow past the
cylinder

4.9. ACCELERATION IN A ROTATING FRAME 137

4.9 Acceleration in a Rotating Frame

Because of the shape of our planet, the natural setting for studying flows in Geophysical Fluid
Dynamics is spherical coordinates. Here we begin with the description of these coordinates and
develop a basis in terms of unit vectors in the directions of the coordinate curves. We then
determine the components of a typical vector, such as Ω, the vector that defines the axis and
magnitude of the Earth’s rotation, in this basis. Finally we write down the representation of a
typical velocity and acceleration fields in spherical coordinates.

4.9.1 Coordinate Curves

Let P be a point having coordinates (x, y, z) in Cartesian coordinates and (r, θ, φ) in spherical
coordinates. Here r is the distance of P to the origin, θ measures the longitude and ranges
between 0 and 2π, and φ is the latitude, ranging between −π

2 and π
2 – Note that this definition is

different from the definition of spherical coordinates in most mathematical texts where θ stands
for the co-latitude angle.

The Cartesian and spherical descriptions of P are related through the following relations:

x = r cos θ cosφ, y = r sin θ cos φ, z = r sin φ. (4.104)

These relations are readily reversed to write r, θ and φ in terms of their Cartesian counterparts:

r =
√

x2 + y2 + z2, θ = Arctan
y

x
, φ = Arcsin

z√
x2 + y2 + z2

. (4.105)

In any coordinate system by a coordinate curve we mean a curve along which only one
of the three coordinate parameters varies while the other two are kept constant. For example,
the x-axis is a coordinate curve in Cartesian coordinates along which the coordinate x varies
while y and z remain constant. Because of the special importance of the three axes in Cartesian
coordinates, we are interested in identifying the corresponding coordinates curves in spherical
coordinates. To that end, let P have coordinates (r0, θ0, φ0) in spherical coordinate system. By
keeping r and θ fixed at r0 and θ0, respectively, while allowing φ take on all values between −π

2
and π

2 we obtain a coordinate curve, a great circle (a meridian circle) that passes through P
and the two poles. We will refer to this curve as the φ-curve through P . Similarly, a θ-curve is
obtained by fixing r = r0, φ = φ0 while allowing θ to take on all values between 0 and 2π, which
defines the familiar parallel circle through P . Finally, fixing θ = θ0 and, φ = φ0 while allowing r
take on all a r-curve, which passes through the origin and P . These three coordinate curves play
a role similar to the role that the x, y and z axes play in Cartesian coordinates. Figure ?? shows
the three coordinate curves associated with the point P with Cartesian coordinates (−2, 1, 3).
This figure is obtained in MATLAB as follows:

clf;
clear all;
lon=-0:(2*pi)/100:2*pi;
lat=-pi/2:pi/100:pi/2;
x=-2; y=1; z=3;
r0=sqrt(x^2+y^2+z^2);
theta0=atan(y/x);

138 CHAPTER 4. EQUATIONS OF MOTION OF FLUID DYNAMICS

Figure 4.6: The spherical coordinate curves passing through P = (−2, 1, 3).

4.9. ACCELERATION IN A ROTATING FRAME 139

phi0=asin(z/r0);
% Meridian
plot3(r0*cos(theta0)*cos(lat),r0*sin(theta0)*cos(lat),r0*sin(lat),’b’);
hold on
% Great Circle
plot3(r0*cos(phi0)*cos(lon),r0*cos(phi0)*sin(lon),...

r0*sin(phi0)*ones(length(lon),1)’, ’r’);
hold on
% Radial
r=0:0.01:2*r0;
plot3(cos(phi0)*cos(theta0)*r,cos(phi0)*sin(theta0)*r,sin(phi0)*r,’g’)
grid on
axis square

4.9.2 Spherical Basis

Given a specific point P on a sphere we now determine three vectors, denoted by eθ(P), eφ(P)
and er(P), which play a similar role to i, j and k of Cartesian coordinates in that they will
be mutually orthogonal and have length one. By definition, e

θ
is a unit tangent vector to the

θ-curve through P , while eφ is a unit tangent vector to the corresponding φ-curve, and er is a
unit tangent vector to the r-curve.

Since by definition e
θ

is a unit tangent vector to a θ-curve, we begin by parametrizing the
θ-curve through the point P . Let P have coordinates (rzero, θ0 , φ0) in spherical coordinates.
Then the θ-curve through P has the parametrization

r(θ) = 〈rzero cos θ cos φ0 , rzero sin θ cosφ0 , rzero sinφ0〉.
To find e

θ
we differentiate the above expression with respect to θ and divide it by its magnitude

to get
e

θ
(P) = − sin θ0 i + cos θ0j. (4.106)

As expected e
θ

does not have a component in the north-south direction. A similar consideration
leads to formulas for e

φ
and er :

e
φ
(P) = − cos θ0 sin φ0 i− sin θ0 sin φ0j + cos φ0k. (4.107)

and
er (P) = cos θ0 cos φ0 i + sin θ0 cos φ0j + sin φ0k. (4.108)

Note that e
φ
, unlike e

θ
, depends on longitude and latitude. Also, as expected, er is in the radial

direction and is therefore perpendicular to the sphere of radius rzero. Moreover, these vectors
are mutually orthogonal, that is

e
θ
· eφ = e

θ
· er = eφ · er = 0. (4.109)

The expressions in (4.106), (4.107) and (4.108) show the relationship between {e
θ
, e

φ
, er} and

{i, j,k}. These relations are invertible. We have




i = − sin θ0 e
θ
− cos θ0 sin φ0 e

φ
+ cos θ0 cosφ0 er ,

j = cos θ0 e
θ
− sin θ0 sin φ0 e

φ
+ sin θ0 cos φ0 er ,

k = cos φ0 e
φ

+ sin φ0 er .
(4.110)

140 CHAPTER 4. EQUATIONS OF MOTION OF FLUID DYNAMICS

What we have accomplished so far is to introduce the concept of spherical basis vectors eθ,
eφ and er. The significance of this set of mutually orthogonal unit vectors is that any vector v
can be represented in terms of these three vectors as

v = v1eθ
+ v2eφ + v3er. (4.111)

The coefficients v1, v2 and v3 are the coordinates of v in spherical coordinates. The same vector
v of course has a representation in terms of the Cartesian basis vectors {i, j,k}: There are scalars
a, b and c such that

v = ai + bj + ck. (4.112)

However, in oceanography and meteorology, it is the spherical representation (4.111) that is most
natural when one studies ocean currents or pressure fronts, especially when the study involves
large-scale structures.

Because the spherical and Cartesian bases involve mutually orthogonal vectors, it is an easy
matter to write the coordinates of a vector v expressed in one basis in terms of its coordinates
in another. Since the spherical basis vectors are orthonormal, we have

v1 = v · e
θ
, v2 = v · e

φ
, v3 = v · er (4.113)

One can now readily deduce the relations among v1, v2, v3 in (4.111) and a, b and c in (4.112)
by using (4.106), (4.107) and (4.108).

We summarize the above discussion in the following Theorem.

Theorem 4.9.1 (Basis in Spherical Coordinates): Given an arbitrary point P with
coordinates (x, y, z) in Cartesian coordinates and (r, θ, φ) in Spherical coordinates, the vectors
e

θ
, e

φ
and er defined by

e
θ
(P) = − sin θi + cos θj, e

φ
(P) = − cos θ sin φi− sin θ sinφj + cos φk, (4.114)

er (P) = cos θ cos φi + sin θ cosφj + sin φk,

form an orthonormal basis foe E3. Given any vector v, it can be represented as

v = ue
θ

+ ve
φ

+ wer . (4.115)

The component u is the contribution of v in the east-west direction, v its contribution in the
north-south direction, and w is its radial component. Conversely, the standard basis {i, j,k} is
related to the Spherical basis by the relations in (4.110).

4.9.3 Eulerian Formulation of Velocity and Acceleration Revisited

Consider a particle of fluid P and its trajectory C consisting of a curve in the three-dimensional
space R3. Let us assume that the position of P at any time t can be specified by a set of
differentiable functions x(t), y(t) and z(t) so that

r(t) = x(t)i + y(t)j + z(t)k (4.116)

defines the position vector r, or equivalently, the parametrization of the curve C. The velocity v
of P is then determined by direct differentiation of r:

v(t) = x′(t)i + y′(t)j + z′(t)k.

4.9. ACCELERATION IN A ROTATING FRAME 141

The above expression defines the Lagrangian representation of the velocity, which was already
introduced earlier in this chapter. The above components of velocity (i.e., x′, y′ and z′) are
converted to functions of position and time, so typically

v = ui + vj + wk, (4.117)

where each component vi is a function of position and time:

vi = vi(x, y, z, t).

The expression (4.117) is the Eulerian formulation of the velocity field.
As we saw in Section 4.4, the Eulerian representation of velocity implies that the acceleration

a is determined from (4.117) by the formula

a =
∂v
∂t

+ v · ∇v. (4.118)

In Cartesian coordinates the components of a are

ai =
∂vi

∂t
+

3∑

j=1

vj
∂vi

∂xj
, i = 1, . . . , 3. (4.119)

Here we are adopting the convention that x1 = x, x2 = y and x3 = z, and v1 = u, v2 = v and
v3 = w. Recall that the operator

d

dt
=

∂

∂t
+

3∑

j=1

vj
∂

∂xj
(4.120)

is the total or the material derivative and that (4.120) can be recast as

ai =
dvi

dt
. (4.121)

4.9.4 Velocity in Spherical Basis

In order to write down an expression for acceleration in spherical coordinates, we first need to
write (4.120) in spherical coordinates. The position vector r(t) in (4.116) takes the form

r = r(t) cos θ(t) cos φ(t)i + r(t) sin θ(t) cos φ(t)j + r(t) sin φ(t)k (4.122)

in spherical coordinates. Differentiating (4.122) with respect to t yields

v = (r′ cos θ cos φ− rθ′ sin θ cos φ− rφ′ cos θ(t) sin φ)i+

(r′ sin θ cosφ + rθ′ cos θ cosφ− rφ′ sin θ sin φ)j+ (4.123)

(r′ sin φ + rφ′ cosφ)k.

Using the formulas (4.106), (4.107) and (4.108) it is easy to see that (4.123) is equivalent to

v = rθ′ cosφe
θ

+ rφ′e
φ

+ r′er . (4.124)

142 CHAPTER 4. EQUATIONS OF MOTION OF FLUID DYNAMICS

The coefficients of e
θ
, e

φ
and er in the above expressions are the components of velocity in

spherical coordinates. We denote them by v
θ
, v

φ
and v

r
respectively, i.e.,

v = v
θ
e

θ
+ v

φ
e

φ
+ v

r
e

r
(4.125)

where
v

θ
= rθ′ cos φ, v

φ
= rφ′, vr = r′ (4.126)

We note that v
θ

is the component of the velocity in the east-west direction, v
φ

is the component
in the north-south direction, and v

r
is the component in the radial direction. We summarize the

above discussion in the following theorem.

Theorem 4.9.2: When the velocity vector v is represented in spherical coordinates as in
(4.125), its components v

θ
, v

φ
and vr are related to θ(t), φ(t) and r(t) through the relations

(4.126). In particular, particle trajectories can be obtained from the system of differential equa-
tions

dθ

dt
=

v
θ

r cos φ
,

dφ

dt
=

v
φ

r
,

dr

dt
= vr . (4.127)

4.9.5 Dynamics of Basis Vectors

To compute the acceleration a in spherical coordinates we need to differentiate v = v
θ
e

θ
+v

φ
e

φ
+

vrer with respect to t. Unlike the Cartesian basis {i, j,k}, where each vector is independent of
t, the spherical basis {e

θ
, e

φ
, er} varies with t because this basis depends on position. Moreover,

the particle P , whose acceleration we seek, occupies different positions at different values of t
and this dependence will contribute to the computation of acceleration. Recall from (4.106) that
e

θ
is related to the standard basis through the relation e

θ
= − sin θi+cos θj. Differentiating this

relation in t yields
de

θ

dt
= e′

θ
= −θ′ cos θi− θ′ sin θj.

But from (4.127) we have θ′ = v
θ

r cos φ so the above expression takes the form

de
θ

dt
=

v
θ

r cos φ
(− cos θi− sin θj). (4.128)

Recall that we derived the relationship between the standard and spherical bases in (4.110). In
particular, the latter expressions relate the vectors i and j to their spherical counterparts, which
we use to replace i and j in (4.128):

de
θ

dt
=

v
θ

r cos φ
(sinφe

φ
− cos φer). (4.129)

Similarly, we derive the following expressions for e
φ

and er :

de
φ

dt
= −v

θ
tan φ

r
e

θ
− v

φ

r
er ,

der

dt
=

v
θ

r
e

θ
+

v
φ

r
e

φ
. (4.130)

4.9. ACCELERATION IN A ROTATING FRAME 143

4.9.6 A formula for Acceleration

Going back to (4.125), we differentiate this relation with respect to t to get

a =
dv

θ

dt
e

θ
+ v

θ

de
θ

dt
+

dv
φ

dt
e

φ
+ v

φ

de
φ

dt
+

dv
r

dt
e

r
+ v

r

de
r

dt
. (4.131)

Next we substitute (4.129), (4.130) into (4.131) to get

a = (
dv

θ

dt
− v

θ
v

φ

r
tan φ +

v
θ
v

r

r
)e

θ
+ (

dv
φ

dt
+

v2
θ

r
tan φ +

v
φ
vr

r
)e

φ
+ (

dv
r

dt
− v2

θ
+ v2

φ

r
)e

r
. (4.132)

Equation (4.132) determines acceleration when the velocity is given in spherical coordinates.
For geophysical fluid flows on our planet the above formula for a needs to be augmented to

include the influence of the Earth’s rotation. Assuming the axis of rotation passes through the
poles, this rotation induces an angular velocity represented by

Ω = Ωk,

where, assuming it takes 24 hours for our planet to complete one rotation about its axis, Ω =
2π rad
24hrs = 0.000072722 rad/s. Consider now a fluid particle P that remains stationary relative
to the rotating planet. To an observer outside of the planet this particle undergoes a motion,
tracing a path in the shape of a parallel circle, where the latitude remains constant while the
longitude changes according to Ωt:

r(t) = 〈a cos φ cosΩt, a cosφ sinΩt, a sinφ〉. (4.133)

This velocity of this motion is computed by differentiating (4.133) with respect to t:

v = r′ = Ω〈−a cosφ sinΩt, a cosφ cos Ωt, 0〉 (4.134)

which can be rewritten in vector form as

v = Ω× r. (4.135)

The rotational motion represented by (4.135) induces the acceleration

a =
dv
dt

=
dΩ
dt

× r + Ω× dr
dt

= Ω× v, (4.136)

assuming the rate of rotation of our planet is time independent.
Formula (4.136) describes the apparent acceleration of a stationary particle P in a rotat-

ing frame when this particle is viewed and measured in a non-rotating (Newtonian) coordinate
system. Particles, however, typically move relative to the rotating planet itself. Denoting this
relative velocity by vr, we note that a particle’s absolute velocity, which we now denote by va,
when measured in a non-rotating frame, will be the sum of its relative velocity vr and the velocity
(4.135) induced by the planet:

va = vr + Ω× r. (4.137)

It is worth emphasizing that vr is what our instruments measure when we measure the velocity
of a particle on our planet.

144 CHAPTER 4. EQUATIONS OF MOTION OF FLUID DYNAMICS

A good way to view the expression in (4.137) is to use its content to define the time-rate
of change of any quantity (denoted by an “◦” in the following formula) in the non-rotating
coordinate system:

D◦
Dt

=
d ◦
dt

+ Ω× ◦ . (4.138)

Hence, we are using D
Dt to denote absolute time differentiation, in a non-rotating Cartesian

coordinate system, while d
dt denotes time differentiation relative to the rotating frame. With this

notation the absolute acceleration of a particle is simply the second derivative D2

Dt2 , which, using
the symbol operator in (4.138), reduces to

D2 ◦
Dt2

= (
d ◦
dt

+ Ω× ◦)(d ◦
dt

+ Ω× ◦) =
d2 ◦
dt2

+ 2Ω× d ◦
dt

+ Ω× (Ω× ◦). (4.139)

For example, when we apply the formula in (4.139) to the position vector r of a particle, we
obtain the important formula that describes the absolute acceleration of a particle:

D2r
Dt2

=
d2r
dt2

+ 2Ω× dr
dt

+ Ω(×Ω× r). (4.140)

The three terms on the right-side (4.140) all have significant physical interpretations. The first
term, d2r

dt2 , is the relative acceleration a, which we should now denote by ar, whose spherical
representation was given in (4.132), that is,

ar =
d2r
dt2

=
∂vr

∂t
+ vr · ∇vr. (4.141)

The second term, 2Ω×vr, is the Coriolis Force. We will have more to say about this term
shortly, but comment that this “force” is in reality part of the acceleration of the particle and
not a force acting on it.

