Labeled Posets, Iterated Integrals, and Nested Sums

Michael E. Hoffman

U. S. Naval Academy

AMS Eastern Section
Special Session on Iterated Integrals & Applications
Georgetown University, Washington DC
8 March 2015
Outline

1. Yamamoto’s formalism
2. An algebra of 2-labeled posets
3. Integer-labeled posets and nested sums
4. From iterated integrals to nested sums
5. Extension to \((r+1)\)-labeled posets
Recently S. Yamamoto developed an elegant way of representing iterated integrals by 2-labeled posets. The iterated integrals in question are all over some subset of $[0, 1]^n$, and involve only the two forms

$$\omega_0(t) = \frac{dt}{t}, \quad \omega_1(t) = \frac{dt}{1 - t}.$$

Let (X, δ) be a 2-labeled poset, i.e., a finite partially ordered set X with a function $\delta : X \to \{0, 1\}$. Call (X, δ) admissible if $\delta(x) = 1$ for all minimal $x \in X$ and $\delta(x) = 0$ for all maximal $x \in X$. For an admissible 2-labeled poset (X, δ), define the associated integral by

$$I(X) = \int_{\Delta(X)} \prod_{x \in X} \omega_{\delta(x)}(t_x), \quad (1)$$

where $\Delta(X) = \{(t_x)_{x \in X} \in [0, 1]^X \mid t_x < t_y \text{ if } x < y \text{ in } X\}$.

Outline

- Yamamoto’s formalism
- An algebra of 2-labeled posets
- Integer-labeled posets and nested sums
- From iterated integrals to nested sums
- Extension to $(r + 1)$-labeled posets
We can represent a 2-labeled poset \((X, \delta)\) graphically by its Hasse diagram, with an open dot \(\circ\) for those elements \(x \in X\) with \(\delta(x) = 0\), and a closed dot \(\bullet\) for those \(x \in X\) with \(\delta(x) = 1\). For example, the 2-labeled poset \(X = \{x_1, x_2, x_3, x_4\}\) with \(x_1 > x_2 > x_4, x_1 > x_3 > x_4, \delta(x_1) = \delta(x_2) = 0, \) and \(\delta(x_3) = \delta(x_4) = 1\) has graphical representation

and associated integral

\[
I(X) = \int_{t_1 > t_2 > t_4} \int_{t_1 > t_3 > t_4} \frac{dt_1}{t_1} \frac{dt_2}{t_2} \frac{dt_3}{1 - t_3} \frac{dt_4}{1 - t_4}.
\]
2-labeled Posets and MZVs

Admissibility of \((X, \delta)\) guarantees convergence of the integral \(I(X)\). If \(X\) is a chain, then \(I(X)\) is just the well-known iterated integral representation of a multiple zeta value (MZV). For example,

\[
I\left(\begin{array}{c}
\bullet \\
\bullet \\
\bullet
\end{array} \right) = \int_{t_1 > t_2 > t_3} \frac{dt_1}{t_1} \frac{dt_2}{1 - t_2} \frac{dt_3}{1 - t_3} =
\]

\[
\int_0^1 \frac{dt_1}{t_1} \int_0^{t_1} \frac{dt_2}{1 - t_2} \int_0^{t_2} \frac{dt_3}{1 - t_3} = \int_0^1 \frac{dt_1}{t_1} \int_0^{t_1} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \frac{t_2^{i+j-1}}{i} dt_2
\]

\[
= \int_0^1 \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \frac{t_1^{i+j-1}}{i(i+j)} dt_1 = \sum_{i,j \geq 1} \frac{1}{i(i+j)^2} = \zeta(2, 1).
\]
Our notation for MZVs is

\[\zeta(k_1, \ldots, k_r) = \sum_{n_1 > n_2 > \cdots > n_k \geq 1} \frac{1}{n_1^{k_1} \cdots n_r^{k_r}}, \]

