REFERENCES ON MULTIPLE ZETA VALUES AND EULER SUMS
REFERENCES ON MULTIPLE ZETA VALUES AND EULER SUMS
Compiled by Michael Hoffman
The list is in (approximate) chronological order within each category.
While the categorization of some works is a bit arbitrary, I have
generally tried to place each one in the most inclusive category that
seemed appropriate.
This list is revised regularly. Report errors and omissions to
meh@usna.edu.
Author index
A. DOUBLE HARMONIC SERIES
- P. H. Fuss (ed.), Correspondance
Mathématique et Physique de quelques célèbres
Géomètres (Tome 1), St. Petersburg, 1843.
- L. Euler, `Meditationes circa singulare serierum
genus,' Novi Comm. Acad. Sci. Petropol. 20 (1775), 140-186.
Reprinted in Opera Omnia, ser. I, vol. 15, B. G. Teubner, Berlin,
1927, pp. 217-267.
- N. Nielsen, Die Gammafunktion, Chelsea,
New York, 1965.
Reprint of Handbuch der Theorie der Gammafunktion (1906) and
Theorie der Integrallogarithmus und verwandter Transzendenten (1906).
- F. V. Atkinson, `The mean value of the Riemann
zeta function,' Acta Math. 81 (1949), 353-376.
- L. Tornheim, `Harmonic double series,' Amer. J. Math.
72 (1950), 303-314.
- G. T. Williams, `A new method of evaluating
ζ(2n),' Amer. Math. Monthly 60 (1953), 19-25.
- P. F. Jordan, `Infinite sums of psi functions,'
Bull. Amer. Math. Soc. 79 (1973), 681-683.
- T. M. Apostol and T. H. Vu, `Dirichlet series
related to the Riemann zeta function,' J. Number Theory 19 (1982),
85-102.
- M. V. Subbarao and R. Sitaramachandrarao,
`On some infinite series of L. J. Mordell and their analogues',
Pacific J. Math. 119 (1985), 245-255.
- R. E. Crandall and J. P. Buhler, `On the evaluation
of Euler sums,'
Experiment. Math. 3 (1994), 275-285.
- D. Borwein and J. M. Borwein, `On an intriguing
integral and some series related to ζ(4),'
Proc. Amer. Math. Soc. 123 (1995), 1191-1198.
- L-C. Shen, `Remarks on some integrals and
series involving the Stirling numbers and ζ(n)',
Trans. Amer. Math. Soc. 347 (1995), 1391-1399.
- J. G. Huard, K. S. Williams, and N-Y. Zhang,
`On Tornheim's double series,' Acta Arithmetica 75 (1996), 105-117.
- M-A. Coppo, `Sur les sommes d'Euler divergentes,'
Expositiones Mathematicae 18 (2000), 297-308.
- Wenchang Chu, `Symmetric functions and the Riemann
zeta series,' Indian J. Pure Appl. Math. 31 (2000), 1677-1689.
- A. Basu and T. M. Apostol, `A new method of
investigating Euler sums,' Ramanujan J. 4 (2000), 397-419.
- K. N. Boyadzhiev, `Evaluation of Euler-Zagier sums,'
Internat. J. Math. Math. Sci. 27 (2001), 407-412.
- K. N. Boyadzhiev, `Consecutive evaluation of Euler
sums,'
Internat. J. Math. Math. Sci. 29 (2002), 555-561.
- H. Tsumura, `On some combinatorial relations for
Tornheim's double series,' Acta Arithmetica 105 (2002), 239-252.
- T. M. Rassias and H. M. Srivastava, `Some classes
of infinite series associated with the Riemann zeta and polygamma functions
and generalized harmonic numbers,' Appl. Math. and Comp. 131 (2002),
593-605.
- M. W. Coffey, `On some log-cosine integrals related
to ζ(3), ζ(4), and ζ(6),' J. Comp. Appl. Math. 153
(2003), 205-215.
- H. Tsumura, `On alternating analogues of Tornheim's
double series,'
Proc. Amer. Math. Soc. 131 (2003), 3633-3641.
- H. Tsumura, `Evaluation formulas for Tornheim's
type of alternating double series,'
Math. Comp. 73 (2004), 251-258.
- M. Jung, Y. J. Cho and J. Choi, `Euler sums
evaluatable from integrals,' Commun. Korean Math. Soc. 19 (2004),
545-555.