The third term, Ω × (Ω × r), is the Centripetal Acceleration of the particle. While this
expression is quite significant when the rate of rotation, Ω, is large, in most geophysical flows its
magnitude is small relative to the magnitude of −gk, the acceleration due to the gravitation. To
see this, note that the largest value

||Ω× (Ω× r)||
can assume occurs when the particle is located on the equator and that value is ||Ω||2a, where a
is the Earth’s radius. With Ω = 7.2× 10−5 and a = 6, 400 km, the magnitude of the centripetal
acceleration is approximately 0.03m/s2, more than two orders of magnitude smaller than g’s
value, which is 9.8 m/s2. For this reason the contribution of the centripetal acceleration is often
ignored. Moreover, it is worth noting that Ω× (Ω× r) can be re-written as

−Ω2

2
∇(||R||2) (4.142)

where R = 〈x, y, 0〉 is the projection of the position vector r onto the xy-plane. So if the
contribution of this term needs to be taken into account, one can alter the potential of the
conservative forces in the problem by adding −Ω2

2 ||R||2 to the potential of all other forces..

4.9. ACCELERATION IN A ROTATING FRAME 145

In summary, in what follows in this book we will use the expression

D2r
Dt2

=
d2r
dt2

+ 2Ω× vr (4.143)

for absolute acceleration. In the next section we will re-write the Coriolis force 2Ω × vr in
spherical coordinates.

Problems

1. Consider the point P whose coordinates are (1, 2, 3) in Cartesian coordinates.

(a) Find the spherical coordinates of P .

(b) Plot the three spherical coordinate curves that pass through P .

2. Verify (4.109), that the spherical basis vectors are mutually orthogonal.

3. Verify the following relations:

e
θ
× eφ = er, eφ × er = e

θ
, er × e

θ
= eφ. (4.144)

4. Derive (4.110). Hint: Start with (4.107) and (4.108) and eliminate k between them. Then
consider the resulting equation with (4.106) and solve for i and j.

5. Use the orthogonality properties of the spherical basis vectors to show that v1, v2 and v3

in (4.111) are given by

v1 = v · e
θ
, v2 = v · e

φ
, v3 = v · er (4.145)

6. Verify the relationship between the expressions in (4.134) and (4.135).

7. Verify the statement in (4.142).

8. The Earth’s rotation vector Ω has the form Ωk in Cartesian coordinates. Find the compo-
nents of Ω in spherical coordinates, i.e., find a, b and c such that

Ω = a e
θ

+ b eφ + c er.

Answer: a = 0, b = Ωcos φ, c = Ω sin φ. Is it intuitively clear why Ω does not have a
component in the e

θ
direction?

9. Show that a and da
dt are orthogonal, where a is any of the three vectors in the spherical

basis (4.114).

10. Use the identities in (4.144) to arrive an alternative derivation of the equations in (4.129),
(4.130).

146 CHAPTER 4. EQUATIONS OF MOTION OF FLUID DYNAMICS

4.9.7 Coriolis Acceleration: 2Ω× vr
The term 2Ω×vr plays a crucial role in equations of motions of geophysical fluid flows, especially
when the goal is to understand large and medium scale behavior of large bodies of fluids. In
order to compare its impact to relative acceleration, ar, we first write this vector in spherical
coordinates. Recall that Ω = Ωk and vr = v

θ
e

θ
+ v

φ
e

φ
+ vrer . The relation

k = cos φ e
φ

+ sin φ e
r

(see (4.110)) enables us to recast the Coriolis contribution as

2Ω× vr = 2(cos φ e
φ

+ sin φ er)× (v
θ
e

θ
+ v

φ
e

φ
+ vrer)

which, after taking advantage of the orthogonal properties of the spherical basis (see (4.144),
reduces to

2Ω× vr = (−2Ωv
φ

sinφ + 2Ωv
r
cos φ) e

θ
+ 2Ωv

θ
sin φ e

φ
− 2Ωv

θ
cosφ e

r
. (4.146)

Combining this formula with (4.132) and (4.143) we obtain the following working formula for
absolute acceleration written in spherical coordinates:

D2r
Dt2

= (−2Ωv
φ

sin φ + 2Ωvr cosφ +
dv

θ

dt
− v

θ
v

φ

r
tan φ +

v
θ
vr

r
)e

θ
+

(2Ωv
θ
sin φ +

dv
φ

dt
+

v2
θ

r
tan φ +

v
φ
vr

r
)e

φ
+

(−2Ωv
θ
cosφ +

dvr

dt
− v2

θ
+ v2

φ

r
)er . (4.147)

The above formula is the fundamental result we will end up relying on in the future chapters
when we study the various reduced models of geophysical fluid flows, notably the f -plane and the
β-plane approximations, when the scales of the flow allow us to ignore some of the nonlinearities
in (4.147). In the next section we develop the gradient operator in spherical coordinates, which,
together with (4.147), leads to the equivalent of the Navier-Stokes equations in a rotating frame.

4.9.8 Gradient Operator in Spherical Coordinates

Consider a function p, represented as p(x, y, z) in Cartesian Coordinates, and its equivalent
representation P (r, θ, φ) in Spherical Coordinates. These expressions satisfy the relation

p(x, y, z) = P (r, θ, φ). (4.148)

The gradient operator ∇, when applied to p , can be written as

∇p =
∂p

∂x
i +

∂p

∂y
j +

∂p

∂z
k (4.149)

and equivalently as
∇p = a e

θ
+ b e

φ
+ c er . (4.150)

4.9. ACCELERATION IN A ROTATING FRAME 147

Our task is to determine the terms a, b and c in terms of the various derivatives of P . Note that
the basis vectors {i, j,k} and {e

θ
, e

φ
, e

r
} are related by the expressions listed in (4.110). In order

to complete (4.150) we will need the following fact (recall that r2 = x2 + y2 + z2, θ = tan−1 y
x

and φ = z√
x2+y2+z2

)




rx ry rz

θx θy θz

φx φy φz


 =




cos θ cosφ sin θ cosφ sin φ
− 1

r sin θ sec φ 1
r cos θ sec φ 0

− 1
r cos θ sin φ − 1

r sin θ sin φ 1
r sec φ


 , (4.151)

which shows the relationships between the rates of change of the Spherical coordinate variables
with respect to the corresponding Cartesian ones. Since ∂p

∂x = ∂P
∂r rx + ∂P

∂θ θx + ∂P
∂φ φx, it follows

from (4.151) that

∂p

∂x
= cos θ cos φ

∂P

∂r
− 1

r
sin θ sec φ

∂P

∂θ
− 1

r
cos θ sin φ

∂P

∂φ
. (4.152)

similar expressions follow for ∂p
∂y and ∂p

∂z . Once the latter expressions are substituted into (4.149)
and use is made of the relations in (4.110), we have

∇p =
1

r cos φ

∂P

∂θ
e

θ
+

1
r

∂P

∂φ
e

φ
+

∂P

∂r
er . (4.153)

Problems

1. Verify the assertions in (4.151.

2. Complete the calculation that leads to (4.153).

3. For each function p defined below first compute its gradient in Cartesian Coordinates and
next in Spherical Coordinates by transforming p to P (r, θ, φ):

(a) p(x, y, z) = xyz.

(b) p(x, y, z) = 1√
x2+y2+z2

.

(c) p(x, y, z) = sin(x2 + y2).

4.9.9 Navier-Stokes Equation in a Rotating Frame

We have now obtained formulas for the absolute acceleration (see (4.147)) and pressure gradient
in a rotation frame (in (4.153). Hence the equations that express the balance of linear momentum
in the θ, phi and r directions are

dv
θ

dt
− v

θ
v

φ

r
tanφ +

v
θ
vr

r
+ (−2Ωv

φ
sin φ + 2Ωvr cosφ) = − 1

rρ cos φ

∂P

θ
+ Fθ,

dv
φ

dt
+

v2
θ

r
tan φ +

v
φ
vr

r
+ 2Ωv

θ
sin φ = − 1

rρ

∂P

∂φ
+ Fφ,

148 CHAPTER 4. EQUATIONS OF MOTION OF FLUID DYNAMICS

dvr

dt
− v2

θ
+ v2

φ

r
− 2Ωv

θ
cosφ = −1

ρ

∂P

∂r
− g − Fr, (4.154)

where the F terms are the components of external and viscous forces. These equations are
complemented by the conservation of mass equation (i.e., div v = 0), which has the following
form

1
r cosφ

∂v
θ

∂θ
+

1
r cos φ

(cos φ v
φ
) +

∂w

∂r
+

2w

r
= 0 (4.155)

in Spherical Coordinates. The above four equations constitute the fundamental set of PDEs that
we will study in the upcoming chapters.

4.10. PROJECT A: INVISCID LINEAR FLUID MOTIONS 149

4.10 Project A: Inviscid Linear Fluid Motions

The main goal of this project is to develop a linear two-dimensional model based on the Navier-
Stokes equations.

1. Consider an inviscid fluid (i.e., µ = 0 in (4.89)) occupying an infinite region bounded by
the planes z = 0 and z = −h: so that our domain is

D = {(x, y, z)| − h ≤ z ≤ 0}. (4.156)

Consider the stationary flow v = 0. Let

F =




0
0
−g




be the force acting on the fluid. By looking at the first two equations in (4.89), show that
the pressure p is independent of x and y.

2. Show that the third equation in (4.89) reduces to

∂p

∂z
= −rg, (4.157)

from which deduce the expression
p(z) = −rgz. (4.158)

To get the above result choose the constant of integration so that the surface z = 0 is
pressure free and corresponds to the free surface of the domain. Equation (4.158)defines
the hydrostatic pressure in the equilibrium flow.

3. Consider a two-dimensional perturbation of the free surface z = 0 in the form

z = εη(x, y, t). (4.159)

Let v = (εU, εV, εW) denote the perturbed velocity (this perturbation is relative to the
stationary solution). The pressure field in the perturbed motion also deviate from the
hydrostatic pressure expressed in (4.158). Let εP denote this deviation:

p = −rgz + εP. (4.160)

Show that {U, V, W,P} satisfy

r
∂U

∂t
= −∂P

∂x
+ h.o.t., r

∂V

∂t
= −∂P

∂y
+ h.o.t., r

∂W

∂t
= −∂P

∂z
+ rg + h.o.t., (4.161)

where h.o.t. denote terms that depend on ε or its higher powers.

4. Show that the conservation of mass equation div v = 0 takes the form

∂U

∂x
+

∂V

∂y
+

∂W

∂z
= 0. (4.162)

150 CHAPTER 4. EQUATIONS OF MOTION OF FLUID DYNAMICS

5. Show that on the free surface z = εη(x, y, t) the following relation holds

W =
∂η

∂t
+ εU

∂η

∂x
+ εV

∂η

∂y
. (4.163)

(Hint: Differentiate the expression z(t) = εη(x(t), y(t), t) with respect to t.)

6. The main assumption we impose now is that we can neglect terms that depend on ε through-
out equations (4.161) – (4.163). With this assumption invoked, all nonlinear terms in
(4.161) – (4.163) drop out. Show that the resulting linearized equations are

r
∂U

∂t
= −∂P

∂x
, r

∂V

∂t
= −∂P

∂y
, r

∂W

∂t
= −∂P

∂z
+ rg, (4.164)

together with the boundary conditions

W =
∂η

∂t
, when z = 0. (4.165)

7. Assume that the other boundary z = −h is impenetrable. Hence the vertical component
of the velocity must vanish, that is,

W = 0, when z = −h. (4.166)

4.11. PROJECT B: EQUATIONS OF MOTION FOR BUBBLES 151

4.11 Project B: Equations of Motion for Bubbles

The goal of this project is to apply Bernoulli’s equation to derive a differential equation for the
motion of a spherical bubble immersed in an incompressible fluid.

1. Consider a compressible fluid (gas) occupying a region D = {x||x| ≤ R(t)}, embedded in
an incompressible fluid outside of D having density r. Assume that the motions of the
bubble and the fluid are spherically symmetric so that the velocity field of the fluid is in
the form

v(x, t) = v(r, t)er, (4.167)

where v(r, t) is unknown and er is the unit radial vector er = x
|x| . Start with the equation

of conservation of mass and show that v(r, t) must be of the form

v(r, t) =
f(t)
r2

, (4.168)

where f is an arbitrary function of t.

2. Assuming that Ṙ, the velocity of the gas-fluid interface, is equal to v|r=R, the velocity of
the fluid adjacent to it, show that the function f in (4.168) satisfies

f(t) = ṘR2. (4.169)

3. Show that the velocity field (4.167 is irrotational and that

φ = −f(t)
r

= − ṘR2

r
(4.170)

is a potential for this field.

4. Assume that the body forces are negligible so that the function f in the Bernoulli equation
(??) is zero. Show that In that case equation (4.102) yields

−1
r

d

dt
(R2 dR

dt
) +

R4

2r4
(
dR

dt
)2 +

p

r
= const. (4.171)

where the above constant could be a function time. The differential equation (4.171) can
be solved for R(t) once appropriate boundary conditions are specified.

5. (Bubble Collapse): Consider the case of a bubble immersed in a fluid of density r with
constant pressure p∞ far away from the bubble. Use this boundary condition to determine
the constant in (4.171):

const =
p∞
r

. (4.172)

6. Substitute r = R in (4.171) to get the ODE

− 1
R

d

dt
(R2 dR

dt
) +

1
2
(
dR

dt
)2 +

p

r
=

p∞
r

, (4.173)

for R, the radius of the bubble at time t.

152 CHAPTER 4. EQUATIONS OF MOTION OF FLUID DYNAMICS

7. Use ode45 of MATLAB to study (4.173) after setting p, the internal pressure inside the
bubble, equal to zero, acknowledging that this pressure is negligible in comparison to the
fluid pressure. Solve the initial value problem

RR′′ + R′2 = −2
3

p∞
r

, R(0) = R0, R′(0) = 0, (4.174)

with parameter values r = 1, R0 = 1, p∞ = 106 to see if the bubble ever collapses, that is,
if there is a time T > 0 such that limt→T R(t) = 0.

4.12. PROJECT C: CHAOTIC TRANSPORT 153

4.12 Project C: Chaotic Transport

This project is motivated by a paper of H. Yang and Z. Liu (see Reference [4] at the end of this
chapter) where the authors present an analysis of the three-dimensional flow and introduce the
concept of the “Great Ocean Barrier”.

1. Read the abstract and the introduction to Reference [4] and write up a summary of the
issues that are addressed in this paper. Specifically,

(a) what do the mathematical symbols L, H, curlτ(y), δs and δB represent?

(b) What are the physical (and simplifying) assumptions under which this work is under-
taken?

(c) What are the mathematical tools being employed (for example, what is the “Lyapunov
Analysis” described in Section 5 of the paper)?

2. Consider two stream functions ψ
W

(x, y) and ψ
B
(y, z), as yet not explicitly specified, in

terms of which we define the velocity field v as

v = 〈u, v, w〉 = 〈−∂ψ
W

∂y
,
∂ψ

W

∂x
+

∂ψ
B

∂z
,−∂ψ

B

∂y
〉. (4.175)

Show that v is incompressible. Compute the vorticity of this flow in terms of the stream
functions ψ

W
and ψ

B
.

3. Starting with the definitions for ψ
W

and ψ
B
:

ψW (x, y) = (x− 2) sin(πy)(1− exp(− x

δs
)), ψB = ε(y + 1) sin(

πz

b
)(1− exp(

y − 1
δB

)),

(4.176)
find formulas for the velocity field v in (4.7).