with \(k_1, \ldots, k_r \) positive integers and \(k_1 > 1 \) required for convergence. The representation of MZVs by iterated integrals is also encoded by the polynomial algebra \(\mathbb{Q}\langle x, y \rangle \), where \(x \) and \(y \) are noncommuting variables encoding \(\frac{dt}{t} \) and \(\frac{dt}{1-t} \) respectively; convergent integrals correspond to monomials that start with \(x \) and end with \(y \). The MZV \(\zeta(k_1, \ldots, k_r) \) is represented by the monomial \(x^{k_1-1} y \cdots x^{k_r-1} y \). Shuffle product gives a commutative operation \(\boxplus \) on \(\mathcal{H} = \mathbb{Q}\langle x, y \rangle \), which corresponds to multiplication of the integrals; indeed we can think of \(\zeta \) as a homomorphism \((\mathcal{H}^0, \boxplus) \to \mathbb{R} \).
Yamamoto proved the following theorem, which follows easily from general properties of iterated integrals.

Theorem

Let X be an admissible 2-labeled poset.

1. If Y is another admissible 2-labeled poset, $I(X \uplus Y) = I(X)I(Y)$.

2. If $a, b \in X$ are incomparable, let $X_{a < b}$ be X with the additional relation $a < b$. Then $I(X) = I(X_{a < b}) + I(X_{b < a})$.

3. If X^\uparrow is X with reversed order and new labeling function $\delta^\uparrow(x) = 1 - \delta(x)$, then $I(X^\uparrow) = I(X)$.

Using the Properties

It is evident that combining two disjoint chains via Part 2 is equivalent to shuffle product in $\mathbb{Q}(x, y)$. For example,

$$I \left(\begin{array}{c} \bullet \\ \bullet \\ \end{array} \right) = I \left(\begin{array}{c} \bullet \\ \bullet \\ \end{array} \right) + 3I \left(\begin{array}{c} \bullet \\ \bullet \\ \end{array} \right) + 6I \left(\begin{array}{c} \bullet \\ \bullet \\ \end{array} \right)$$

is exactly parallel to

$$xy \sqcup x^2y = xyx^2y + 3x^2yxy + 6x^3y^2,$$

both showing that

$$\zeta(2)\zeta(3) = \zeta(2, 3) + \zeta(3, 2) + \zeta(4, 1).$$
Using the Properties cont’d

In fact, use of Part 2 allows us to write $I(X)$ as a sum of multiple zeta values for any admissible 2-labeled poset X. For example,

$$I\left(\begin{array}{c}
\bullet \\
\bullet
\end{array}\right) = I\left(\begin{array}{c}
\bullet
\end{array}\right) + I\left(\begin{array}{c}
\bullet
\end{array}\right) = \zeta(3, 1) + \zeta(2, 2).$$

By the way, the “sum theorem” for MZVs implies that the latter sum is $\zeta(4)$, and more generally that

$$I\left(\begin{array}{c}
\bullet \\
\bullet
\end{array}\right) = \zeta(n),$$

where the diagram has $n - k$ open dots and k closed ones, for $2 \leq k \leq n - 2$.
An advantage of Yamamoto’s formalism is that it makes it easy to see how various zeta functions can be written in terms of MZVs. For example, the Mordell-Tornheim sums

\[T(n_1, n_2, \ldots, n_k; p) = \sum_{m_1, \ldots, m_k \geq 1} \frac{1}{m_1^{n_1} \cdots m_k^{n_k} (m_1 + \cdots + m_k)^p} \]

can be expressed as integrals associated with 2-labeled posets, as shown by the example

\[I = \int_0^1 \frac{dt_4}{t_4} \int_0^{t_4} \frac{dt_3}{t_3} \int_0^{t_3} \frac{dt_2}{1-t_2} \int_0^{t_4} \frac{dt_1}{1-t_1} = \]