- H. Tsumura, `On evaluation formulas for double
L-values,' Bull. Austral. Math. Soc. 70 (2004), 213-221.
- D. Terhune, `Evaluation of double L-values,'
J. Number Theory 105 (2004), 275-301.
- R. Masri, `The Herglotz-Zagier function, double
zeta values, and values of L-series,' J. Number Theory 106
(2004), 219-237.
- K. Matsumoto, `Functional equations for double
zeta-functions,' Math. Proc. Camb. Phil. Soc. 136 (2004), 1-7.
- M. W. Coffey, `On one-dimensional digamma
and polygamma series related to the evaluation of Feynman diagrams,'
J. Comp. Appl. Math. 183 (2005), 84-100.
- D. M. Bradley, `A q-analog of Euler's
decomposition formula for the double zeta function,'
Internat. J. Math. Math. Sci. 2005 (2005), 3453-3458.
- H. Tsumura, `Certain functional relations for
the double harmonic series related to the double Euler numbers,'
J. Aust. Math. Soc. 79 (2005), 319-333.
- O. Espinosa and V. H. Moll, `The evaluation of
Tornheim double sums, Part I,' J. Number Theory 116 (2006), 200-229;
preprint CA/0505647.
- K-W. Chen and M. Eie, `Explicit evaluations of
extended Euler sums,' J. Number Theory 117 (2006), 31-52.
- D. Terhune, `Evaluations of a class of double
L-values,'
Proc. Amer. Math. Soc. 134 (2006), 1881-1889.
- H. Tsumura, `On some functional relations between
Mordell-Tornheim double L-functions and Dirichlet L-functions,'
J. Number Theory 120 (2006), 161-178.
- H. Gangl, M. Kaneko, D. Zagier, `Double zeta values
and modular forms,' in Automorphic Forms and Zeta Functions,
S. Böcherer et. al. (eds.), World Scientific, Singapore,
2006, pp. 71-106;
preprint MPIM2005-96.
- T. Nakamura, `A functional relation for the
Tornheim zeta function,' Acta Arithmetica 125 (2006), 257-263.
- I. Kiuchi and Y. Tanigawa, `Bounds for double
zeta-functions,' Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 5 (2006),
445-464.
- H. Tsumura, `On certain polylogarithmic double
series,' Arch. Math. (Basel) 88 (2007), 42-51
- H. Tsumura, `On functional relations between
the Mordell-Tornheim double zeta functions and the Riemann zeta function,'
Math. Proc. Camb. Phil. Soc. 142 (2007), 395-405.
- J. M. Borwein, `Hilbert's inequality and Witten's
zeta-function,' Amer. Math. Monthly 115 (2008), 125-137.
- M. W. Coffey, `On a three-dimensional symmetric
Ising tetrahedron and contributions to the theory of the dilogarithm and
Clausen functions,'
J. Math. Phys. 49 (2008), art. 043510 (32 pp).
- X. Zhou, T. Cai, and D. M. Bradley, `Signed
q-analogs of Tornheim's double series,'
Proc. Amer. Math. Soc. 136 (2008), 2689-2698.
- M. Kuba, `On evaluations of infinite double sums
and Tornheim's double series,'
Sém. Lothar. Combin. 58 (2008), art. B58d (13 pp).
- J. M. Borwein, I. J. Zucker, and J. Boersma,
`The evaluation of character Euler double sums,' Ramanujan J. 15
(2008), 377-405.
- A. Basu, `A new method in the study of Euler sums,'
Ramanujan J. 16 (2008), 7-24.
- Y. Komori,`An integral representation
of the Mordell-Tornheim double zeta function and its values at non-positive
integers,' Ramanujan J. 17 (2008), 163-183.
- K. N. Boyadzhiev, H. Gopalkrishna Gadiyar,
and R. Padma, `The values of an Euler sum at the negative integers and a
relation to a certain convolution of Bernoulli numbers,'
Bull. Korean Math. Soc. 45 (2008), 277-283.
- K. Matsumoto and H. Tsumura, `Functional relations
among certain double polylogarithms and their character analogues,'
Šialiai Math. Semin. 3(11) (2008), 189-205.
- T. Nakamura, `Double Lerch series and their functional
relations,' Aequationes Math. 75 (2008), 251-259.
- H. Tsumura, `On alternating analogues of Tornheim's
double series II', Ramanujan J. 18 (2009), 81-90.