4. Using the results of the velocity field form the previous section, consider the following
system of ODEs for the particle trajectories:

dx

dt
= −∂ψ

W

∂y
,

dy

dt
=

∂ψ
W

∂x
+

∂ψ
B

∂z
,

dz

dt
= −∂ψ

B

∂y
, (4.177)

subject to the initial conditions x(0) = x0, y(0) = y0 and z(0) = z0. Use ode45 to solve
(4.177) for t ∈ (0, 4) and initial position (0.3,−0.2,−0.5) for the following set of parameter
values:

δs = 0.025, δB = 0.01, b = 1, ε = 1. (4.178)

Plot the graph of the trajectory you obtain and compare your graph to Figure 4.7 and to
Figure 2(a), page 1262 of [??]. To get a graph that resembles these two figures first apply
ode45 with its default values for relative and absolute errors – the values you will obtain
will unfortunately be only accurate for a short period of time and you will obtain NaN value
for the coordinates of (x(t), y(t), z(t)) as soon as the trajectory reaches its northern most
destination and must dip down in the z direction. To improve on accuracy we must appeal
to the odeset function in MATLAB to set the options in ode45 to something like

154 CHAPTER 4. EQUATIONS OF MOTION OF FLUID DYNAMICS

Figure 4.7: The trajectory of (4.177) with initial position (0.3,−0.2,−0.5).

options = odeset(’RelTol’,1e-10,’AbsTol’,[1e-10 1e-10 1e-10]);
[t,y]=ode45(@YangLiu,[0 4],[0.3 -0.2 -0.5], options);

where YangLiu.m is the M-file in which the ODEs for this problem are defined.

5. Apply ode45 to (4.177) to obtain the other three figures in Figure 2 of [??]. The initial
positions are (1,−0.5,−0.2), (0.01, 0.8,−0.05), and (0.01,−0.5,−0.01).

6. To gain insight into the chaotic character of (4.177) apply the above analysis to a small
neighborhood of each of the four initial positions. To be precise, consider a spherical
neighborhood of 0.01 radius about each one of the four initial positions described above.
Select 100 random positions on each one of these spheres and solve (4.177) for each of these
points and plot their positions after 4 units of time have expired. Report on the level of
dispersion you observe on the final positions.

4.12. PROJECT C: CHAOTIC TRANSPORT 155

Figure 4.8: The graphs of x (blue), y (green), and z (red) versus t for the trajectory with initial
position (0.3,−0.2,−0.5).

156

4.13 Project D: Particle Dynamics on the Rotating Earth

This project is motivated by the article “Inertial particle dynamics on the rotating Earth”, by
N. Paldor, which appeared as a chapter in ‘Lagrangian Analysis and Prediction of Coastal and
Ocean Dynamics”, edited by A. Griffa, D. Kirwan, A. Mariano, T. Ozgokmen and T. Rossby,
Cambridge University Press, 2007, pp. 119 – 135. (Complete later)

4.14 References

1. Majda, A., J.,& Bertozzi, A. L., “Vorticity and Incompressible Flow”, Cambridge, 2002.

2. Majda, A. , J. & Wang, X., “Nonlinear Dynamics and Statistical Theories for Basic Geo-
physical Flows”, Cambridge, 2006.

3. Truesdell, C. A., & Rajagopal, K. “An introduction to the Mechanics of Fluids”, Birkhauser,
1999.

4. Yang, H., & Liu, Z, “The Three-Dimensional Chaotic Transport and the Great Ocean
Barrier”, J. of Phys. Ocean., Vol 27, 1997, pp. 1258 – 1273.

157

Chapter 5

Shallow Water Equations

5.1 Introduction

In Chapter 2 we derived the Navier-Stokes equations in rotating and non-rotating frames. In
this chapter we concentrate on the PDEs in the non-rotating frame and derive the Shallow
Water Equations (SWE) as a perturbation of the Navier-Stokes equations. The Shallow Water
equations constitute one of the fundamental systems of equations in fluid dynamics, typically
applied to settings where horizontal scales are considerably larger than the vertical one, a common
occurrence in oceans and the atmosphere. The presentation here is motivated by those in the
books “An Introduction to Fluid Dynamics” by G. K. Batchelor, “Water Waves”, by J. J. Stoker,
and in the paper “Derivation of viscous Saint-Venant system for laminar shallow water; numerical
validation”, by J.- F. Gerbeau and Benoit Perthame. We present the derivation here for the
simpler case of a two-dimensional flow. Later in the chapter we derive the scalar wave equation
as a special of SWE and apply the Fourier Series method to derive the solution to a typical initial-
boundary value problem for this equation. We derive the D’Alembert solution to this IBVP form
its Fourier Series solution, and then proceed to introduce its finite-difference solution.

5.2 Derivation of Equations

The derivation we present here will be confined to two-dimensional basins. The extension of the
methodology to three dimensional basins is straightforward.

Consider a flow in a domain Ω defined by

B = {(x, z)| b(x) < z < b(x) + h(t, x), x ∈ R} (5.1)

where z = b(x) defines the bathymetry (bottom surface) of the basin and z = b(x) + h(t, x)
is the free surface of the fluid – h(t, x) is the fluid height (column) at any time t and point
x. See Figure ?? (needs to be drawn by hand). We consider the two-dimensional velocity field
v = 〈u,w〉 (setting v ≡ 0) which satisfies the Navier-Stokes equations (4.89)

∂u

∂x
+

∂w

∂z
= 0 (5.2)

and
ut + uux + wuz = −1

ρ
px + ν∆u, wt + uwx + wwz = −1

ρ
pz − g + ν∆w. (5.3)

The symbol ∆ stands for the Laplacian, ∂2

∂x2 + ∂2

∂z2 . The new constant ν = µ
ρ is viscosity of the

fluid.
Equations (5.2)–(5.3) are supplemented by the boundary conditions we need to impose on the

two boundaries of the region B: We assume that both surfaces z = b(x) and z = b(x)+h(t, x) are

158

Lagrangian-invariant, that is, if a fluid particle is located on either surface at one time, it continues
to remain on that surface for all time. For the bathymetry z = b(x), this assumption may be
interpreted by stating that this stationary surface is impenetrable. Moreover the free surface
z = b(x) + h(t, x) is an interface between the fluid under study and the outside environment,
so an additional boundary condition will be imposed: the pressure on this surface must remain
continuous, whether measured from the atmospheric side or the fluid side.

The fact that the free surface z = b(x) + h(t, x) is Lagrangian-invariant imposes certain
conditions on the b and h. To see this let r(t) = 〈x̂(t), ẑ(t)〉 be the trajectory of a fluid particle
that remains on this surface for all time. Then x̂(t) and ẑ(t) must satisfy the equation

ẑ(t) = b(x̂(t)) + h(t, x̂(t)).

Since this expression holds for all t, the equation must also hold for its derivative. Differentiating
this equation yields (recall u = x̂′(t) and w = ẑ′(t))

w(t, x̂, b + h) = ht + (b′ + hx)u(t, x̂, b + h). (5.4)

This relation between u and w on the free-surface of the flow will play an important role in the
reduced model we are about to develop.

The constraints on the bathymetry are similar. Since that the bottom surface z = b(x) is
Lagrangian-invariant, we arrive at

w(t, x, b) = b′u(t, x, b). (5.5)

The last two constraints are summarized in the following theorem.

Theorem 5.2.1 (Free Surface and Bottom Surface Condition)
Equations (5.4) and (5.5) express the boundary conditions that the free surface/water column

z = b(x) + h(t, x) and the bottom surface z = b(x) must satisfy.

To derive the Shallow Water equations we begin by integrating the conservation of mass
equation, (5.2), in z over the entire water column b < z < b + h. We get

∫ b+h

b

ux(t, x, η) dη = −w(t, x, b + h)) + w(t, x, b). (5.6)

The term on the left-side of (5.6) can be rewritten as
∫ b+h

b

ux(t, x, η) dη =
∂

∂x
(
∫ b+h

b

u(t, x, η) dη)− (b′ + hx)u(t, x, b + h) + b′u(t, x, b). (5.7)

After applying (5.4) and (5.5), the non-integral terms in (5.7) become equivalent to

ht − w(t, x, b + h) + w(t, x, b). (5.8)

Thus (5.7) reduces to
∫ b+h

b

ux(t, x, η) dη =
∂

∂x
(
∫ b+h

b

u(t, x, η) dη) + ht − w(t, x, b + h) + w(t, x, b). (5.9)

Compare (5.9) with (5.6). It is clear now that

∂

∂x

(∫ b+h

b

u(t, x, η) dη

)
+ ht = 0 (5.10)

Define the new quantity U(t, x), the horizontal velocity u(t, x, z) averaged over the water column
(b, b + h), by

U(t, x) =
1
h

∫ b+h

b

u(t, x, η) dη (5.11)

159

in terms of which the expression (5.10) takes the form

ht + (hU)x = 0. (5.12)

This equation is the first equation in the Shallow Water equation system. We note in passing
that if u is independent of z, the quantity U reduces to u and Equation (5.12) takes the form

ht + (hu)x = 0. (5.13)

So far all calculations have been exact and no approximations have been imposed on the
governing equation. Our first assumption, which has a significant simplifying impact, is to
replace the second equation in (5.3) by

0 = −1
ρ

∂p

∂z
− g. (5.14)

The rationale in weighing the terms in (5.14) more relative to the other terms in (5.3b) is the
underlying shallowness assumption of the basin, that horizontal processes in general have more
impact on the dynamics in a shallow basin. Hence, when viewing the balance of linear momentum
in the vertical direction,the acceleration term in the z-direction (the term wt + uwx + wwz) and,
the viscous dissipation in that direction (ν∆w), end up being negligible relative to the pressure
gradient term (1

ρ
∂p
∂z) and the fluid’s weight (represented by the acceleration due to gravity g).

This assumption, which is referred to as the hydrostatic approximation, can be borne out by
making a back-of-the-envelope calculation of the relative size of each term in (5.3), as done in
many texts listed at the end of this chapter.

Returning to (5.14), we integrate this equation with respect to z in the interval (z, b + h):

p(t, x, z) = p(t, x, b(x) + h(t, x)) + ρg(b + h− z). (5.15)

The first term on the right-side of (5.15) is the same as the atmospheric pressure, which we
assume to be constant, p0 , for convenience. In that case (5.15) reduces to

p(t, x, z) = p0 + ρg(b(x) + h(t, x)− z). (5.16)

We eliminate pressure p from (5.3)a using (5.16) to get

ut + uux + wuz = −g(b′ + hx) + ν∆u. (5.17)

Following the strategy we applied to the conservation of mass equation, we integrate (5.17) with
respect to z in the water column (b, b + h):

∫ b+h

b

ut dη +
∫ b+h

b

uux dη +
∫ b+h

b

wuz dη = −g(b′ + hx)h + ν

∫ b+h

b

∆u dη. (5.18)

We begin simplifying the expressions in (5.18) by first addressing the third integral. Integrating
this expression by parts yields

∫ b+h

b

wuz dη = (wu)|
b+h

− (wu)|
b
−

∫ b+h

b

wzu dη.

But ux + wz = 0, hence the above integral reduces to
∫ b+h

b

wuz dη = (wu)|
b+h

− (wu)|
b
+

∫ b+h

b

uux dη. (5.19)

Substituting (5.19) back into (5.18) yields
∫ b+h

b

ut dη +
∫ b+h

b

2uux dη + (wu)|
b+h

− (wu)|
b

= −g(b′ + hx)h + ν

∫ b+h

b

∆u dη.

160

Note that
∫ b+h

b
2uux dη =

∫ b+h

b
(u2)x dη so the above expression now takes the form

∫ b+h

b

ut dη +
∫ b+h

b

(u2)x dη + (wu)|
b+h

− (wu)|
b

= −g(b′ + hx)h + ν

∫ b+h

b

∆u dη. (5.20)

The first two integrals in (5.20) have the following alternative forms once we apply the chain rule
to them: ∫ b+h

b

ut dη =
∂

∂t
(
∫ b+h

b

u dη)− u|
b+h

ht, (5.21)

and ∫ b+h

b

(u2)x dη =
∂

∂x
(
∫ b+h

b

u2 dη)− u2|
b+h

(b′ + hx) + u2|
b
b. (5.22)

Expressions (5.21) and (5.22), when substituted in (5.20), reduce the latter expression to

∂

∂t
(
∫ b+h

b

u dη) +
∂

∂x
(
∫ b+h

b

u2 dη)− u|
b+h

ht − u2|
b+h

(b′ + hx) + u2|
b
b + (wu)|

b+h
− (wu)|

b
=

−g(b′ + hx)h + ν

∫ b+h

b

∆u dη. (5.23)

Finally, using the values of w on the free surface and on the bottom from (5.4) and (5.5), we
note that the non-integral expressions on the left-side vanish. We are left with

∂

∂t
(
∫ b+h

b

u dη) +
∂

∂x
(
∫ b+h

b

u2 dη) = −g(b′ + hx)h + ν

∫ b+h

b

∆u dη. (5.24)

Equations (5.12) and (5.24) constitute the Shallow Water equations, which we now state as a
theorem. Recall the relation between u and U as defined in (5.11).

Theorem 5.5.2.1 (Shallow Water Equations): The Shallow Water equations, which
govern the dynamics of h, the water column, and u, the horizontal velocity, are





ht + (hU)x = 0,

(hU)t + ∂
∂x (

∫ b+h

b
u2 dη) = −g(b′ + hx)h + ν

∫ b+h

b
∆u dη,

U(t, x) = 1
h

∫ b+h

b
u(t, x, η) dη.

(5.25)

The system of equations in (5.14) simplifies considerably when u is independent of z. As noted
before, when the horizontal velocity is depth-independent, the variables u and U are identical
and all integrals in (5.25) become trivial to evaluate – this system reduces to

ht + (hu)x = 0, (hu)t + (hu2 +
1
2
gh2)x = −gb′h + νh∆u. (5.26)

to which we refer as the reduced Shallow Water equations.
The reduced Shallow Water equation have received quite a bit of analytical and computational

treatment. we refer to the book by R.Leveque, referenced at the end of this chapter, for further
illuminating discussion concerning the mathematical challenges one faces in obtaining solutions to
the initial-boundary value problem for this system. We will take up the computational treatment
of this system later in the book.

5.3 Linearization of the Shallow Water Equations

Consider a basin with a flat bottom (b′ = 0) containing a fluid that is standing still at height H –
we observe that the pair (u, h) = (0,H), describing the state of the stationary fluid, is a solution
of the equations (5.25). Our goal in this section is to study the behavior of small perturbations

(u, h) = (εû(t, x),H + εη(t, x)), (5.27)

161

of the stationary solution when ε is a small positive number – Note the assumption that û is
independent of z.

Beginning with (5.25c), and noting that û, defined in (5.27), is independent of z, we have

U(t, x) =
1
h

∫ b+h

b

u(t, x, η) dη = εû(t, x).

The second variable in (5.25), h, is H + εη(t, x), with H constant. Hence, (5.25a) reduces to

εηt + ε(Hû)x + ε2(ηû)x = 0.

Divide the above expression by ε to get ηt + Hûx + ε(ηû)x = 0. Assuming that ε is a small
number to the extent that the first two terms dominate the term multiplying ε, we neglect the
ε(ηû)x term and arrive at the reduced and linear equation

ηt + Hûx = 0, (5.28)

in place of (5.25a).
We treat (5.25b) similarly. Substituting u = U = εû and h = H + εη into (5.25b) yields

(recall that by assumption b′ = ν = 0)

εHût + ε2(ηû)x + ε2(û2)x = −εgHηx − gε2ηηx.

Divide this expression by ε and neglect terms with powers of ε to get

ût = −gηx. (5.29)

The system of equations in (5.28) and (5.29) constitute the linearization of the Shallow Water
Equations (5.25) about is trivial solution (u, h) = (0,H). These equations can be combined, by
differentiating (5.29) with respect to t, (5.28) with respect to x, to get the linear Wave Equation

ûtt − gHûxx = 0, (5.30)

with a similar equation for η. In the next few sections we study the properties of this equation
and discover some of its general characteristics in relation to wave propagation in shallow basins
and channels.

5.4 Linear Wave Equation

Equation (5.30), with u replacing û and c2 = gH, is rewritten in the form

utt − c2uxx = 0. (5.31)

This equation involves two derivatives in time and two derivatives in space, so naturally we expect
that four additional conditions, two in time and two in space, will be required to determine a
unique solution to (5.31). A typical initial-boundary value problem for (5.31) will have the
additional constraints

u(t, 0) = u(t, L) = 0, Boundary Conditions, (5.32)

and
u(0, x) = f(x), ut(0, x) = g(x), Initial Conditions. (5.33)

Here L, a constant, represents the length of the basin, and f and g, known functions of x,
represent the initial states of u.

In what follows we develop several techniques for determining the solution to (5.31)–(5.33).
Some of the methods, such as the Fourier and the Characteristics Method will lead to the exact
solution of the problem, while others, such as the finite difference method and the Galerkin
Method give us approximate solutions.