\[\int_0^1 \frac{dt_4}{t_4} \sum_{i,j \geq 1} \frac{t_4^{i+j}}{i^2 j} = \sum_{i,j \geq 1} \frac{1}{i^2 j(i+j)} = T(2, 1; 1). \]
If we compare the shuffle product with the poset representing Mordell-Tornheim sums, it is easy to see that

\[T(n_1, n_2, \ldots, n_k; p) = \zeta(x^p(x^{n_1-1}y \sqcup x^{n_2-1}y \sqcup \cdots \sqcup x^{n_k-1}y)), \quad (2) \]

which gives a succinct statement of how Mordell-Tornheim sums can be expanded into MZVs. For example,

\[
T(2, 1; 3) = \zeta(x^3(xy \sqcup y)) = \zeta(x^3(yxy + 2xy^2)) = \zeta(x^3yxy + 2x^4y^2) = \zeta(4, 2) + 2\zeta(5, 1).
\]

Before seeing Yamamoto’s idea, I’d been expanding Mordell-Tornheim sums into MZVs for years without recognizing equation (2).
Multiple Zeta-Star Values

The multiple zeta-star values

$$\zeta^*(k_1, \ldots, k_r) = \sum_{n_1 \geq n_2 \geq \cdots \geq n_k \geq 1} \frac{1}{n_1^{k_1} \cdots n_r^{k_r}},$$

can also be represented by integrals associated with 2-labeled posets, as in the example

$$I\left(\begin{array}{cc}
\circ & \\
\bullet & \\
\end{array}\right) = \int_0^1 \frac{dt_4}{t_4} \int_0^{t_4} \frac{dt_3}{1 - t_3} \int_0^{t_3} \frac{dt_2}{t_2} \int_0^{t_2} \frac{dt_1}{1 - t_1} =$$

$$\int_0^1 \frac{dt_4}{t_4} \int_0^{t_4} \frac{dt_3}{1 - t_3} \sum_{i \geq 1} \frac{1 - t_3^i}{i^2} = \int_0^1 \sum_{i, j \geq 1} \left[\frac{t_4^{i-1}}{i^2 j} - \frac{t_4^{i+j-1}}{i^2(i + j)} \right] \frac{dt_4}{t_4}$$

$$= \sum_{i=1}^{\infty} \frac{1}{i^2} \sum_{j=1}^{\infty} \left[\frac{1}{j^2} - \frac{1}{(i + j)^2} \right] = \sum_{i=1}^{\infty} \frac{1}{i^2} \sum_{j=1}^{i} \frac{1}{j^2} = \zeta^*(2, 2).$$
Using the Properties

Applying Part 2 of Yamamoto’s theorem to the representation of $T(2, 1; 1)$ gives

$$I\left(\begin{array}{c}
\bullet \\
\bullet
\end{array}\right) = I\left(\begin{array}{c}
\bullet \\

\end{array}\right) + 2I\left(\begin{array}{c}
\bullet \\
\bullet
\end{array}\right),$$

which just recovers the identity $T(2, 1; 1) = \zeta(2, 2) + 2\zeta(3, 1)$ well-known from partial fractions. But applying it to the representation of $\zeta^*(2, 2)$ gives

$$I\left(\begin{array}{c}
\bullet \\
\bullet \\
\bullet
\end{array}\right) = I\left(\begin{array}{c}
\bullet \\
\bullet
\end{array}\right) + 4I\left(\begin{array}{c}
\bullet \\
\bullet
\end{array}\right),$$

implying $\zeta^*(2, 2) = \zeta(2, 2) + 4\zeta(3, 1)$; comparing with the more familiar $\zeta^*(2, 2) = \zeta(2, 2) + \zeta(4)$ gives $\zeta(3, 1) = \frac{1}{4}\zeta(4)$.
An Algebra of 2-labeled Posets

We define a graded \mathbb{Q}-algebra \mathcal{A} as follows. For each 2-labeled poset X, \mathcal{A} has a generator $[X]$ in degree $\text{card } X$. We agree that $[X] = [Y]$ if X and Y are isomorphic as 2-labeled posets, and define the product by $[X][Y] = [X \pitchfork Y]$. If $\mathcal{A}^0 \subset \mathcal{A}$ is the subalgebra generated by admissible 2-labeled posets, then Yamamoto’s theorem implies that $I : \mathcal{A}^0 \to \mathbb{R}$ is a homomorphism.

