
Second-Derivative Test for Functions of Two
Variables

1 Quadratic Approximation

Suppose we want to approximate the function f(x, y) to second order around
a point (x0, y0). That is, we want a polynomial approximation of the form

f(x, y) ≈ A + B(x− x0) + C(y − y0)+

D(x− x0)
2 + E(x− x0)(y − y0) + F (y − y0)

2 (1)

for constants A, B, C, D, E and F . For this to agree with our linear (tangent
plane) approximation

f(x, y) ≈ f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

we must have A = f(x0, y0), B = fx(x0, y0) and C = fy(x0, y0).
Now differentiate (1) with respect to x to get

fx(x, y) ≈ B + 2D(x− x0) + E(y − y0).

Since the linear approximation applied to fx is

fx(x, y) ≈ fx(x0, y0) + fxx(x0, y0)(x− x0) + fxy(x0, y0)(y − y0),

we must take D = 1
2
fxx(x0, y0) and E = fxy(x0, y0). Finally, by considering

the linear approximation to fy we get F = 1
2
fyy(x0, y0). Thus, the quadratic

approximation (1) is

f(x, y) ≈ f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)+

1

2
fxx(x0, y0)(x− x0)

2 + fxy(x0, y0)(x− x0)(y − y0) +
1

2
fyy(x0, y0)(y − y0)

2

1



2 Behavior of f at a Critical Point

Suppose now that (x0, y0) is a critical point of f , so that

fx(x0, y0) = fy(x0, y0) = 0.

Then our quadratic approximation becomes

f(x, y)− f(x0, y0) ≈
1

2
[fxx(x0, y0)(x− x0)

2 + 2fxy(x0, y0)(x− x0)(y − y0) + fyy(x0, y0)(y − y0)
2],

so we need to concentrate on the behavior of

fxx(x0, y0)(x− x0)
2 + 2fxy(x0, y0)(x− x0)(y − y0) + fyy(x0, y0)(y − y0)

2 =

(x− x0)
2

[
fxx(x0, y0) + 2fxy(x0, y0)

x− x0

y − y0

+ fyy(x0, y0)

(
x− x0

y − y0

)2
]

(2)

for (x, y) near (x0, y0). Think of the expression in braces in (2) as a quadratic
function of t = (x− x0)/(y − y0):

q(t) = fxx(x0, y0) + 2fxy(x0, y0)t + fyy(x0, y0)t
2.

Now q(t) will never change sign as t varies if the roots of q(t) = 0 are complex.
From the quadratic formula, this happens if

4fxy(x0, y0)
2 − 4fxx(x0, y0)fyy(x0, y0) < 0,

which is to say

fxx(x0, y0)fyy(x0, y0)− fxy(x0, y0)
2 > 0.

In this case, q(t) (and thus (2)) will be always positive if its constant term
fxx(x0, y0) > 0, and always negative if fxx(x0, y0) < 0. So we have the
conclusion:
If fxx(x0, y0)fyy(x0, y0)−fxy(x0, y0)

2 > 0, then f has a local minimum at
(x0, y0) if fxx(x0, y0) > 0, and a local maximum at (x0, y0) if fxx(p) < 0.

Now suppose

fxx(x0, y0)fyy(x0, y0)− fxy(x0, y0)
2 < 0.

Then the q(t) = 0 has two real roots, and so q(t) changes sign. Thus, the
expression (2) can be either positive or negative for (x, y) near (x0, y0), which
means (x0, y0) is a saddle point of f :
If fxx(x0, y0)fyy(x0, y0) − fxy(x0, y0)

2 < 0, then f has a saddle point at
p.
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