162

5.4.1 Separation of Variables and the Fourier Method

The Fourier Method is predicated on our ability to construct solutions of (5.31) in terms of basis
functions or normal modes that are natural building blocks for solutions of linear PDEs such
as the wave equation. We will not give a complete introduction to Fourier series and instead
refer the reader to texts that provide such an introduction, including several listed at the end
of this chapter (see, for example, Chapter 14 of [4] for information on Fourier series and how
they apply to general PDEs). We will, however, review here the concept of separation of
variables, which is the enabling factor behind the use of Fourier series, and later provide the
connection between this method and the Galerkin method and the Method of Lines, which
are two general purpose methods for obtaining approximate solutions of evolution equations like
the wave equation, but powerful enough that they apply to a large class of nonlinear PDEs.

We begin by seeking solutions of (5.31) in the form

u(t, x) = G(t)F (x).

Substituting this template into (5.31) yields

G′′F − c2GF ′′ = 0,

or, after division by c2FG,
G′′

c2G
− F ′′

F
= 0. (5.34)

Since G′′
c2G is only a function of t (recall that c2 = gH is a constant) and F ′′

F only a function of x,
each must be a constant, a fact that can readily be verified by differentiating (5.34) with respect
to t, say. Assuming for the time being that this constant is negative, we denote it by −λ2 and
rewrite (5.34) equivalently as

G′′

c2G
= −λ2,

F ′′

F
= −λ2.

These equations reduce to the two familiar ordinary differential equations

F ′′ + λ2F = 0, G′′ + c2G = 0. (5.35)

These equations have the general solutions

F (x) = c1 sin λx + c2 cosλx, G(t) = c3 sin cλt + c4 cos cλt. (5.36)

Recall that u(t, x) = G(t)F (x). We have therefore succeeded in finding a general solution of the
linear wave equation, utt − c2uxx = 0 in the form

u(t, x) = (c3 sin cλt + c4 cos cλt)(c1 sin λx + c2 cosλx). (5.37)

To complete the solution of the initial-boundary value problem (5.32–(5.33), we need to determine
the constants c1 through c4 and λ in such a way that the four constraints u(t, 0) = u(t, L) = 0,
the two boundary conditions, and u(0, x) = f(x) and ut(0, x) = g(x), the two initial conditions,
hold.

We begin by applying the boundary condition (5.32), that u(t, 0) = 0 to the formula for u in
(5.37). This results in

0 = u(t, 0) = c2(c3 sin cλt + c4 cos cλt),

which must hold for all values of t, so naturally we select c2 = 0. This choice of c2 reduces the
expression for u in (5.37) to

u(t, x) = (A sin cλt + B cos cλt) sin λx, (5.38)

where now A and B stand for c1c3 and c1c4, respectively. Next we apply the second boundary
condition in (5.32), namely, u(t, L) = 0, which, when applied to (5.38), results in

0 = u(t, L) = (A sin cλt + B cos cλt) sin λL. (5.39)

163

This expression must also be valid for all t, hence we choose λ so that sin λL = 0. Since the sine
function is 2π periodic, there are quite a few angles θ, namely θ = nπ, at which sin θ vanishes.
Hence we select λ such that λL = nπ or

λn =
nπ

L
. (5.40)

The quantities λn are the eigenvalues of the linear wave equation. They represent the natural
frequencies at which the normal modes sin λnx end up being part of a solution to the wave
equation when this equation is supplemented by the boundary conditions in (5.32).

The choice of the eigenvalues λn = nπ
L , when substituted into (5.38), leads to infinitely many

natural modes or solutions to (5.31) and (5.32). They are

un(t, x) = (An sin
nπct

L
+ Bn cos

nπct

L
) sin

nπx

L
. (5.41)

Since the wave equation is linear, the superposition of any two solutions in (5.41) results in
another solution to the wave equation. In fact

u(t, x) =
∞∑

n=1

(An sin
nπct

L
+ Bn cos

nπct

L
) sin

nπx

L
, (5.42)

constitutes a general solution to (5.31) where the boundary conditions (5.32) are automatically
satisfied.

To complete obtaining the solution to the initial-boundary value problem (5.31)–(5.33) we
need to determine the coefficients An’s and Bn’s in (5.42) so that the initial conditions (5.33)
hold. The first of these conditions, that u(0, x) = f(x), requires u in (5.42) to satisfy the relation

f(x) = u(0, x) =
∞∑

n=1

Bn sin
nπx

L
. (5.43)

In other words, the coefficients Bn in (5.42) must also be the Fourier Sine coefficients of f when
f is expanded in terms of sin nπx

L . We recall the formula

Bn =
(f, sin nπx

L)
(sin nπx

L , sin nπx
L)

, (5.44)

where the notation (f, g), called the inner product of the two functions f and g in the interval
(0, L), is defined as

(f, g) =
∫ L

0

f(x)g(x) dx. (5.45)

With this definition, the expression in (5.44) reduces to the familiar formula

Bn =
2
L

∫ l

0

f(x) sin
nπx

L
. (5.46)

A similar argument applies to An’s. Since ut(0, x) = g(x), we have

g(x) = ut(0, x) =
∞∑

n=1

nπc

L
An sin

nπx

L
,

which states that nπc
L An is the Fourier Sine coefficient of g, that is

nπc

L
An =

(g, sin nπx
L)

(sin nπx
L , sin nπx

L)
.

164 CHAPTER 5. SHALLOW WATER EQUATIONS

The above expression simplifies to

An =
2

nπc

∫ L

0

g(x) sin
nπx

L
. (5.47)

Several exercises at the end of this section involve applying the Fourier method to various initial-
boundary value problems. In the next section we introduce a MATLAB program to carry out all of
the underlying computations.

Before leaving this topic we make one important observation about the formula in (5.42):
Because sin nπct

L and cos nπct
L have the common fundamental period of T = 2L

c for all n, the
function u inherits this period as well. Hence, any disturbance (wave) supported by the lin-
ear wave equation and (5.32)–(5.33) will travel in time periodically with period T = 2L

c . We
summarize the above discussion in the following theorem:

Theorem 5.3.1 (Fourier series and the Wave Equation)
The solution to the initial-boundary value problem (5.31)–(5.33) is given by

u(t, x) =
∞∑

n=1

(An sin
nπct

L
+ Bn cos

nπct

L
) sin

nπx

L

where An and Bn are determined from

An =
2

nπc

∫ L

0

g(x) sin
nπx

L
, Bn =

2
L

∫ l

0

f(x) sin
nπx

L
.

This solution is unique and is periodic with period 2L
c .

For a proof of the uniqueness of the solution see the exercises.

Problems

1. Let φn(x) = sin nπx
L be the normal modes of the wave equation. Show that φn and φm are

orthogonal, that is
(φn, φm) = 0,

the inner product (., .) is defined in (5.45).

2. Consider the expression f(x) =
∑N

n=1 anφn(x) where an’s are scalars (constants in R).
Suppose that f(x) ≡ 0 for all x ∈ (0, L). Use the orthogonality property of φn to show
that the coefficients an’s must all vanish.

3. Consider the expression f(x) =
∑N

n=1 anφn(x) where φn(x) = sin nπx
L . Show that

2
L

∫ L

0

||f(x)||2 dx =
N∑

n=1

a2
n.

4. In the analysis we presented we assumed that the constant of separation of variables was
negative, i.e., F ′′

F = −λ2. Consider now the two alternative cases:

(a) Suppose that F ′′
F = λ2. Show that this equation’s general solution is F (x) = c1e

λx +
c2e

−λx. Apply the boundary conditions u(0, t) = u(L, t) = 0 to this expression to
show that the only solution that satisfies both boundary conditions requires that
c1 = c2 = 0. Thus the only solution we obtain by assuming the constant of separation
of variables is positive is the trivial solution F (x) ≡ 0.

(b) Suppose that F ′′
F = 0. Show that this equation’s general solution is F (x) = c1x + c2.

Apply the boundary conditions u(0, t) = u(L, t) = 0 to this expression to show that,
again, the only solution that satisfies both boundary conditions requires that c1 =
c2 = 0, that is, the trivial solution F (x) ≡ 0.

5.4. LINEAR WAVE EQUATION 165

5. Find the solution the following initial-boundary value problems for the Wave Equation
utt = c2uxx, subject to boundary conditions u(t, 0) = u(t, L) = 0 and initial data u(0, x) =
f(x) and ut(0, x) = g(x).

(a) c2 = 4, L = 5, f(x) = x(5− x), g(x) ≡ 0.

(b) c2 = 16, L = 1, f(x) ≡ 0, g(x) ≡ 1.

(c) c2 = 25, L = 2, f(x) =
{

x, if 0 < x ≤ 1,
2− x otherwise , g(x) ≡ 0.

(d) c2 = 1, L = 5, f(x) = sin πx
5 , g(x) =

{
x, if 0 < x ≤ 5

2 ,
5− x otherwise .

6. (Uniqueness of Solutions) Consider the initial-boundary value problem (5.31)–(5.33).
Let u1(t, x) and u2(t, x) be two solutions of this system. Let v(t, x) = u1(t, x) − u2(t, x).
Show that

(a) v satisfies the Wave Equation, that is, vtt − c2vxx = 0, and the boundary conditions
v(t, 0) = v(t, L) = 0.

(b) v satisfies the initial data v(0, x) ≡ 0 and vt(0, x) ≡ 0.

(c) v must then be identically zero, by determining its Fourier series solution.

Thus we conclude that the solution to the initial-boundary value problem (5.31) – (5.33)
is unique.

7. Consider the wave equation (5.31) with boundary conditions ux(0, t) = ux(L, t) = 0. Show
that applying the method of separation of variables to this boundary value problems leads
to solutions of the form

un(x, t) = (An cos
nπct

L
+ Bn sin

nπct

L
) cos

nπx

L
, n = 0, 1, 2, 3. (5.48)

8. Starting with the result of the previous problem, find the formula for the approximate
solution of the initial-boundary value problem

utt = 4uxx, ux(0, t) = ux(3, t) = 0, u(x, 0) = f(x), ut(x, 0) = g(x).

5.4.2 The Fourier Method in MATLAB

We now develop a MATLAB program to solve the initial-boundary value problem (5.31)–(5.33).
The specific data we consider are

c2 = 4, L = 3, f(x) =
{

x, if 0 < x ≤ 1,
− 1

2x + 3
2 , if 1 < x ≤ 3,

g(x) ≡ 0. (5.49)

Since g is identically zero, all of the coefficients An in (5.47) vanish. To determine the Bn’s in
(5.46) we need to split the domain of integration according to the definition of f and carry out
the integrations separately as follows:

Bn =
2
3
(
∫ 1

0

x sin
nπx

3
dx +

∫ 3

1

(−1
2
x +

3
2
) sin

nπx

3
dx) =

12
n2π2

sin3 nπ

3
. (5.50)

166 CHAPTER 5. SHALLOW WATER EQUATIONS

Thus the exact solution of the initial-boundary value problem (see (5.42)) is

u(x, t) =
∞∑

n=1

12
n2π2

sin3 nπ

3
cos

2nπt

3
sin

nπx

3
. (5.51)

The main program below consists of a segment where the Fourier coefficients are computed
using MATLAB’s quad, quadl, quadgk or quadv, and a segment that computes u from (5.51)
and then plots the graph of the various snapshots. Here is the syntax that computes the first
coefficients Bn’s using quadv, which integrates an array of functions (such as f(x) sin nπx

L with
n ranging between 1 and 10, say):

b=2/3*(quadv(’x.*sin((1:10)*pi*x/3)’,0,1)+ ...
quadv(’(-1/2*x+3/2).*sin((1:10)*pi*x/3)’,1,3));

b

MATLAB returns

b =

Columns 1 through 9

0.7897 0.1974 0.0000 -0.0494 -0.0316 0.0000
0.0161 0.0123 -0.0000

Column 10

-0.0079

To compare these results with the exact value of Bn’s (from 5.50) we compute the exact Bn’s
and use the max and abs commands within MATLAB to measure the error incurred in using quadv:

exactb=12./((1:10).^2*pi^2).*sin((1:10)*pi/3).^3;
exactb

which results in

exactb =

Columns 1 through 9

0.7897 0.1974 0.0000 -0.0494 -0.0316 -0.0000
0.0161 0.0123 0.0000

Column 10

-0.0079

These values agree very well with the values from quadv, at least with the accuracy embedded in
the first four significant digits used to display the results. The absolute error in this computation
is measured as follows:

5.4. LINEAR WAVE EQUATION 167

max(abs(b-exactb))

or

6.5904e-009

The relative error (computed by max(abs(b-exactb))/max(abs(b))) is 8.3453e-009.
The following program combines inline and quadv with the plotting capabilities of MATLAB

to produce the graph of the snapshots seen in Figure 5.1:

clf;
c=2;
L=3;
n=50; % Number of terms in the Fourier Sine series
f1=inline(’x.*sin((1:n)*pi*x/3)’,’n’,’x’);
f2=inline(’(-1/2*x+3/2).*sin((1:n)*pi*x/3)’,’n’,’x’);
b=2/3*(quadv(@(x)f1(n,x),0,1)+quadv(@(x)f2(n,x),1,3));
x=0:0.01:L;
sine=sin(pi*(1:n)’*x/3);
for i=1:8

t=0.3*(i-1);
coeff=b.*cos(2*pi*(1:n)*t);
u=coeff*sine;
subplot(4,2,i)
plot(x,u)
title([’u at t = ’, num2str(t)]);
axis([0 3 -1 1]);
hold on

end

This figure demonstrates one of the key features of the wave equation, how discontinuities
(shock waves) propagate. In this example the initial condition f is a continuous function in the
its domain, the interval (0, 3), and is differentiable at every point in the domain except at x = 1
where the derivative f ′ experiences a jump. This discontinuity manifests itself in ux in time in
both directions, as seen in the snapshots in Figure 5.1: At t = 0.3 the discontinuity that was
originally located at x = 1 can now be found around x = 0.3 and 1.6, approximately. It turns
out, as we will demonstrate in the next section, that the two shock waves propagate with wave
speed c, in this example c = 2, until they reach the endpoints of the domain, at which time they
reverse their course and propagate toward each other and reunite at time t = L

c , in this example
3
2 , which is half the period of oscillation of u.

We end this section by pointing out that the above MATLAB code may be altered slightly, by
introducing the drawnow command, to animate the snapshots:

clf;
c=2; % Speed of propagation
L=3; % Domain size
period=2*L/c;
count = 100; % Number of Snapshots

168 CHAPTER 5. SHALLOW WATER EQUATIONS

Figure 5.1: Snapshots of the function u where u is the solution to the initial-value problem
utt − 4uxx = 0, u(0, t) = u(3, t) = 0, u(x, 0) = f(x), with f given in (5.49), and g ≡ 0.

5.5. THE CHARACTERISTICS METHOD 169

n=50; % Discretization along the x axis
f1=inline(’x.*sin((1:n)*pi*x/3)’,’n’,’x’);
f2=inline(’(-1/2*x+3/2).*sin((1:n)*pi*x/3)’,’n’,’x’);
b=2/3*(quadv(@(x)f1(n,x),0,1)+quadv(@(x)f2(n,x),1,3));
x=0:0.01:3;
sine=sin(pi*(1:n)’*x/3);
for i=1:count

t=period/count*(i-1);
coeff=b.*cos(2*pi*(1:n)*t/3);
u=coeff*sine;
drawnow
plot(x,u)
title([’t = ’, num2str(t)]);
axis([0 3 -1 1]);

end

Problems

1. Execute the various MATLAB programs in this section and obtain the results and figures
cited.

2. Write a MATLAB program to plot the snapshots of the solution to each initial-boundary value
problem stated in Problem 5, Section 5.4.1.

5.5 The Characteristics Method

In this section we develop and apply the method of characteristics to (5.31)–(5.33). For
background information on this method see Chapter 13 of [4]. Also, in a project at the end
of this chapter we develop the Characteristics Method in its traditional way. Here instead we
appeal to the formula in (5.42) to show that there is an entirely different way of representing
the solution to (5.31) – (5.33), which in light of the uniqueness of solutions to this system (see
Problem 6, Section 5.4.1) is in fact the same solution we obtained using the Fourier method.