- T. Nakamura, `Restricted and weighted sum formulas
for double zeta values of even weight,'
Šialiai Math. Semin. 4(12) (2009), 151-155.
- M. Eie and W-C. Liaw, `Double Euler sums on
Hurwitz zeta functions,' Rocky Mountain J. Math. 39 (2009), 1869-1883.
- K. N. Boyadzhiev, H. Gopalkrishna Gadiyar, and
R. Padma, `Alternating Euler sums at the negative integers,'
Hardy-Ramanujan J. 32 (2009), 24-37;
preprint 0811.4437[NT].
- J. Furuya and Y. Tanigawa, `Analytic properties
of Dirichlet series obtained from the error term in the Dirichlet divisor
problem,'
Pacific J. Math. 245 (2010), 239-254.
- O. Espinosa and V. H. Moll, `The evaluation of
Tornheim double sums, Part II,' Ramanujan J. 22 (2010), 55-99;
preprint 0811.0557[NT].
- J. Zhao, `A note on colored Tornheim's double series,'
Integers 10
(2010), #A59, 879-882.
- I. Kiuchi, Y. Tanigawa, and W. Zhai, `Analytic
properties of double zeta-functions,' Indag. Math. 21 (2011),
16-29.
- A. Basu, `On the evaluation of Tornheim sums
and allied double sums,' Ramanujan J. 26 (2011), 193-207.
- T. Okamoto, `Some relations among
Apostol-Vu double zeta functions for coordinatewise limits at non-positive
integers,' Tokyo J. Math. 34 (2011), 353-366.
- Y. Komori, K. Matsumoto, and H. Tsumura,
`Functional equations for double L-functions at values at
non-positive integers, Internat. J. Number Theory 7 (2011),
1441-1461.
- T. Nakamura and K. Tasaka, `Remarks on double
zeta values of level 2,' J. Number Theory 133 (2013), 48-54.
- T. Machide, `Generators for vector spaces
consisting of double zeta values with even weight,' J. Number Theory
133 (2013), 2240-2246;
preprint 0802.1565[NT].
- T. Machide, `Some restricted sum formulas for
double zeta values,' Proc. Japan Acad. Ser. A 89 (2013), 51-54;
preprint 1210.7997[NT].
- D. M. Bradley, `A signed analog of Euler's
reduction formula for the double zeta function,'
preprint 0707.4486[CA].
- Z-h. Li,`On functional relations for the
alternating analogues of Tornheim's double zeta function,'
preprint 1011.2897[NT].
- T. Nakamura, `Simple proof of the functional
equation for the Lerch type Tornheim zeta function,'
preprint 1012.1144[NT].
- P. Cartier, `On the double zeta values,'
IHES Preprint M-11-21.
- S. Baumard and L. Schneps, `Period polynomial
relation between double zeta values,'
preprint 1109.3786[NT].
- M. Kaneko and K. Tasaka, `Double zeta values,
double Eisenstein series, and modular forms of level 2,'
preprint 1112.5697[NT].
- K. Matsumoto and H. Tsumura, `Mean value theorems
for double zeta-functions I,'
preprint 1203.2242[NT].
- K. Onodera, `A functional relation for Tornheim's
double zeta functions,'
preprint 1211.1480[NT].
- G. Bastien, `Elementary methods for evaluating
Jordan's sums and analogous Euler's type sums and for setting a sigma
sum theorem,'
preprint 1301.7662[NT].
- S. Ikeda, K. Matsuoka, and Y. Nagata,
`On certain mean values of the double zeta-function,'
preprint 1303.6505[NT].
B. TRIPLE HARMONIC SERIES
- R. Sitaramachandrarao and M. V. Subbarao,
`Transformation formulae for multiple series,'
Pacific J. Math. 113 (1984), 471-479.
- C. Markett, `Triple sums and the Riemann zeta
function,' J. Number Theory 48 (1994), 113-132.
- J. M. Borwein and R. Girgensohn, `Evaluation of
triple Euler sums,' with appendix `Euler sums in quantum field theory'
by D. J. Broadhurst,
Electronic J. Combinatorics 3 (1996), R23 (27 pp).
- M. E. Hoffman and C. Moen, `Sums of triple harmonic
series,' J. Number Theory 60 (1996), 329-331.