Call a 2-labeled poset X lower admissible if $\delta(x) = 1$ for every minimal element of X. Then the subspace \mathcal{A}^1 of \mathcal{A} generated by lower admissible 2-labeled posets is a subalgebra, and in fact $\mathcal{A}^0 \subset \mathcal{A}^1 \subset \mathcal{A}$.
A Homomorphism From \mathcal{A} to \mathcal{H}

Now define a \mathbb{Q}-linear map $J : \mathcal{A} \rightarrow \mathcal{H}$ by sending any chain \(\{x_1 > x_2 > \cdots > x_n\} \) to the monomial $a(x_1)a(x_2) \cdots a(x_n)$, where $a(x_i) = x$ if $\delta(x_i) = 0$ and $a(x_i) = y$ if $\delta(x_i) = 1$. In general define $J(P)$ as $\sum_i J(c_i)$, where $\sum_i c_i$ is the formal sum of all chains obtained by adding more relations to P.

Let \mathcal{H}^1 be the subspace of \mathcal{H} generated by 1 and monomials ending in y. Note that (\mathcal{H}^1, \sqcup) is a commutative algebra. Then J restricted to \mathcal{A}^1 is a homomorphism $J : \mathcal{A}^1 \rightarrow \mathcal{H}^1$. Similarly, if \mathcal{H}^0 is the subspace of \mathcal{H}^1 generated by 1 and all monomials that start in x and end in y, then (\mathcal{H}^0, \sqcup) is an algebra and $J : \mathcal{A}^0 \rightarrow \mathcal{H}^0$ is a homomorphism such that $I(X) = \zeta(J(X))$.
An advantage of expanding the domain of J to A^1 is that we now have interesting combinatorial examples, e.g.,

\[
J(\bullet) = y, \quad J(\bullet) = y^2, \quad J(\bullet\bullet) = 2y^3,
\]

\[
J(\bullet\bullet) = 5y^4, \quad J(\bullet\bullet\bullet) = 16y^5,
\]

\[
J(\bullet\bullet\bullet) = 61y^6,
\]

where the series $1, 1, 2, 5, 16, 61, \ldots$ is that of Euler or up/down numbers.
Integer-labeled Posets and Nested Sums

We can encode nested sums with a formalism quite similar to Yamamoto’s. Let P be a finite poset with a labeling function $\delta : P \to \mathbb{Z}^+$. Call P admissible if $\delta(x) > 1$ for every maximal element of P. For admissible P, let $SOP(P)$ be the set of strictly order-preserving functions $\sigma : P \to \mathbb{Z}^+$, and define the sum $S(P)$ by

$$S(P) = \sum_{\sigma \in SOP(P)} \prod_{x \in P} \frac{1}{\sigma(x)\delta(x)}.$$

If P is an admissible integer-labeled poset that is a chain, then $S(P)$ is a multiple zeta value; in fact

$$S(\{x_1 > x_2 > \cdots > x_n\}) = \zeta(\delta(x_1), \delta(x_2), \ldots, \delta(x_n)).$$
Properties of Nested Sums

We have the following counterpart of Yamamoto’s theorem for nested sums.

Theorem

Let P be an admissible integer-labeled poset.