For convenience we repeat formula (5.42), albeit written slightly differently:

u(x, t) =
∞∑

n=1

Bn cos
nπct

L
sin

nπx

L
+

∞∑
n=1

An sin
nπct

L
sin

nπx

L
. (5.52)

Recall from elementary trigonometry the formulas

cos t sinx =
1
2
(sin(x− t) + sin(x + t)), sin t sin x =

1
2
(cos(x− t)− cos(x + t)). (5.53)

The first identity in (5.53) helps cast the first summation in (5.52) in the following form:

∞∑
n=1

Bn cos
nπct

L
sin

nπx

L
=

1
2

∞∑
n=1

Bn(sin
nπ(x− ct)

L
+ sin

nπ(x + ct))
L

). (5.54)

170 CHAPTER 5. SHALLOW WATER EQUATIONS

Recall that Bn’s are the Fourier Sine coefficients of f , the initial data in (5.33), that is,

f(x) =
∞∑

n=1

Bn sin
nπx

L
, for all x ∈ (0, L). (5.55)

In view of the identity in (5.55) we can restate the expression in (5.54) as

∞∑
n=1

Bn cos
nπct

L
sin

nπx

L
=

1
2
(f(x− ct) + f(x + ct)). (5.56)

This expression in (5.56) is valid as long as x− ct and x + ct remain in the domain of f , which
is the interval (0, L). What is remarkable is that we can use (5.56) for all x and t if we are
willing to extend the definition of function f outside of the interval (0, L), and to the entire set
of real numbers, properly. To see this, we note that the right-side of the expression in (5.56) is
perfectly well-defined outside of the interval (0, L), which will be our strategy. We will denote
this extension by f̃ :

f̃(x) =
∞∑

n=1

Bn sin
nπx

L
, for all x ∈ R. (5.57)

The function f̃ has two important properties that will help the reader in constructing its image
geometrically. First, because each sine function is odd, it follows that f̃ is an odd function:

f̃(−x) = −f̃(x). (5.58)

Thus to construct an image of f̃ on the interval (−L, 0), we simply reflect the image of f on
the interval (0, L) about the origin. We now have f̃ defined on an interval of length 2L. Next
we note that each sine function in (5.57) is 2L periodic. Therefore, the function f̃ must be 2L
periodic. Since we already have an image of f̃ on an interval of length 2L, we can construct its
image everywhere along the real line. This completes the construction of f̃ . With this definition
of f̃ we have

∞∑
n=1

Bn cos
nπct

L
sin

nπx

L
=

1
2
(f̃(x− ct) + f̃(x + ct)). (5.59)

The second summation in (5.52) is treated in exactly the same way using the second trigono-
metric identity in (5.54). This summation ends up being related to g̃, the odd and 2L-periodic
extension of the initial function g from (5.33), as follows:

∞∑
n=1

An sin
nπct

L
sin

nπx

L
=

1
2c

∫ x+ct

x−ct

g̃(τ) dτ. (5.60)

We leave the details of this derivation to an exercise.
Combining now the formulas in (5.59) and (5.60), we have a closed form solution, known as

the D’Alembert solution, to the initial-boundary value problem (5.31) – (5.33):

u(x, t) =
1
2
(f̃(x− ct) + f̃(x + ct)) +

1
2c

∫ x+ct

x−ct

g̃(τ) dτ. (5.61)

5.5. THE CHARACTERISTICS METHOD 171

We state this result as a theorem.

Theorem 5.5: The formula in (5.61) gives a solution to the initial-boundary value problem
(5.31) – (5.33).

One of the significant consequences of (5.61) is that it demonstrates why c is the speed of
propagation of any disturbance (wave) in (5.31) – (5.33). To see this we note that the graphs of
y = f̃(x) and y = f̃(x− ct) are identical except for a shift. To be precise, the graph of f̃(x− ct)
is the same as the graph of f̃(x) except that it is shifted to the right by the amount ct. Similarly,
the graph of f̃(x + ct) is identical with the graph of f̃(x) except for a shift to the left by the
amount ct. We reach the same conclusion for the integral in (5.61) because we can break it up
into a sum of two integrals, for example by writing it as

∫ x+ct

x−ct

g̃(τ) dτ =
∫ 0

x−ct

g̃(τ) dτ +
∫ x+ct

0

g̃(τ) dτ,

and apply the same argument to each individual integral on the right-side. Therefore, formula
(5.61) suggests that any initial disturbance in f and g is carried by f̃ and g̃ by simply shifting
these functions to the right and to the left with speed c.

An interesting application of (5.61) arises when we view the above observation in the context
of c =

√
gH for the Shallow Wave Equation and consider the setting of a tsunami to compute

how fast such a wave propagates. In waters that are about 5 kilometers deep (so that H = 5, 000
meters), with a standard value of g = 9.8 m/s2, we arrive at c = 221.36 m/s, or about 704 km/h.

Problems

1. Show by direct differentiation that F (x− ct) and G(x + ct) are solutions of the linear wave
equation (5.31).

2. Show that the D’Alembert solution (5.61) satisfies the initial and boundary conditions in
(5.32) – (5.33).

3. Consider the wave equation utt − 9uxx = 0. Find its general solution.

4. Consider the wave equation utt − 9uxx = 0 with initial conditions

u(x, 0) =
{

cos x, when − π
2 < x < π

2 ,
0 otherwise,

and g(x) ≡ 0. Plot the graph of the solution at t = 0, 0.1, 0.2 and 0.3.

5. Consider the wave equation utt−4uxx = 0 on the real line with initial conditions u(x, 0) ≡ 0
and

g(x) =





x, when 0 < x < 1,
2− x when 1 < x < 2,

0 otherwise.

Plot the graph of the solution at t = 0, 0.1, 0.2 and 0.3.

6. Repeat the problems 1) – 3) with the normal modes φn(x) = cos nπx
L , with n = 0, 1, 2,

172 CHAPTER 5. SHALLOW WATER EQUATIONS

5.6 D’Alembert’s solution in MATLAB

The formula in (5.61) can be readily constructed in MATLAB. The main issue is to use appropriate
commands within MATLAB to construct f̃ and g̃ properly. We show the code for the same initial-
boundary value problem in (5.49).

% Definition of fhat.m
%
function y = fhat(x),
%
mask1 = (x >= 0) & (x < 1);
mask2 = (x >= 1) & (x <= 3);
mask3 = (x >= -3) & (x < 0);
mask4 = x > 3;
mask5 = x < -3;
%
if any(mask2)

x(mask2) = -1/2*(x(mask2) - 3);
end
%
if any(mask3)

x(mask3) = - fhat(-x(mask3));
end
%
if any(mask4)

x(mask4) = fhat(x(mask4)-6);
end
%
if any(mask5)

x(mask5) = fhat(x(mask5)+6);
end
%
%
y = x;

The function fhat.m is called upon by DAlembert.m listed below:

clf;
c=2;
L=3;
x=0:0.01:L;
rows=4;
for i=1:8

subplot(rows,2,i)
t=0.3*(i-1);
plot(x,0.5*(fhat(x-c*t)+fhat(x+c*t)));
title([’t = ’, num2str(t)]);

5.7. METHOD OF LINE AND THE WAVE EQUATION 173

Figure 5.2: Using the D’Alembert Method, this figure shows the snapshots of u where u is the
solution to the initial-value problem utt − 4uxx = 0, u(0, t) = u(3, t) = 0, u(x, 0) = f(x), with f
given in (5.49), and g ≡ 0.

axis([0 3 -1, 1])
hold on

end

Figure 5.2 shows the output of this program.

5.7 Method of Line and the Wave Equation

We introduce now an effective method to find a numerical solution to (5.31)-(5.33) using a
combination of the Finite Difference Method and the Method of Line, where we take advantage
of the build-in ODE solver ode45 of MATLAB. Recalling the PDE in (5.31), we discretize the spatial

174 CHAPTER 5. SHALLOW WATER EQUATIONS

derivative uxx using the centered difference scheme

uxx(xi, t) ≈ 1
h2

(ui+1(t)− 2ui(t) + ui−1(t)) (5.62)

and leave the time dependence intact. This semi-discretized approach replaces the PDE utt =
c2uxx in (5.31) by the system of ODEs

d2ui

dt2
=

c2

h2
(ui+1(t)− 2ui(t) + ui−1(t)), i = 1, 2, ..., n, (5.63)

where
ui(t) = u(t, xi)

correspond to the solution values at the interior points xi ∈ (0, L). This system is supplemented
by the discretized initial data obtained from the information in (5.33). The boundary conditions
in (5.32) lead to two trivial differential equations:

u′0(t) = u′n+1(t) = 0. (5.64)

To implement (5.63) in MATLAB we appeal to ode45. To prepare this system for ode45, which
is written to apply to first order systems, we reduce (5.63) to a first order system by defining a
new variable vi as the first derivative of ui and convert the system of n equations in (5.63) to
the following system of 2n equations:

dui

dt
= vi,

dvi

dt
=

c2

h2
(ui+1(t)− 2ui(t) + ui−1(t)), i = 1, 2, ..., n, (5.65)

with initial conditions
ui(0) = f(xi), vi(0) = g(xi). (5.66)

The following program shows how to implement the method of line for the example in (5.49).
The first file, called waveeqSYS1.m, introduces the equations (5.65). The second file, called
waveeqMOLRun.m, calls on ode45 and on waveeqSYS1.m to solve (5.65)–(5.66). First waveeqSYS1.m:

%%%%%%%%% waveeqSYS1.m %%%%%%%%%%%%%
function yprime=waveeqSYS1(t,y);
%
global nn h c;
% y represents u and v
u=y(1:nn); v=y(nn+1:2*nn);
term1=c^2/(h^2)*(u(3:nn)-2*u(2:nn-1)+u(1:nn-2));
uprime=v;
vprime=[0; term1; 0];
yprime=[uprime; vprime];

Next waveeqMOLRun.m:

%%%%%%%%%%%%%%% waveeqMOLRun.m %%%%%%%%%%%%
clear all
clf

5.7. METHOD OF LINE AND THE WAVE EQUATION 175

a1=cputime; % start cpu clock
global nn h c;
c=2;
h=0.01;
%
x=0:h:3;
nn=length(x);
%
u0=fhat(x);
%u0=sin(pi*x/3);
v0=zeros(nn,1);
%
plot(x,u0);
axis([0 3 -1 1])
%%hold onh
drawnow
y0=[u0 v0’];
for i=1:500

[t,y]=ode45(’waveeqSYS1’,[0,0.04], y0);
approximate=y(length(t),1:nn);
plot(x,approximate)
axis([0 3 -1 1])
time=i*t(length(t));
title([’Wave Equation, Method of Line, time =’, num2str(time)]);
drawnow
y0=y(length(t),:);

end
a2=cputime; % end cpu clock
a2-a1

The M-file fhat.m was defined in Section 5.5. Note the use of drawnow to animate the graphs of
u(t, x) for specific t’s (in this case 0.04) and the use cputime to monitor how much computing
time in takes to solve this run waveeqMOLRun.m. Figure 5.3 shows the snapshot u(20, x). With
the specific stepsize used in this example, ode45 solves an initial value problem for a system
consisting of 602 equations. One of the features to note in this simulation is the small oscillations
in the solution when t = 20. This lack of accuracy is the result of the initial condition f not
being differentiable. By contrast when we apply this program to f(x) = sin πx

3 we end up with
a more accurate simulation, as seen in Figure 5.4.

The approach we introduced for solving the wave equation turns out can be extended for con-
siderably more complicated problems, including nonlinear PDEs, systems of PDEs, and higher-
dimensional problems. We will explore some of these possibilities in the projects at the end of
this chapter.

Problems

1. Use MATLAB and generate the graphs in Figures 5.3 and 5.4.

176 CHAPTER 5. SHALLOW WATER EQUATIONS

Figure 5.3: Using the Method of Line, this figure shows the snapshot of u(x, 20) where u is the
solution to the initial-value problem utt − 4uxx = 0, u(0, t) = u(3, t) = 0, u(x, 0) = f(x), with f
given in (5.49), and g ≡ 0.

2. Alter the program waveeqMOLRun.m and waveeqSYS1.m appropriately to solve the following
initial problems for the wave equation (5.31) in the interval (0, 3), with boundary condition
u(0, t) = u(3, t) = 0 and with initial data

(a) f(x) = 0, g(x) = sinπx
3 .

(b) f(x) =
{

x 0 < x < 3
2 ,

3− x 3
2 ≤ x < 3 and g(x) = sin πx

3 .

5.7. METHOD OF LINE AND THE WAVE EQUATION 177

Figure 5.4: Using the Method of Line, this figure shows the snapshot of u(x, 20) where u is the
solution to the initial-value problem utt − 4uxx = 0, u(0, t) = u(3, t) = 0, u(x, 0) = sin πx

3 , and
g ≡ 0.

178 CHAPTER 5. SHALLOW WATER EQUATIONS

5.8 Project A: Derivation of the Characteristics Method

In Section 5.5 we motivated the Characteristics Method by manipulating the formula (5.52),
which was obtained based on the Fourier Method. We now introduce an independent derivation
of the D’Alembert formula. Our strategy is to show that under a suitable transformation (ξ, η)
of the independent variables (x, t), we are able to convert the wave equation

utt − c2uxx = 0, (5.67)

to the second–order partial differential equation

Uξη = 0. (5.68)

which can then be easily solved by simple integration with respect to ξ and η.

1. We start by introducing a general change of variables (ξ, η) by

ξ = h(x, t), η = k(x, t). (5.69)

We seek h and k in such a way that the transformed (5.67) takes the form (5.68). Let U
be related to u through the relation

U(ξ, η) ≡ u(x, t). (5.70)

Use the chain rule of differentiation to show that

(a)
∂u

∂t
=

∂U

∂ξ

∂h

∂t
+

∂U

∂η

∂k

∂t
. (5.71)

and
∂u

∂x
=

∂U

∂ξ

∂h

∂x
+

∂U

∂η

∂k

∂x
. (5.72)

2. By applying the chain rule of differentiation a second time show that (assume that U is
smooth enough that Uξη = Uηξ holds)

(a)
∂2u

∂t2
= (

∂h

∂t
)2

∂2U

∂ξ2
+ 2

∂h

∂t

∂k

∂t

∂2U

∂ξ∂η
+ (

∂k

∂t
)2

∂2U

∂η2
+

∂U

∂ξ

∂2h

∂t2
+

∂U

∂η

∂2k

∂t2
. (5.73)

(b)
∂2u

∂x2
= (

∂h

∂x
)2

∂2U

∂ξ2
+ 2

∂h

∂x

∂k

∂x

∂2U

∂ξ∂η
+ (

∂k

∂x
)2

∂2U

∂η2
+

∂U

∂ξ

∂2h

∂x2
+

∂U

∂η

∂2k

∂x2
. (5.74)

3. Transform equation (5.67) to (5.68) by substituting (5.73) and (5.74) in (5.67) and rear-
ranging terms to obtain

0 = utt − c2uxx = A
∂2U

∂ξ2
+ 2B

∂2U

∂ξ∂η
+ C

∂2U

∂η2
+ D

∂U

∂ξ
+ E

∂U

∂η
, (5.75)

5.8. PROJECT A: DERIVATION OF THE CHARACTERISTICS METHOD 179

where
A = (

∂h

∂t
)2 − c2(

∂h

∂x
)2, (5.76)

B =
∂h

∂t

∂k

∂t
− ∂h

∂x

∂k

∂x
, (5.77)

C = (
∂k

∂t
)2 − c2(

∂k

∂x
)2, (5.78)

D =
∂2h

∂x2
, (5.79)

E = −∂2k

∂t2
. (5.80)

To arrive at (5.68) choose h and k such that A = C = 0. Show that these constraints lead
to identical differential equations for h and k:

∂h

∂t
= ±c

∂h

∂x
,

∂k

∂t
= ±c

∂k

∂x
. (5.81)

4. Show that
h(x, t) = x± ct (5.82)

are the only solutions of (5.81).

5. Because the function k in (5.81b) satisfies the same equation as h, one ends up with the
same set of solutions for k. Hence, we use one of the functions in (5.81), say x− ct, for h,
and the other for k.

6. Show that with these choices for h and k the coefficient B is not zero while D and E are
identically zero. Thus (5.75) reduces to (5.68).

The results of the above problems is summarized in the following theorem.

Theorem 5.8
The change of variables

ξ = x− ct η = x + ct,

transforms the wave equation (5.67) into the PDE in (5.68). Thus the general solution of the
wave equation is

u(x, t) = F (x− ct) + G(x + ct), (5.83)

where F and G are two arbitrary smooth functions of their arguments.

Definition 5.8
The two curves defined by ξ = const. and η = const, with ξ and η defined in Theorem 5.8 are

called the characteristic curves of the wave equation. The partial differential equation (5.68) is
called the canonical form of the wave equation.

180 CHAPTER 5. SHALLOW WATER EQUATIONS

Remark 5.8: Our main assumption in carrying out all of the above computations has been
that F and G are at least twice differentiable. These results are, however, applicable even if
F and G are only piecewise differentiable in their domain so that wave equation is capable of
supporting waves with corners and kinks in them, as was demonstrated in example with data
cited in (5.49).