- A. Panholzer and H. Prodinger, `Computer-free
evaluation of an infinite double sum via Euler sums,'
Sém. Lothar. Combin. 55 (2005), art. B55a (3 pp).
- K. Matsumoto, T. Nakamura, and H. Tsumura,
`Functional relations and special values of Mordell-Tornheim triple zeta
and L-functions,'
Proc. Amer. Math. Soc. 136 (2008), 2135-2145.
- K. Matsumoto, T. Nakamura, H. Ochiai, and
H. Tsumura, `On value-relations, functional relations and singularities
of Mordell-Tornheim and related triple zeta-functions,' Acta Arithmetica
132 (2008), 99-125.
- Y. L. Ong, M. Eie, and W-C. Liaw, `Explicit evaluation
of triple Euler sums,' Int. J. Number Theory 4 (2008), 437-451.
- I. Kiuchi and Y. Tanigawa, `Bounds for triple zeta
functions,' Indag. Math. (N. S.) 19 (2008), 97-114.
- T. Machide, `Extended double shuffle relations
and the generating functions of triple zeta values of any fixed weight,'
preprint 1204.4085[NT].
C. MULTIPLE HARMONIC SERIES/MULTIPLE ZETA VALUES
- M. E. Hoffman, `Multiple harmonic series,'
Pacific J. Math. 152 (1992), 275-290.
- D. Zagier, `Values of zeta functions and their
applications,' in
First European Congress of Mathematics (Paris, 1992), Vol. II,
A. Joseph et. al. (eds.), Birkhäuser, Basel, 1994, pp. 497-512.
- T. Q. T. Le and J. Murakami, `Kontsevich's
integral for the Homfly
polynomial and relations between values of the multiple zeta functions,'
Topology Appl. 62 (1995), 193-206.
- T. Q. T. Le and J. Murakami, `Kontsevich's integral
for the Kauffman polynomial,' Nagoya Math. J. 142 (1996), 39-65.
- A. Granville, `A decomposition of Riemann's
zeta-function,' in Analytic Number Theory, Y. Motohashi (ed.),
London Mathematical Society Lecture Note Series 247,
Cambridge University Press, 1997, pp. 95-101.
- D. J. Broadhurst and D. Kreimer, `Association
of multiple zeta values
with positive knots via Feynman diagrams up to 9 loops,' Physics Lett. B
393 (1997), 403-412.
- M. E. Hoffman, `The algebra of multiple harmonic
series,' J. Algebra 194 (1997), 477-495.
- R. E. Crandall, `Fast evaluation of multiple zeta
sums,'
Math. Comp. 67 (1998), 1163-1172.
- J. M. Borwein, D. M. Bradley, D. J. Broadhurst,
and P. Lisoněk, `Combinatorial aspects of multiple zeta values,'
Electronic J. Combinatorics 5 (1998), R38 (12 pp).
- Hoang Ngoc Minh, M. Petitot, and J. Van Der Hoven,
`Computation of the monodromy of generalized polylogarithms,'
Proceedings of the 1998 International Symposium on Symbolic and Algebraic
Computation (Rostock), ACM, New York, 1998, pp. 276-283.
- Y. Ohno, `A generalization of the duality and sum
formulas on the multiple zeta values,' J. Number Theory 74 (1999),
39-43.
- T. Arakawa and M. Kaneko, `Multiple zeta values,
poly-Bernoulli numbers, and related zeta functions,' Nagoya Math. J.
153 (1999), 189-209.
- T. Takamuki, `The Kontsevich invariant and relations
of multiple zeta values,' Kobe J. Math. 16 (1999), 27-43.
- Hoang Ngoc Minh, G. Jacob, M. Petitot, and
N. E. Oussous,
`Aspects combinatoires des polylogarithms et des sommes d'Euler-Zagier,'
Sém. Lothar. Combin. 43 (1999), art. B43e (29 pp).
- J. Zhao, `Analytic continuation of multiple zeta
functions,'
Proc. Amer. Math. Soc. 128 (2000), 1275-1283.
- Hoang Ngoc Minh and M. Petitot, `Lyndon words,
polylogarithms, and the Riemann ζ function,' Discrete Math. 217
(2000), 273-292.
- M. Waldschmidt, `Valeurs zêta multiples. Une
introduction,'
J. Théor. Nombres Bordeaux 12 (2000), 581-595.
- M. Kontsevich and D. Zagier, `Periods,' in
Mathematics Unlimited--2001 and Beyond,, B. Engquist and W. Schmid
(eds.), Springer, Berlin, 2001, pp. 771-808.