1. If Q is another admissible integer-labeled poset, then
 \[S(P \amalg Q) = S(P)S(Q) \]

2. If $a, b \in P$ are incomparable, let $P_{a < b}$ be P with the additional relation $a < b$, and let $P_{a = b}$ be P with a and b merged into a new element having label $\delta(a) + \delta(b)$. Then
 \[S(P) = S(P_{a < b}) + S(P_{b < a}) + S(P_{a = b}). \]
An Algebra of Integer-labeled Posets

Now define a graded \(\mathbb{Q}\)-algebra \(\mathcal{B}\) as follows. For each integer-labeled poset \(X\), \(\mathcal{B}\) has a generator \([X]\); we assign it degree \(\sum_{x \in X} \delta(x)\). We agree that \([X] = [Y]\) if \(X\) and \(Y\) are isomorphic as integer-labeled posets, and define the product by \([X][Y] = [X \sqcup Y]\). If \(\mathcal{B}^0 \subset \mathcal{B}\) is the subalgebra generated by admissible integer-labeled posets, then the preceding theorem implies that \(S : \mathcal{B}^0 \rightarrow \mathbb{R}\) is a homomorphism.
A Homomorphism From \mathcal{B} to \mathcal{H}^1

Now define a \mathbb{Q}-linear map $K : \mathcal{B} \to \mathcal{H}^1$ by sending any chain $\{x_1 > x_2 > \cdots > x_n\}$ to the monomial $x^{\delta(x_1)-1}y \cdots x^{\delta(x_n)-1}y$.

In general define $K(P)$ as $\sum_i K(c_i)$, where $\sum_i c_i$ is the formal sum of all chains obtained by adding more relations to P.

Evidently $K(\mathcal{B}^0) \subset \mathcal{H}^0$, where as above \mathcal{H}^0 is the subspace of \mathcal{H}^1 generated by 1 and all monomials of the form xwy.

To make $K : \mathcal{B} \to \mathcal{H}^1$ a homomorphism, we must give \mathcal{H}^1 the “quasi-shuffle” product $*$ defined recursively as follows:

$$w * 1 = 1 * w = w$$

for all monomials w, and

$$(x^{p-1}yu)(x^{q-1}v) = x^{p-1}y(u * x^{q-1}yv) + x^{q-1}y(x^{p-1}yu * v) + x^{p+q-1}y(u * v)$$

for all monomials u, v. Then $S(w) = \zeta(K(w))$ for $w \in \mathcal{H}^0$.

Mapping 2-labeled Posets to Integer-labeled Posets

If we introduce an equivalence relation \(\approx \) on elements of \(\mathcal{A} \) by declaring \([X] \approx [X_{a<b}] + [X_{b<a}]\) for \(a, b \in X \) incomparable, then \(\mathcal{A}^1/\approx \) is isomorphic to \((\mathcal{H}^1, \sqcup) \). Similarly, if we define \(\sim \) on \(\mathcal{B} \) by \([P] \sim [P_{a<b}] + [P_{b<a}] + [P_{a=b}]\) for \(a, b \in P \) incomparable, then \(\mathcal{B}/\sim \) is isomorphic to \((\mathcal{H}^1, \ast) \). If we send the chain in \([X] \in \mathcal{A}^1/\approx \) corresponding to \(x_1^{i_1-1}y \cdots x_k^{i_k-1}y \) to the chain \([Y] = \{y_1 > \cdots > y_k\}\) in \(\mathcal{B}/\sim \) with \(\delta(y_j) = i_j \), then \(I([X]) = S([Y]) \), provided \([X] \in \mathcal{A}^0\), since both sides are equal to \(\zeta(i_1, \ldots, i_k) \). That is, the identity function from \((\mathcal{H}^0, \sqcup) \) to \((\mathcal{H}^0, \ast) \) is certainly not a homomorphism, but \(\zeta(u \sqcup v) = \zeta(u) \zeta(v) = \zeta(u \ast v) \).
Now it is well-known that the homomorphisms
\(\zeta : (\mathfrak{H}^0, \sqcup) \to \mathbb{R} \) and \(\zeta : (\mathfrak{H}^0, \ast) \to \mathbb{R} \) can be extended to homomorphisms \(\zeta^{\sqcup} : (\mathfrak{H}^1, \sqcup) \to \mathbb{R}[T] \) and \(\zeta^{\ast} : (\mathfrak{H}^1, \ast) \to \mathbb{R}[T] \) by introducing an indeterminate \(T \) to represent \(\zeta(y) \). The superscripts are necessary because these extensions clearly do not agree: since \(y \sqcup y = 2y^2 \) while \(y \ast y = 2y^2 + xy \), we have \(\zeta^{\sqcup}(y^2) = \frac{1}{2} T^2 \) but \(\zeta^{\ast}(y^2) = \frac{1}{2} T^2 - \frac{1}{2} \zeta(2) \). But it is natural to ask if the identity function on \(\mathfrak{H}^0 \) can be extended to a linear function \(\mu : \mathfrak{H}^1 \to \mathfrak{H}^1 \) such that \(\zeta^{\sqcup}(u) = \zeta^{\ast}(\mu(u)) \) for \(u \in \mathfrak{H}^1 \). It appears so: and in fact, it appears \(\mu \) can be defined recursively on the filtration