5.9. PROJECT B: VARIATIONS ON THE METHOD OF LINE 181

5.9 Project B: Variations on the Method of Line

The method of line was introduced for the linear wave equation in Section 5.7. This method is
also very effective for more complex problems, a few of which we will explore here.

1. Consider the initial value problem

utt = c2uxx = F (x, t), u(0, t) = u(L, t) = 0, u(x, 0) = ut(x, 0) ≡ 0. (5.84)

Alter the programs waveeqSYS1.m and waveeqMOLRun.m appropriately to apply the method
of line to solve (5.84). Apply the altered programs to (5.84) if

(a) F (x, t) ≡ 1.

(b) F (x, t) = sin t.

(c) F (x, t) = x2 sin t
1+x2 .

2. Alter the programs waveeqSYS1.m and waveeqMOLRun.m appropriately to apply the method
of line to solve the linear wave equation (5.31) with the initial data in (5.33) but with
boundary conditions

u(0, t) = b(t), u(L, t) = b2(t). (5.85)

Apply the altered programs to find approximate solutions of the following problems (in
each case let f = g = 0:

(a) b1(t) = 1− cos t, b2(t) ≡ 0.

(b) b1(t) = 1− cos t, b2(t) = − sin t.

3. Extend the method of line to solve the following initial-boundary value problem:

utt + αut + βu− c2uxx = F (x, t), u(0, t) = u(L, t) = 0, u(x, 0) = f(x), ut(x, 0) = g(x).
(5.86)

With α, β, c, L, F , f and g of your own choosing, run the updated versions of waveeqSYS1.m
and waveeqMOLRun.m.

4. Extend the method of line to solve the following nonlinear initial-boundary value problem:

utt − c2uxx = sin u, u(0, t) = u(L, t) = 0, u(x, 0) = f(x), ut(x, 0) = g(x). (5.87)

182 CHAPTER 5. SHALLOW WATER EQUATIONS

5.10 References

1. Batchelor, G. K., “An Introduction to Fluid Dynamics”, Cambridge University Press, 2000.

2. Gerbeau, J. – F., Perthame, B., “Derivation of Viscous Saint-Venant System for Laminar
Shallow Water; Numerical Validation”, Discrete and Dynamical Systems, Series B, Vol 1,
no. 1, 2001, pp. 89 – 102.

3. LeVeque, R., J.,“Finite Difference Methods for Ordinary and Partial Differential Equa-
tions”, SIAM, 2007.

4. Malek-Madani, R., ”Advanced Engineering Mathematics with Mathematica and MATLAB”,
Addison-Wesley, 1998.

5. Miller, R., N., “Numerical Modeling of Ocean Circulation”, Cambridge University Press,
2007.

6. Morton, K. W., Mayers, D. F., “Numerical Solution of Partial Differential Equations”,
Cambridge University Press, Second edition, 2005.

7. Stanoyevitch, A., “Introduction to Numerical Ordinary and Partial Differential Equations
Using MATLAB”, John Wiley & Sons, 2005.

8. Stoker, J. J., “Water Waves”, Wiley Interscience, 1965.

Chapter 6

Wind-Driven Ocean Circulation:
The Stommel and Munk Models

6.1 Introduction

In 1948 Henry Stommel, in the seminal paper entitled “The Western Intensification of Wind-
driven Ocean Currents”, see 1, proposed a simple model for the Gulf Stream based on the
fundamental equations of geophysical fluid dynamics. In this paper Stommel concentrated on
isolating the parameters that may lead to generation of boundary layers on the western bound-
aries of large basins in the northern hemisphere, reminiscent of the Gulf and Kuroshio Streams.
Specifically, Stommel showed that the variation of the Coriolis parameter f with latitude, on the
on hand, and wind stress forcing, similar to the distribution of the Trade winds in the Equator,
and the Westerlies which are prevalent in the mid-latitude range. In this model the only forces
are the ones due to Coriolis, due to wind stress, and an additional frictional force whose presence
is rather artificial and intended to help with writing down a well-posed boundary value problem
for a second order PDE for the stream function of the flow. A somewhat careful derivation of
this model will be one of the main features of this chapter.

Almost concurrently with the appearance of Stommel’s paper, Walter Munk, in the paper
entitled “On the Wind-driven Ocean Circulation”, see [2], introduced a slightly different model
of circulation in the North Atlantic. The key departure of Munk’s model from Stommel’s is in
the way dissipation enters into the model. Munk, taking into account the turbulent nature of
the flow, introduces an internal dissipation mechanism through the viscous stresses. This model
then leads to a fourth order PDE for the stream function.

In this chapter we will develop the basic tenets of the Stommel and Munk models. We will
derive the underlying PDEs and the boundary-value problem that govern the behavior of the
stream function in each model, use separation of variables and find the exact solution when
possible, and then use MATLAB to generate graphs of the typical streamlines. We then apply
the finite difference methodology we have developed so far and find approximate solutions for
each boundary value problem.

183

184CHAPTER 6. WIND-DRIVEN OCEAN CIRCULATION: THE STOMMEL AND MUNK MODELS

6.2 The Stommel Model

The Stommel model is characterized by the desire to conceive of a simple model of circulation in
a basin such as the North Atlantic by taking into account only the most prominent forces that
affect the flow of the fluid particles. The basin is assumed to be a cube with dimensions in the
range of the dimensions of North Atlantic (about 10,000 kilometers in each horizontal directions,
and a depth of a few kilometers) reasonably well. In this model we choose to take into account
only the impact of the acceleration due to Coriolis, the effect of the pressure gradient, which
is primarily created due to the wind forcing at the surface, and, in order to have a reasonable
steady-state solution, a simple model of frictional forces, taken proportional to velocity. The goal
is solve the underlying time-independent boundary value problem for the stream function and to
demonstrate the boundary-layer character of the solution on the western boundary of the region
as a manifestation of a the Gulf Stream.

6.2.1 The Governing PDE

We begin by considering a basin B defined by

B = {(x, y, z)| 0 < x < λ, 0 < y < b, 0 < z < d}
occupied by a homogeneous and incompressible fluid of density ρ0. We assume that the motion
is two dimensional and write

∂u

∂x
+

∂v

∂y
= 0, (6.1)

for the continuity equation, and

−ρ0fv = −∂P

∂x
+ ρ0F1, ρ0fu = −∂p

∂y
+ ρ0F2, 0 = −∂p

∂z
− ρ0g, (6.2)

where the local and convective (nonlinear) terms in the acceleration have been ignored, f =
2Ω sin φ is the Coriolis parameter, and in the third equation the hydrostatic approximation is
assumed. The terms F1 and F2 are components of the forcing terms, representing wind forcing
and bottom friction, and which will be stated specifically to ensure that (6.2) match the equivalent
equations of Stommel.

Since ρ0 and g are independent of x, y and z, we conclude from (6.2c) that ∂p
∂z is independent

of x and y, implying that ∂2p
∂x∂z = ∂2p

∂y∂z = 0. Keeping this in mind, we return to (6.2) and
differentiate (6.2a) and (6.2b) with respect to z to get

∂(−ρ0fv)
∂z

= ρ0
∂F1

∂z
,

∂(ρ0fu)
∂z

= ρ0
∂F2

∂z
.

We now make the assumption that F1 and F2 are independent of z. The above equations imply
that both fu and fv are independent of z, and since f is independent of z, we conclude that u
and v are functions of x and y only.

Next we integrate (6.2c) with respect to z, from z = z to z = d+η(x, y, t), where d+η defines
the air-sea interface, to get

P (x, y, z, t) = P0 + ρ0g(d + η(x, y, t)− z), (6.3)

6.2. THE STOMMEL MODEL 185

where P0 is the air pressure, assumed constant. Replacing P from (6.3) in (6.2a) and (6.2b)
results in

−ρ0fv = −ρ0g
∂η

∂x
+ ρ0F1, ρ0fu = −ρ0g

∂η

∂y
+ ρ0F2.

Next, we integrate both equations with respect to z, from z = 0 to z = d + η and ignore terms
that are quadratic in the unknowns, namely vη, uη, η ∂η

∂x , to get

−fvd = −gd
∂η

∂x
+ dF1, fud = −gd

∂η

∂y
+ dF2. (6.4)

We now define F1 and F2 in order to obtain the equations in the 1948 paper of Stommel:

dF1 = −Ru− γ cos
πy

b
, dF2 = −Rv, (6.5)

where γ and R are positive constants. The vector

〈−Ru,−Rv〉

is intended to model the overall impact of the bottom and lateral frictional damping – no molec-
ular or eddy viscosity terms are included in this model. The term

τ(y) = −γ cos
πy

b

measures wind stress on the air-sea interface; note that at τ(0) = −γ < 0 so that the wind stress
in the lower part of the basin is applying a force in the negative x-direction, while τ(b) = γ,
signifying the blowing of wind in the positive x-direction in the upper part of the basin, as
observed in the North Atlantic.

Substituting (6.5) into (6.4) results in the following set of equations for u, v and η:

−fv = −g
∂η

∂x
− R

d
u− γ

d
cos

π

b
, fu = −g

∂η

∂y
− R

d
v. (6.6)

Next we eliminate η from (6.6) by cross-differentiating the above equations, that is, differentiating
(6.6a) with respect to y and (6.6b) with respect to x, and subtract to get

−f ′(y)v − f
∂v

∂y
− f

∂u

∂x
= −R

d

∂u

∂y
+

γπ

db
sin

πy

b
+

R

d

∂v

∂x
, (6.7)

where we will made use of (6.1) to simplify. Speaking of equation (6.1), we note that this equation
implies that u and v are related to a stream function ψ through the relations

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (6.8)

which when applied to (6.7) results in the following partial differential equation

∆ψ + αψx = A sin
πy

b
, (6.9)

186CHAPTER 6. WIND-DRIVEN OCEAN CIRCULATION: THE STOMMEL AND MUNK MODELS

where

α =
f ′(y)d

R
, A =

γπ

Rb
. (6.10)

We complement the PDE in (6.9) with zero boundary conditions, i.e.,

ψ|
∂B

= 0. (6.11)

Our task in the next section is to solve the boundary-value problem (6.9) – (6.11) using separation
of variables. But before completing this section we comment that the typical values of the various
constants in (6.10) are (see [1])

d = 200 m, λ = 10, 000 km, b = 2π × 1000 km, γ = 1 dyne/cm2, R = 0.02. (6.12)

Among these values, the magnitude of f ′(y) is worth noting; Since y = aφ where a is the radius of
the planet and φ the latitude, we note that f(y) = 2Ω sinφ = 2Ω sin y

a . Hence, f ′(y) = 2Ω
a cos y

a .
In this problem’s setting, with a = 6240 km, Ω = π

43200 and 0 < y < b we have

1.24575 x 10−13 < f ′(y) < 2.33084 x 10−13.

Following Stommel’s footsteps, in what follows we assume the value f ′(y) ≈ 2× 10−13.

6.3 Non-dimensionalization

The variables in (6.9), whether dependent or independent, are dimensional. If we stay in this
dimensional setting, we will end up having to deal with parameter values with magnitudes 108

(for λ) and 10−13 (for f ′(y)), a range of twenty-one orders of magnitude. Although this range
does not particularly create a major difficulty for MATLAB, it turns out we gain more insight into
the impact of the three terms that balance each other in (6.9) on the behavior of solutions of the
BVP, including why a boundary layer is generated, if we first non-dimensionalize the variables.

We non-dimensionalize x, y and ψ by defining new variable x̄, ȳ and ψ̄ through the following
relations:

λx̄ = x, λȳ = y, ψ0ψ̄(x̄, t̄) = ψ(x, y),

where ψ0 is a typical value of the stream function. Differentiating the last relation twice with
respect to x leads to

ψxx =
ψ0

λ2
ψ̄x̄x̄.

Similarly, ψyy = ψ0
λ2 ψ̄ȳȳ. Hence the Laplace operator in (6.9) transforms to ψ0

λ2 ∆̄, where ∆̄ =
∂2

∂x̄2 + ∂2

∂ȳ2 . In this way, the dimensional boundary value problem (6.9) transforms to the non-
dimensional one

∆̄ψ̄ + ᾱψ̄x̄ = Ā sin
πȳ

L
, (6.13)

where L is the aspect ratio of the horizontal part of the domain, i.e.,

L =
b

λ
, (6.14)

6.4. SOLUTION TO THE BVP 187

and

ᾱ = λα, Ā =
λ2

ψ0
A. (6.15)

Equation (6.13) is now supplemented by the boundary conditions

ψ̄(x̄, 0) = ψ̄(x̄, L) = ψ̄(0, ȳ) = ψ̄(1, ȳ) = 0, (6.16)

In the next section we find the solution to (6.13)–(6.16).

6.4 Solution to the BVP

Before proceeding to obtain the solution to (6.13)-(6.16) we rename all of the variables by re-
moving the bars from these variables. Hence we seek a solution to

∆ψ + αψx = A sin
πy

L
, ψ(x, 0) = ψ(x, L) = ψ(0, y) = ψ(1, y) = 0, (6.17)

where

α =
f ′(y)dλ

R
, A =

γπλ2

Rbψ0
. (6.18)

We begin by noting that the PDE (6.17a) is a Poisson equation whose general solution is of
the form

ψ(x, y) = ψh(x, y) + ψp(x, y), (6.19)

where ψh is the solution of the homogeneous part of the (6.17a), namely, the solution to

∆ψ + αψx = 0, (6.20)

while ψp is any particular solution of (6.17a) – neither ψh nor ψp needs to satisfy the boundary
condition (6.11). Our strategy is to select the arbitrary parameters in (6.19) appropriately so
the boundary conditions (6.17) hold.

6.4.1 Determining ψp

Since ψp does not have to satisfy the boundary condition (6.17b) we can essentially guess its
form. Noting that A sin πy

L is the forcing term in (6.17a), we consider a particular solution ψp in
the form ψp(x, y) = B sin πy

L , and determine the constant B so that ψp is a solution of (6.17a).
Substituting this template into (6.17a) results in B = −AL2

π2 . Hence

ψp(x, y) = −AL2

π2
sin

πy

L
. (6.21)

6.4.2 Determining ψh

To determine the solution to (6.20) we apply the method of separation of variables to (6.20),
namely, assume a solution ψh(x, y) of the form F (x)G(y). Substituting the expression

ψh(x, y) = F (x)G(y)

188CHAPTER 6. WIND-DRIVEN OCEAN CIRCULATION: THE STOMMEL AND MUNK MODELS

into ∆ψ + αψx = 0 we get that F and G solve the equation

F ′′G + G′′F + αF ′G = 0,

for all x and y in the domain (0, 1)× (0, L). Dividing this expression by FG results in

(
F ′′

F
+ α

F ′

F
) +

G′′

G
= 0.

Because F only depends on x, G only depends on y and α is constant, it follows that the terms
involving F must equal a constant, which we denote by µ2, so that

F ′′

F
+ α

F ′

F
= µ2,

G′′

G
= −µ2. (6.22)

The above equations lead to the following set of second-order differential equations

F ′′ + αF ′ − µ2F = 0, G′′ + µ2G = 0. (6.23)

It is a simple computation to show that the following functions are the general solutions of the
above equations:

G(y) = c1 cosµy + c2 sin µy, F (x) = c3e
m1x + c4e

m2x, (6.24)

where m1 and m2 are

m1 = −α +
√

α2 + 4µ2

2
, m2 = −α−

√
α2 + 4µ2

2
.