- S. Akiyama, S. Egami, and Y. Tanigawa,
`Analytic continuation of
multiple zeta-functions and their values at non-positive integers,'
Acta Arithmetica 98 (2001), 107-116.
- K. Ihara and T. Takamuki, `The quantum g2
invariant and relations of multiple zeta values,' J. Knot Theory
Ramifications 10 (2001), 983-997.
- S. Akiyama and Y. Tanigawa,
`Multiple zeta values at non-positive integers,'
Ramanujan J. 5 (2001), 327-351.
- Y. Ohno and D. Zagier, `Multiple zeta values of
fixed weight, depth, and height,' Indag. Math. (N. S.) 12 (2001),
483-487.
- D. Bowman and D. M. Bradley, `The algebra and
combinatorics of shuffles
and multiple zeta values,' J. Combin. Theory Ser. A 97 (2002), 43-61.
- M. E. Hoffman, `Periods of mirrors and multiple zeta
values,'
Proc. Amer. Math. Soc. 130 (2002), 971-974.
- T. Terasoma, `Selberg integrals and multiple zeta
values,' Compositio Math. 133 (2002), 1-24.
- P. Cartier, `Fonctions polylogarithmes, nombres
polyzêtas et groupes pro-unipotents,' Astérisque 282
(2002), 137-173 (Sém. Bourbaki no. 885).
- U. Müller and C. Schubert, `A quantum field
theoretical representation of Euler-Zagier sums,'
Internat. J. Math. Math. Sci. 31 (2002), 127-148.
- T. Terasoma, `Mixed Tate motives and multiple zeta
values,' Invent. Math. 149 (2002), 339-369;
preprint AG/0104231.
- S. Fischler, `Formes linéaires en
polyzêtas et intégrales multiples,' C. R. Acad. Sci. Paris,
Ser. I 335 (2002), 1-4.
- K. Matsumoto, `On the analytic continuation of
various multiple-zeta functions,'
in Number Theory for the Millennium (Urbana, 2000), Vol. II,
M. A. Bennett et. al. (eds.), A. K. Peters, Natick, MA, 2002,
pp. 417-440.
- K. Matsumoto, `The analytic continuation and
the asymptotic behavior of certain multiple zeta-functions II',
in Analytic and Probabilistic Methods in Number Theory (Palanga, 2001),
A. Dubickas et. al. (eds.), TEV, Vilnius, Lithuania, 2002, pp. 188-194.
- K. Matsumoto, `The analytic continuation and
the asymptotic behavior of certain multiple zeta-functions I',
J. Number Theory 101 (2003), 223-243.
- D. Bowman, D. M. Bradley, and J. H. Ryoo,
`Some multi-set inclusions
associated with shuffle convolutions and multiple zeta values,'
European J. Combin. 24 (2003), 121-127.
- M. E. Hoffman and Y. Ohno, `Relations of multiple
zeta values and their algebraic expression,' J. Algebra 262 (2003),
332-347;
preprint QA/0010140.
- W. Zudilin, `Algebraic relations for multiple zeta
values' (Russian),
Uspekhi Mat. Nauk 58 (2003), 3-32; English translation in
Russian Math. Surveys 58 (2003), 1-29;
preprint.
- H. Ishikawa and K. Matsumoto, `On the estimation
of the order of
Euler-Zagier multiple zeta-functions,' Illinois J. Math. 47 (2003),
1151-1166.
- M. Espie, J-C. Novelli, and G. Racinet, `Formal
computations about multiple zeta values,' in From Combinatorics to
Dynamical Systems (Strasbourg, 2002), F. Fauvet and C. Mitschi (eds.),
IRMA Lect. Math. Theor. Phys. 3, de Gruyter, Berlin, 2003, pp. 1-16.
- D. Bowman and D. M. Bradley, `Resolution of
some open problems concerning multiple zeta evaluations of arbitrary depth,'
Compositio Math. 139 (2003), 85-100.
- J. Écalle, `ARI/GARI, la dimorphie et
l'arithmétique des multizêtas: un premier bilan,'
J. Théor. Nombres Bordeux 15 (2003), 411-478.
- H. Furusho, `The multiple zeta value algebra and
the stable derivation algebra,' Publ. Res. Inst. Math. Sci. 39 (2003),
695-720;
preprint NT/0011261.