\[
\mathfrak{H}^0 \subset \mathfrak{H}^0 + y\mathfrak{H}^0 \subset \mathfrak{H}^0 + y\mathfrak{H}^0 + y^2\mathfrak{H}^0 \subset \cdots \subset \mathfrak{H}^1
\]

by \(\mu(y \sqcup u) = y \ast \mu(u) \).
We note that Yamamoto’s formalism can be extended to iterated integrals of the forms

\[\omega_\alpha(t) = \frac{dt}{\alpha^{-1} - 1} = \frac{\alpha dt}{1 - \alpha t}, \]

where \(\alpha \) is an \(r \)th root of unity. Here one must replace 2-labeled posets by \((r + 1)\)-labeled posets, where the labels come from the set \(\{0, 1, \epsilon, \ldots, \epsilon^{r-1}\} \), where \(\epsilon \) is a primitive \(r \)th root of unity. An \((r + 1)\)-labeled poset is admissible if minimal elements of \(X \) don’t have label 0 and maximal elements of \(X \) don’t have label 1. Then equation (1) carries over to this case, and one has Yamamoto’s theorem (except that one must drop the part about generalized duality).
Nested Sums for rth Roots of Unity

The generalization of MZVs that appears in this case are multiple polylogarithms evaluated at roots of unity: if we define

$$\text{Li}_{i_1,\ldots,i_k}(z_1,\ldots,z_k) = \sum_{n_1 > \cdots > n_k \geq 1} \frac{z_1^{n_1} \cdots z_k^{n_k}}{n_1^{i_1} \cdots n_k^{i_k}},$$

then $I(X)$ corresponding to the chain whose δ’s are given by the string

$$(\omega_0)^{i_1-1}\omega_{\alpha_1} \cdots (\omega_0)^{i_k-1}\omega_{\alpha_k},$$

for $\alpha_1,\ldots,\alpha_k \in \{1, \epsilon, \epsilon^2, \ldots, \epsilon^{r-1}\}$ with $\alpha_1 \neq 1$ has value

$$\text{Li}_{i_1,\ldots,i_k}(\alpha_1, \frac{\alpha_2}{\alpha_1}, \ldots, \frac{\alpha_k}{\alpha_{k-1}}).$$
The Case $r = 2$

The case $r = 1$ is just that treated above. The case $r = 2$ applies to alternating MZVs like

$$\zeta(\bar{2}, 1, \bar{3}) = \sum_{l > m > n \geq 1} \frac{(-1)^{l+n}}{l^2 mn^3}$$

and gives nice “diagrammatic” evaluations of them. Shuffle-product formulas for generalized Mordell-Tornheim sums of this type, e.g.,

$$\sum_{n,m \geq 1} \frac{(-1)^n}{n^2 m(n + m)^2},$$

(similar to equation (2) above) are easily obtained.