Referring back to (6.20), we now see that the general solution of the homogeneous part of the
Poisson equation is

ψh(x, y) = F (x)G(y) = (c3e
m1x + c4e

m2x)(c1 cos µy + c2 sin µy). (6.25)

We now have explicit formulas for ψh, namely, (6.25), and for ψp, namely, (6.21), which when
combined lead to the general solution of the full PDE (6.17a):

ψ(x, y) = ψh + ψp = −AL2

π2
sin

πy

L
+ (c3e

m1x + c4e
m2x)(c1 cosµy + c2 sin µy). (6.26)

6.4.3 Applying the Boundary Conditions

It remains to select c1, c2, c3, c4, and µ to enforce the boundary condition (6.17b). We begin
by applying the first boundary condition, that ψ(x, 0) = 0 for all 0 < x < 1: Evaluate (6.26) at
y = 0 to get

0 = ψ(x, 0) = c1(c3e
m1x + c4e

m2x), for all x ∈ (0, 1),

which implies that c1 = 0. Thus ψ in (6.26) reduces to

ψ(x, y) = −AL2

π2
sin

πy

L
+ (d1e

m1x + d2e
m2x) sin µy, (6.27)

6.4. SOLUTION TO THE BVP 189

where d1 = c2c3 and d2 = c2c4. Next we apply the boundary condition ψ(x, L) = 0 to (6.27) to
get

0 = ψ(x, L) = (d1e
m1x + d2e

m2x) sin µL = 0, for all x ∈ (0, 1),
which implies that µ should be chosen in such a way that µL = nπ, with n = 1, 2, Hence,
referring back to (6.27), we obtain infinitely many candidates for the solution of (6.17a) which
we index by n:

ψn(x, y) = −AL2

π2
sin

πy

L
+ (d1e

m1x + d2e
m2x) sin

nπy

L
, n = 1, 2, 3, (6.28)

Next we apply the boundary condition ψ(0, y) = 0 to (6.28):

−AL2

π2
sin

πy

L
+ (d1 + d2) sin

nπy

L
= 0 for all y ∈ (0, L). (6.29)

The above expression is of the form

β1 sin
πy

L
+ β2 sin

nπy

L
= 0 for all y ∈ (0, L), (6.30)

for appropriate β1 and β2, both constants. The two fucntions sin πy
L and sin nπy

L are linearly
independent on the interval (0, L) unless n = 1. Hence, unless we select n to be 1, the coefficients
β1 and β2 must both vanish. We know, however, that β1 = −AL2

π2 is nonzero. We have no choice
then than to select only the first mode n = 1 from the infinitely many modes available in (6.28).

Returning to (6.29), we replace n with 1 and find that
(
−AL2

π2
+ (d1 + d2)

)
sin

πy

L
= 0, for all y,

which implies that

d1 + d2 =
AL2

π2
. (6.31)

Using this information and n = 1 in (6.28), we conclude that ψ takes the form

ψ(x, y) =
(
−AL2

π2
+ d1e

m1x + (
AL2

π2
− d1)em2x

)
sin

πy

L
. (6.32)

Finally, we apply the boundary condition ψ(1, y) = 0 to (6.32) to get

−AL2

π2
+ d1e

m1 + (
AL2

π2
− d1)em2 = 0

which results in d1 = AL2(em2−1)
π2(em2−em1) and, from (6.31), that d2 = AL2(1−em1)

π2(em2−em1) , with ψ taking the
form

ψ(x, y) =
AL2

π2

(
−1 +

em2 − 1
em2 − em1

em1x +
1− em1

em2 − em1
em2x

)
sin

πy

L
. (6.33)

We have proved the following theorem.

Theorem 6.2.1 (Stommel’s Stream function): Consider the boundary-value problem (6.17).
The function ψ defined in (6.33) is a solution of this problem.

The function ψ in (6.33) defines the stream function for Stommel’s model of the Gulf Stream.
To see that it embodies some of the salient features of this current, we now use MATLAB and
plot its streamlines.

190CHAPTER 6. WIND-DRIVEN OCEAN CIRCULATION: THE STOMMEL AND MUNK MODELS

6.5 MATLAB Programs

The following program defines the stream function ψ from (6.33) to MATLAB. First we store the
various physical constants and defined parameters in the file StommelConstants.m as follows:

**************** StommelConstants.m*****************

psi0=10^9; % Setting the stream value scale, an arbitrary value.
lambda=10^9; % Basin’s length (in centimeters)
b=2*pi*10^8; % Basin’s width
d=20000; % Basin’s depth
gamma=1; % Wind stress
fprime=2*10^(-13); % Coriolis parameter
R=0.02; % Bottom friction parameter
%%%
%%% Formulas obtained in the text
%%%
A=(gamma*pi*lambda^2)/(R*b*psi0);
alpha=lambda*fprime*d/R;
mu=pi*lambda/b;
m1=(-alpha-sqrt(alpha^2+4*mu^2))/2;
m2=(-alpha+sqrt(alpha^2+4*mu^2))/2;
c1=(exp(m2)-1)/(exp(m2)-exp(m1));
c2=(1-exp(m1))/(exp(m2)-exp(m1));
%%%

The program StommelContours.m, defined below, begins with StommelConstant.m and then
proceeds to generate a 100 by 100 grid of the domain to plot the contours of ψ:
*******************StommelContours.m***********************

StommelConstants

n = 100; % Grid points in each horizontal direction
%%% Defining domain in MATLAB;
L=b/lambda;
[x,y]=meshgrid(0:1/n:1,0:L/n:L);
%%% Evaluation of the Stream function
z=A*L^2/(pi^2)*(-1+c1*exp(m1*x)+c2*exp(m2*x)).*sin(pi*y/L);
contour(x,y,z)

**

MATLAB will return Figure 6.1. The parameter values used in this program have been taken
verbatim from [1]. Note that the streamline values are all negative indicating a clockwise rotation.
The most striking feature of the streamlines is of course their behavior near the western boundary,
where, analagous to the Gulf stream, they bunch up to form a boundary layer. Since the flux

6.5. MATLAB PROGRAMS 191

remains constant between any two streamlines, the fact that the area between any two neighboring
streamlines narrow near the western boundary indicates that the velocity of the fluid flow must
increase subtantially relative to, say, the eastern boundary. What Stommel showed in [1] was that
the presence of this boundary layer is solely due to the intricate interplay among the Coriolis force,
the wind stress, and bottom friction. In particular, because of the various scales and dimensions
involved, the parameter α takes the value of 200 in its non-dimensional form (see 6.33). The
size of this parameter ends up being the key factor that is responsible for the appearance of the
boundary layer in Figure 6.1, as some of the exercises at the end of this section will demonstrate.

The solution we obtained in (6.33) is exact and in closed form. One can simply differentiate
and substitute it into the orginal boundary value problem in (6.17) to verify that (6.33) is indeed
a solution. Another advantage of having a formula for the solution is that it is then relatively
simple to compute various properties of the flow associated with (6.33). For example, recalling
that the velocity field v = 〈u, v〉 is related to ψ by u = ∂ψ

∂y and v = −∂ψ
∂x , we find that

u =
AL

π

(
−1 +

em2 − 1
em2 − em1

em1x +
1− em1

em2 − em1
em2x

)
cos

πy

L
,

v = −AL2

π2

(
−1 +

em2 − 1
em2 − em1

m1e
m1x +

1− em1

em2 − em1
m2e

m2x

)
sin

πy

L
.

The quiver command of MATLAB when combined with the latter formulas lead to Figure 6.2.
This figure is the output of the following program:

global psi0 lambda b d gamma fprime R A alpha mu m1 m2 c1 c2

StommelConstants

L=b/lambda;
%
[x,y]=meshgrid(0.01:0.1:0.99,0.01:L/10:L-0.01);
[u,v]=StommelVelocity(x,y);
%
quiver(x,y,u/norm(u),v/norm(v))

This program calls on StommelVelocity.m listed below:

*****************StommelVelocity.m*******************

function [u,v]=StommelVelocity(x,y);

global psi0 lambda b d gamma fprime R A alpha mu m1 m2 c1 c2

L=b/lambda;
u = A*L/pi*(-1+c1*exp(m1*x)+c2*exp(m2*x)).*cos(pi*y/L);
v=-A*L^2/(pi^2)*(-1+c1*m1*exp(m1*x)+c2*m2*exp(m2*x)).*sin(pi*y/L);

192CHAPTER 6. WIND-DRIVEN OCEAN CIRCULATION: THE STOMMEL AND MUNK MODELS

Figure 6.1: Streamlines of ψ.

Now that we have the velocity field v in hand, we can compute the relative vorticity, ω = ∇×v,
which is equivalent to (−∆ψ)k. We suspect that the amplitude of the relative vorticity, −∆ψ,
will also favor the western boundary. To verify this, we compute this quantity:

−∆ψ = −AL2

π2

(
(
π2

L2
+ (m2

1 −
π2

L2
)

em2 − 1
em2 − em1

em1x + (m2
2 −

π2

L2
)

1− em1

em2 − em1
em2x)

)
sin

πy

L
.

The graph of this function is shown in Figure 6.3.
As pointed out earlier, the advantage of having the exact solution for the stream function ψ

is that we can infer a considerable amount of information about the physical problem by direct
computations involving ψ. Several of the problems at the end this section are intended to drive
this point home. It is obvious, however, that we cannot be as successful if we are able to compute
the solution of an initial-boundary value problem only approximately. In the next section we
consider computing the solution to (6.17) using a standard finite difference method. We then
discuss the obstacles we may encounter when we attempt to determine the vorticity, say, when
we only have an approximate knowledge of the stream fucntion.

Problems

1. Verify the statements in (6.23) and (6.24).

2. Verify by direct substitution that (6.26) satisfies (6.17a).

3. Verify by direct substitution that (6.33) satisfies (6.17).

6.5. MATLAB PROGRAMS 193

Figure 6.2: Velocity field associated with the stream function ψ.

Figure 6.3: The relative vorticity −∆ψ associated with the stream function ψ.

194CHAPTER 6. WIND-DRIVEN OCEAN CIRCULATION: THE STOMMEL AND MUNK MODELS

4. Show that sin y and sinny are linearly independent in the interval (a, b) unless n = 1.

5. Verify by direct substitution that (6.33) satisfies (6.17).

6. In applying the separation of variables method to (6.20) we made the tacit assumption that
µ2, the constant of separation of variables, is positive. Consider instead the following two
cases, construct the solution ψ of the BVP in each case and report on any barriers you
encounter when attempting to solve for the boundary conditions:

(a) µ = 0.

(b) µ2 = −δ2, with δ a real number, i.e., assuming that the constant of separation of
variables is negative.

7. Experiment with the various parameter values in StommelConstants.m to see the impact
of α on the size of the boundary layer. In particular, plot the contours of ψα with α =
0, 10, 20, 50, 100, 200, 500 and 1000.

6.6 The Stommel Model – A Numerical Approarch

In the previous section we obtained the exact solution to the boundary value prblem (6.17). Our
success in getting hold of the solution analytically is owed to several factors: first, the original
PDE is linear and second order, which lent itself to the method of separation of variables, which
in turn allowed us to obtain the general solution of the PDE in terms of the normal modes or basis
functions of the PDE. Second, the geometry of the domain, a cube (a rectangle, in actuality),
is simple enough that it allowed us to ensure that the boundary conditions are satisfied exactly.
Third, the forcing function in the Stommel model is very special, in fact it is proportional to
a single normal mode, so we are able to obtain the analytic soluton (6.33) in the closed form.
What we propose to do in this section is to explore the challenges we encounter when we violate
come of the conditions under which we are able to construct the solution.

To start, we consider a natural generalization of the (6.9) to

∆ψ + αψx + βψy + γψ = f(x, y), u|
∂Ω = g(x, y), (6.34)

where Ω is the rectangle (0, a)×(0, b). Since the boundary of Ω consists of four lines, the function
g in (6.34) may be expressed as

g(x, 0) = gS (x), g(x, b) = gN (x), g(0, y) = gW (y), g(a, y) = gE (y), (6.35)

where the subsrcipts are intended to remind the reader of the north, south, east and west location
of the four boundaries. The finite-difference methodology we developed in Chapter One is natural
for this problem. Let xi, i = 0, 1, 2, ..., n, n + 1, with xi = 0 and xn+1 = a, be a discretization
of the horizontal axis (0, a); we consider only a uniform mesh and let h = xi+1 − xi denote the
step-size. Similarly let yj , j = 0, 1, 2, ...,m, m + 1, with yi = 0 and ym+1 = b, be a discretization
of the vertical axis (0, b) with k = yj+1 − yj the step-size in the vertical direction. With (xi, yj)
representing a typical point in the discretized domain, we replace the various derivatives in (6.34)
by the finite-difference approximations, keeping the truncation error of each term in mind so we
design a numerical scheme that has the desired truncation error for the entire PDE in (6.34). For

6.6. THE STOMMEL MODEL – A NUMERICAL APPROARCH 195

instance, recalling that ψx(a, b) = limh→0 (ψ(a + h, b)− ψ(a− h, b)) /2h, we replace ψx(xi, yj)
by

ψx(xi, yj) ≈ ψ(xi+1, yj)− ψ(xi−1, yj)
2h

.

Introduce the notation
Ψi,j = ψ(xi, yj)

and note that the above expression takes the form

ψx(xi, yj) ≈ Ψi+1,j −Ψi−1,j

2h
. (6.36)

It is simple to show that the above approximation of ψx is second order, that is

ψx(xi, yj)− Ψi+1,j −Ψi−1,j

2h
= −h2

6
ψxxx(x, y) + ... (6.37)

Similarly, we replace ψy(xi, yj) by the second order finite difference approximation

ψy(xi, yj) ≈ Ψi,j+1 −Ψi,j−1

2k
, (6.38)

from which we deduce the truncation error

ψy(xi, yj)− Ψi,j+1 −Ψi,j−1

2k
= −k2

6
ψyyy(x, y) + ... (6.39)

The finite difference approximations to ψxx(xi, yj) and ψyy(xi, yj) are obtained similarly.
Since ψxx(a, b) = limh→0 (ψ(a + h, b)− 2ψ(a, b) + 2ψ(a− h, b)) /h2, we approximate ψ(xi, yj) by
the centered finite difference formula

ψxx(xi, yj) ≈ Ψi+1,j − 2Ψi,j + Ψi−1,j

h2
. (6.40)

Applying the Taylor series formula to (6.40) leads to the trunction error in the finite difference
approximation of ψxx(xi, yj):

ψxx(xi, yj)− Ψi+1,j − 2Ψi,j + Ψi−1,j

h2
= −h2

12
ψxxxx(xi, yj) + (6.41)

which demonstrates that the right-side of (6.40) is a second order approximation of ψxx, com-
patible with the order of approximation of ψx by the right-side of (6.36). Similarly, ψyy is
approximated as follows:

ψyy(xi, yj) ≈ Ψi,j+1 − 2Ψi,j + Ψi,j−1

k2
, (6.42)

with the truncation error

−k2

12
ψyyyy(xi, yj) + (6.43)

196CHAPTER 6. WIND-DRIVEN OCEAN CIRCULATION: THE STOMMEL AND MUNK MODELS

Returning now to the original PDE in (6.34), we evaluate this expression at (xi, yj) and replace
all derivatives by their finite difference approximation (6.36) – (6.42) to obtain the following finite
difference approximation of (6.34):

Ψi+1,j − 2Ψi,j + Ψi−1,j

h2
+

Ψi,j+1 − 2Ψi,j + Ψi,j−1

k2
+ α

(
Ψi+1,j −Ψi−1,j

2h

)
+

β

(
Ψi,j+1 −Ψi,j−1

2k

)
+ γΨi,j = Fi,j , i = 1, ..., n, and j = 1, ..., m, (6.44)

where
Fi,j = f(xi, yj). (6.45)

To simplify the notation we introduce

a = −2(
1
h2

+
1
k2
− γ

2
), b =

1
h2

+
α

2h
, c =

1
h2
− α

2h
, d =

1
k2

+
β

2k
, e =

1
k2
− β

2k
, (6.46)

in terms of which (6.44) becomes

aΨi,j + bΨi+1,j + c Ψi−1,j + d Ψi,j+1 + e Ψi,j−1 = Fi,j . (6.47)

Expression (6.47) is the fundamental relation that contains all of the information in the Stommel
model at each node (i, j). In the next section we construct a matrix representation of this relation
and prepare it for application of the various suites of tools in MATLAB. The approximate solution
Ψi,j that we obtain this way turns out to be quite comparable to the exact solution (6.33) we
obtained in the previous section.

6.7 Constructing the System AΨ = B

The equations (6.47) form a system of linear algebraic equations and can easily be converted to
the form

AΨ = B (6.48)

suitable for MATLAB, as we show next. The matrix A will be an mn by mn matrix of coefficients,
the vector Ψ will be an mn by 1 matrix of the unknowns

Ψ1,1, Ψ2,1,Ψ3,1, ..., Ψn,1, Ψ1,2,Ψ2,2, Ψ3,2, ..., Ψn,2, ..., ..., Ψ1,m,Ψ2,m, Ψ3,m, ..., Ψn,m, (6.49)

and B will be an mn by 1 matrix of the known quantities Fi,j as well as the boundary data gi,
i = 1 through 4.