- K. Matsumoto, `On Mordell-Tornheim and other
multiple zeta-functions,' in Proceedings of the Session in Analytic
Number Theory and Diophantine Equations,
D. R. Heath-Brown and B. Z. Moroz (eds.), Bonner Math. Schriften 360,
Univ. Bonn, Bonn, 2003, n. 25 (17 pp.).
- H. Żołądek, `Note on multiple
zeta-values,' Bul. Acad. Ştiinţe Repub. Mold. Mat. 2003,
78-82.
- H. Furusho, `p-Adic multiple zeta values
I. p-Adic multiple polylogarithms and the p-adic KZ equation,'
Invent. Math. 155 (2004), 253-286;
preprint NT/0304085.
- H. Tsumura, `Combinatorial relations for Euler-Zagier
sums,' Acta Arithmetica 111 (2004), 27-42.
- H. Tsumura, `Multiple harmonic series related to
multiple Euler numbers,' J. Number Theory 106 (2004), 155-168.
- J. Okuda and K. Ueno, `Relations for multiple zeta
values and Mellin transforms of multiple polylogarithms,' Publ. Res. Inst.
Math. Sci. 40 (2004), 537-564;
preprint NT/0301277.
- S. Ünver, `p-Adic multi-zeta values,'
J. Number Theory 108 (2004), 111-156.
- J. Écalle, `Recent advances in the analysis
of divergence and singularities,' in Normal Forms, Bifurcations and
Finiteness Problems in Differential Equations (Montreal, 2002),
Y. Ilyashenko et. al. (eds.), Kluwer, Dordrecht, 2004, pp. 87-186.
- J. Écalle, `Multizetas, perinomal numbers,
arithmetical dimorphy,
and ARI/GARI,' Ann. Fac. Sci. Toulouse 13 (2004), 683-708.
- A. B. Goncharov and Yu. I. Manin, `Multiple
ζ-motives and moduli spaces M0,n,' Compositio Math.
140 (2004), 1-14;
preprint AG/0204102.
- A. J. Yee, `A new shuffle convolution for multiple
zeta values,' J. Algebraic Combin. 21 (2005), 55-69.
- D. M. Bradley, `Multiple q-zeta values,'
J. Algebra 283 (2005), 752-798; preprint QA/0402093.
- H. Tsumura, `On Mordell-Tornheim zeta values,'
Proc. Amer. Math. Soc. 133 (2005), 2387-2393.
- T. Nakamura, `Bernoulli numbers and multiple zeta
values,'
Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), 21-22.
- D. M. Bradley, `Partition identities for the
multiple zeta function,'
in Zeta Functions, Topology and Quantum Physics,
T. Aoki et. al. (eds.),
Developments in Math. 14, Springer, New York, 2005,
pp. 19-29; preprint CO/0402091.
- M. E. Hoffman, `Algebraic aspects of multiple zeta
values,' in Zeta Functions, Topology and Quantum Physics,
T. Aoki et. al. (eds.),
Developments in Math. 14, Springer, New York, 2005,
pp. 51-74;
preprint QA/0309425.
- Y. Ohno, `Sum relations for multiple zeta values,'
in Zeta Functions, Topology and Quantum Physics,
T. Aoki et. al. (eds.), Developments in Math. 14,
Springer, New York, 2005, pp. 131-144.
- J. Okuda and K. Ueno, `The sum formula for
multiple zeta values and
connection problem of the formal Knizhnik-Zamolodchikov equation,'
in Zeta Functions, Topology and Quantum Physics,
T. Aoki et. al. (eds.), Developments in Math. 14,
Springer, New York, 2005,
pp. 145-170;
preprint NT/0310259.
- M. Waldschmidt, `Hopf algberas and transcendental
numbers,' in Zeta Functions, Topology and Quantum Physics,
T. Aoki et. al. (eds.),
Developments in Math. 14, Springer, New York, 2005, pp. 197-220.
- T. Aoki and Y. Ohno, `Sum relations for multiple
zeta values and connection formulas for the Gauss hypergeometric functions,'
Publ. Res. Inst. Math. Sci. 41 (2005), 329-337;
preprint NT/0307264.
- J. Choi and H. M. Srivastava, `Explicit evaluation
of Euler and related sums,' Ramanujan Journal 10 (2005), 51-70.