To illustrate, let us begin with letting i = 1 and j = 1 in (6.47). We get

a Ψ1,1 + b Ψ2,1 + c Ψ0,1 + d Ψ1,2 + e Ψ1,0 = F1,1. (6.50)

Each term in (6.50) with a zero index is evaluated on the boundary of Ω and is therefore known
(see (6.35)). For example, Ψ1,0 = gS (x1) and Ψ0,1 = gW (y1). With this in mind, (6.50) reduces
to

aΨ1,1 + bΨ2,1 + dΨ1,2 = F1,1 − c g
W

(y1)− e g
S
(x1). (6.51)

6.7. CONSTRUCTING THE SYSTEM AΨ = B 197

The above expression defines the first row of A in (6.48) as

a, b, 0, 0, ..., 0, d, 0, 0, ..., 0, ..., ..., 0, 0, ..., 0. (6.52)

The first entry of B is
F1,1 − cgW (y1)− egS (x1). (6.53)

The second row of A, corresponding to i = 2 and j = 1, looks slightly different. For this choice
of (i, j) the expression (6.47) gives

aΨ2,1 + bΨ3,1 + c Ψ1,1 + dΨ2,2+ = F2,1 − e g
S
(x2). (6.54)

We can now construct the second row of A from (6.54):

c, a, b, 0, 0, ..., 0, d, 0, 0, ..., 0, ..., ..., 0, 0, ..., 0. (6.55)

The second entry B2 is
F2,1 − e g

S
(x2). (6.56)

The next n− 3 rows of A and B have a similar character: with 3 ≤ i ≤ n− 1 the i-th row of A
will have four nonzero entries

c, a, b, d, (6.57)

located at the (i, i−1), (i, i), (i, i+1), and the (i, i+n) positions, respectively. The correspoding
Bi values are

Fi,1 − e g
S
(xi). (6.58)

The n-th row of A, corresponding to the point (xn, y1), resembles the first row of A in that it will
contain only three nonzero entries located at (n, n − 1), (n, n) and (n, 2n). The corresponding
Bn is

Fn,1 − b g
E
(y1)− e g

S
(xn). (6.59)

So far we have demonstrated the first n rows of A and B. Following this line of reasoning the
reader can arrive at the complete description of the remaining (m− 1)n rows of A and B: Here
we write down their descriptions for m = 3 and n = 5:

A =




a b 0 0 0 d 0 0 0 0 0 0 0 0 0
c a b 0 0 0 d 0 0 0 0 0 0 0 0
0 c a b 0 0 0 d 0 0 0 0 0 0 0
0 0 c a b 0 0 0 d 0 0 0 0 0 0
0 0 0 c a 0 0 0 0 d 0 0 0 0 0
e 0 0 0 0 a b 0 0 0 d 0 0 0 0
0 e 0 0 0 c a b 0 0 0 d 0 0 0
0 0 e 0 0 0 c a b 0 0 0 d 0 0
0 0 0 e 0 0 0 c a b 0 0 0 d 0
0 0 0 0 e 0 0 0 c a 0 0 0 0 d
0 0 0 0 0 e 0 0 0 0 a b 0 0 0
0 0 0 0 0 0 e 0 0 0 c a b 0 0
0 0 0 0 0 0 0 e 0 0 0 c a b 0
0 0 0 0 0 0 0 0 e 0 0 0 c a b
0 0 0 0 0 0 0 0 0 e 0 0 0 c a




, (6.60)

198CHAPTER 6. WIND-DRIVEN OCEAN CIRCULATION: THE STOMMEL AND MUNK MODELS

where the nonzero entries are in boldface to emphasize their presence, and

B =




F1,1

F2,1

F3,1

F4,1

F5,1

F1,2

F2,2

F3,2

F4,2

F5,2

F1,3

F2,3

F3,3

F4,3

F5,3




− b




0
0
0
0

g
E
(y1)
0
0
0
0

g
E
(y1)
0
0
0
0

g
E
(y3)




− c




g
W

(y1)
0
0
0
0

g
W

(y2)
0
0
0
0

g
W

(y3)
0
0
0
0




− d




0
0
0
0
0
0
0
0
0
0

g
N

(x1)
g

N
(x2)

gN (x3)
gN (x4)
g

N
(x5)




− e




g
S
(x1)

gS (x2)
g

S
(x3)

g
S
(x4)

g
S
(x5)
0
0
0
0
0
0
0
0
0
0




(6.61)

There are several features in (6.60) and (6.61) are worth emphasizing. First notice that A is
banded and sparse – “banded” because nonzero entries appear on diagonals only, and “sparse”
because so many of A’s entries are zero. Both of these facts will play significant roles when we
solve AU = B in the MATLAB. Second note that A is not symmetric unless b = c and d = e, which
happens, as (6.46) shows, if and only if, α = β = 0.

An alternative way of viewing matrix A is to think of it as consisting of an m by m collection
of block matrices Aij

A =




A11 A12 A13 A1m

A21 A22 A23 A2m

...

...
Am1 Am2 Am3 Amm




(6.62)

where each Aij is an n by n matrix. In the above example, where m = 3 and n = 5, A takes the
form

A =




A5 dI5 Z5

eI5 A5 dI5

Z5 eI5 A5


 (6.63)

where I5 is the 5 by 5 identity matrix, Z5 is the 5 by 5 zero matrix, and A5 is

A5 =




a b 0 0 0
c a b 0 0
0 c a b 0
0 0 c a b
0 0 0 c a




. (6.64)

Problems

1. Verify the truncation error formulas in (6.37) and (6.39).

6.8. THE MATLAB PROGRAM 199

2. Verify the truncation error formulas in (6.41) and (6.43).

3. Write down the matrix A and B when a = 1, b = π
5 , α = 200, β = γ = 0, f(x, y) = τ sin 5y,

m = 4 and n = 4.

6.8 The MATLAB Program

The special features of the matrix A in (6.60) are also special features in MATLAB. The banded
and sparse structure of A is captured by the spdiags structure in MATLAB, which when combined
with the efficient solver embedded in the MATLAB command \, allows us to solve relatively large
size systems of linear algebraic AΨ = B. The follwoing program applies spdiag to find the now
familair boundary layer in the Stommel problem, with the same set of parameter values that led
to the excat solution displayed in Figure 6.1:

6.9 References

1. Stommel, H., “The Western Intensification of Wind-driven Ocean Currents”, Transactions
of the American Geophysical Union, 29, pp. 202– 206, 1948.

2. Munk, W., “On the Wind-Driven Ocean Circulation”, Journal of Meteorology, Vol 7, No.
2, pp. 79 – 03, 1950.

-

200CHAPTER 6. WIND-DRIVEN OCEAN CIRCULATION: THE STOMMEL AND MUNK MODELS

Chapter 7

Stommel and Munk Models

201

202 CHAPTER 7. STOMMEL AND MUNK MODELS

Chapter 8

The Lorenz Equations

8.1 Introduction

In [1] B. Saltzman studied the system of partial differential equations




∂

∂t
(∆ψ) + J(ψ, ∆ψ)− ν∆2ψ − gα

∂θ

∂x
= 0,

∂θ

∂t
+ J(ψ, θ)− δT

H
− κ∆θ = 0.

(8.1)

This system is a generalization of the quasigeostrophic equation (??) where the first equation
contains the effects of the viscous forces (the ∆ψ term) and the thermal effects (the terms −gα ∂θ

∂x
in the first equation in (8.1) and the entire second equation). The flow is assumed to be two-
dimensional and incompressible, where we let ψ represent the stream function of the flow. The
function θ denotes the temperature. The flow is respectively, of a two-dimensional incompressible
fluid flow in a rectangular region

D = {(x, z)| 0 ≤ x ≤ H

a
, 0 ≤ z ≤ H}.

The operator ∆ denotes the two-dimensional laplacian, ∂2

∂x2 + ∂2

∂z2 , while J(a, b) stands for the
jacobian of a and b, i.e., J(a, b) = axbz − azbx. The parameters ν and κ are the viscosity and
thermal diffusivity of the fluid. The parameter δT denotes the temperature difference between the
two boundaries z = 0 and z = H, which is assumed large enough to induce the Rayleigh-Bénard
instability in the flow and initiate convection in the region. Finally g stands for the acceleration
of gravity. System (1) is derived in a standard fashion from the Navier-Stokes equations using
the Boussinesq approximation.

System (1) is augmented by the boundary conditions

ψ(x, z, t) = 0, (x, z) ∈ ∂D, (8.2)

and
θ(x, 0, t) = θ(x,H, t) = 0, and

∂θ

∂x
(x, 0, t) =

∂θ

∂x
(x,H, t) = 0. (8.3)

203

204 CHAPTER 8. THE LORENZ EQUATIONS

The study in [1] involves deriving approximate solutions to (1)-(3) using Fourier modes in the
spatial domain and applying the method of line in time. Thus one begins by assuming that ψ
and θ satisfy series expansions of the form





ψ(x, z, t) =
∞∑

n=1

∞∑
m=1

amn(t) sin
nπax

H
sin

mπz

H
,

θ(x, z, t) =
∞∑

n=0

∞∑
m=1

bmn(t) cos
nπax

H
sin

mπz

H
.

(8.4)

The bulk of this study was dedicated to deriving the ordinary differential equation In this
section, we apply the Galerkin method to the partial differential equations used by B. Saltzman
(1962) to model thermal convection in a rectangular prism. This system is the same that E.
Lorenz (1963) used to produce the now famous ordinary differential equations with trajectories
that form the ”butterfly” attractor. Lorenz derived his ODEs from of Saltzman’s system, with
appropriate boundary conditions, and forced the two significant ratios contained in the model, the
Rayleigh number and the Prandtl number, beyond their critical values to ensure convection, and
received the butterfly behavior from the model’s output. Lorenz was forced, by the technology
available at the time, to use a simplified version of the overall model. We seek to produce the same
behavior by using the Galerkin method on the original system of PDEs, without simplification.

Saltzman’s (1962) system consists of two, coupled partial differential equations, to model
convective motion in the x-z plane. The two equations contain two functions, the stream function
ψ (x, z, t), and the temperature perturbation function θ (x, z, t), which are related according to
the following:

∂∇2ψ
∂t +

∂(ψ,∇2ψ)
∂(x,z) − υ∇4ψ − gα ∂θ

∂x = 0
∂θ
∂x + ∂(ψ,θ)

∂(x,z) − ∆T
H

∂ψ
∂x − κ∇2θ = 0

For an explanation of the exact physical significance of the function θ, we consult the deriva-
tion of this model, Saltzman’s (1962) work. In the above equations, α is the coefficient of volume
expansion, g is the gravitational acceleration constant, ν is kinematic viscosity, κ is thermal dif-
fusivity, H is the depth of the fluid in the vertical direction, and ∆T is the temperature difference
between the lower surface and upper surface. Additionally, ∇4 represents the biharmonic op-
erator, ∇2 represents the Laplacian operator, and the construction ∂(p,q)

∂(x,z) is used to denote the

Jacobian operator, such that ∂(p,q)
∂(x,z) = ∂p

∂z
∂q
∂x − ∂p

∂x
∂q
∂z .

In this system, we have a fluid between two surfaces, at z=0 and z=H, with the property
that the z=0 surface is ∆T degrees warmer than the z=H surface. To facilitate simplicity, we,
like Lorenz, introduce the scaling factor a, which we will use to write the horizontal width in
terms of the vertical depth, H. We impose zero boundary conditions at all surfaces for the stream
function, z = 0, z = H, and x = 0, x = H

a . For the temperature perturbation function θ, however,
we use an insulated boundary in the horizontal direction, and zero boundary conditions in the
vertical. In this manner, we maintain the vertical temperature difference, ∆T, as a constant.

As dictated by the Galerkin method, we seek solutions of the form

ψ (x, z, t) =
N∑
m

N∑
n

Am,n (t)φ1m,n (x, z)

θ (x, z, t) =
N∑
m

N∑
n

Bm,n (t)φ2m,n (x, z)

8.1. INTRODUCTION 205

where Am,n (t) and Bm,n (t) are the time dependent coefficients that will later become the
functions of our ordinary differential equations, and φ1m,n

(x, z) and φ2m,n
(x, z) are the basis

functions we use to represent the spatial dimensions. We choose a Fourier basis system, which,
to comply with our boundary conditions, becomes

φ1m,n (x, z) = sin
(

mπa
H x

)
sin

(
nπ
H z

)

φ2m,n (x, z) = cos
(

mπa
H x

)
sin

(
nπ
H z

)

and our solution functions can be written more precisely,

ψ (x, z, t) =
N∑

m=1

N∑
n=1

Am,n (t) sin(mπa
H x) sin(nπ

H z)

θ (x, z, t) =
N∑

m=0

N∑
n=1

Bm,n (t) cos(mπa
H x) sin(nπ

H z)

In order to proceed, we must assign a number of modes, N. Choosing N=2 will give us a
system of ten ordinary differential equations. We hypothesize that this will be sufficient, since
Lorenz limited his (1963) system to three ordinary differential equations. For the next step, we
use Mathematica to apply the differential operators of Saltzman’s model to the solution functions
from above, with our basis included. We accomplish this task with the op1 and op2 lines of our
Mathematica program.

We then multiply each term in the first PDE by φ1m,n (x, z) and each in the second by φ2m,n (x, z) .
To complete the inner product, we now integrate each term over the spatial boundaries, a process
that requires the use of Mathematica, or other such software, because of the many nonlinearities
in this model. Because of this definite integration, we are left with a series of constants in place
of our spatial dimensions, and have sucessfully reduced the original model to a system of ten
ordinary differential equations in terms of our original constants. Two example equations from
our system of ten are

aπ2

4 A′1,1 (t) = − νπ4

4aH2 A1,1 (t)− aνπ4

2H2 A1,1 (t)− a3νπ4

4H2 A1,1 (t)−
9π4

16H2 A1,2 (t)A2,1 (t) + 9a2π4

16H2 A1,2 (t) + αgHπB1,1 (t)− π2

4a A1,1 (t)
H2

4a B′
2,2 (t) = ∆Tπ

2 A2,2 (t)− π2

4 A2,1 (t)B0,1 (t)− κπ2

a B2,2 (t)
−aκπ2B2,2 (t)

We note that these ODEs are coupled and nonlinear, and that the original physical parameters
have remained. Lorenz was able to reduce the Saltzman model to ordinary differential equations,
but he limited his investigation to three specific modes, and was forced to interpret the physical
parameters in term of ratios rather than properties of a specific fluid, such as air or water. With
the Galerkin method, the original physical parameters are maintained throughout the process.

We can reproduce his exact system of three equations with our Galerkin program, if, instead
of choosing N=2, we integrate over the three specific modes that correspond to Lorenz’s famed
system. By explicity entering the three correct modes of m and n for the coefficients, A and B, the
Galerkin method outputs the same three ODEs that Lorenz first explored in 1963. Specifically,
instead of multiplying each term of the output from op1 and op2 by the ten separate basis
functions as outlined above, we multiply by A1,1 (t), B1,1 (t), and B0,2 (t) to begin the inner
product operation, we find the following system of ODEs

A′1,1 (t) = σ (B1,1 (t)−A1,1 (t))
B′

1,1 (t) = rA1,1 (t)−B1,1 (t)−A1,1 (t) B0,2 (t)

206 CHAPTER 8. THE LORENZ EQUATIONS

B′
0,2 (t) = A1,1 (t)B1,1 (t)− 4

1+a2 B0,2 (t)
which match the Lorenz (1963) system exactly. In the above equations, we have combined

the physical constants into the same ratios as Lorenz, for ease of comparison to his (1963) work.
σ = ν

κ and is the Prandtl number, r is the ratio of the Rayleigh number to its critical value.
Our main focus, however, is on the global system of ten equations. We are curious to see if

the famed butterfly behavior remains when a larger number of coefficients is used. Resuming our
analysis from the reduced system of ODEs, we must now assign values to each of the constants
in order to plot trajectories.

We can also go one step further, and actually solve this system of ODEs numerically, to plot
the particle paths of the fluid flow. Mathematica’s built in ODE solver, a utility called NDSolve,
can handle the Lorenz system, once correct constants and initial conditions are specified. We
can use these numerical interpolating functions to obtain the fluid flows by recalling that, with
the numerical definition of the function Am,n (t) , we ”know” all we need to about the stream

funciton, ψ (x, z, t) =
N∑

m=1

N∑
n=1

Am,n (t) sin(mπa
H x) sin(nπ

H z).

By replacing the symbolically defined Am,n (t) with the numerical interpolation from the
NDSolve output, we can find the fluid flows by solving the familiar differential relationship
between a stream function and its associated fluid flow,

∂x
∂t = −∂ψ

∂z
∂z
∂t = ∂ψ

∂x
Once we define the stream function ψ in terms of the interpolating functions, we can differ-

entiate it as we normally would, and we again use NDSolve to find the particle paths of the fluid
flow from the above relationship.

8.2 References

1. Saltzman, B., “Finite amplitude free convection as an initial value problem – I”, J. Atmos.
Sci., 19, pp. 329-341)