- P. Freitas, `Integrals of polylogarithmic
functions, recurrence relations, and associated Euler sums,'
Math. Comp. 74 (2005), 1425-1440.
- J-W. Son and D. S. Jang, `Explicit evaluations of
special multiple
zeta values ζ({4l+2}n) and ζ({4l}n),'
Commun. Korean Math. Soc. 20 (2005), 247-257.
- R. Masri, `Multiple Dedekind zeta functions
and evaluations of
extended multiple zeta values,' J. Number Theory 115 (2005), 295-309.
- M. Kaneko, `Multiple zeta values,' Sugaku Expositions
18 (2005), 221-232. (Translation of Japanese original that appeared
in Sūgaku 54 (2002), 404-415.)
- E. A. Ulanskii, `Stuffle relations for multiple
zeta values' (Russian), Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2005,
52-55,73; English translation in Moscow Univ. Math. Bull. 60 (2005),
41-43.
- K. Matsumoto, `The analytic continuation and
the asymptotic behavior of certain multiple zeta-functions III,'
Comment. Math. Univ. St. Pauli 54 (2005), 163-186.
- S. A. Zlobin, `Generating functions for a multiple
zeta function' (Russian), Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2005,
55-59; English translation in Moscow Univ. Math. Bull. 60 (2005),
44-48.
- K. Ihara, M. Kaneko, and D. Zagier, `Derivation
and double shuffle relations for multiple zeta values,' Compositio Math.
142 (2006), 307-338;
preprint MPIM2004-100.
- J. Kajikawa, `Duality and double shuffle relations
for multiple zeta values,' J. Number Theory 121 (2006), 1-6.
- M. E. Hoffman, `Quasi-symmetric functions,
multiple zeta values, and rooted trees,' Oberwolfach Reports 3
(2006), 1259-1262;
preprint
QA/0609413.
- A. Besser and H. Furusho, `The double shuffle
relations for p-adic multiple zeta values,'
in Primes and Knots (Baltimore, 2003), T. Kohno and M. Morishita
(eds.), Contemp. Math. 416, Amer. Math. Soc., Providence, RI, 2006,
pp. 9-29;
preprint NT/0310177.
- H. Furusho, `Multiple zeta values and
Grothendick-Teichmüller groups,'
in Primes and Knots (Baltimore, 2003), T. Kohno and M. Morishita
(eds.), Contemp. Math. 416, Amer. Math. Soc., Providence, RI, 2006,
pp. 49-82;
preprint RIMS-1357.
- K. Matsumoto, `Analytic properties of multiple
zeta-functions in several variables,'
in Number Theory: Tradition and Modernization,
W. Zhang and Y. Tanigawa (eds.),
Developments in Math. 15, Springer, New York, 2006, pp. 153-173.
- T. Terasoma, `Geometry of multiple zeta values,' in
International Congress of Mathematicians (Madrid, 2006), Vol. II,
European Mathematical Society, Zürich, 2006, pp. 627-635.
- B. Enriquez and F. Gavarini, `A formula for the
logarithm of the
KZ associator,'
SIGMA 2 (2006), Paper 080 (3 pp).
- Y. Ohno and N. Wakabayashi, `Cyclic sum of multiple
zeta values,' Acta Arithmetica 123 (2006), 289-295.
- F. C. S. Brown, `Périodes des espaces des modules
M0,n et valeurs zêtas multiples,' C. R. Acad. Sci. Paris
Ser. I 342 (2006), 949-954.
- J. Cresson, `Polyzêtas stricts, larges et
pondérés,' in Algèbre et théorie des nombres.
Années 2003-2006, Publ. Math. Univ. Franche-Comté
Besançon Algèbr. Theor. Nr., Besançon, France, 2006,
pp. 33-41.
- M. Ram Murty and K. Sinha, `Multiple Hurwitz zeta
functions,' in Multiple Dirichlet Series, Automorphic Forms,
and Analytic Number Theory (Bretton Woods, 2005),
S. Friedberg et. al. (eds.),
Proc. Symp. Pure Math. 75, Amer. Math. Soc., Providence, RI, 2006,
pp. 135-156.
- M. Waldschmidt, `Transcendence of periods:
the state of the art,' Pure Appl. Math. Q. 2 (2006), 435-463.
- K. Kamano, `The multiple Hurwitz zeta function
and a generalization of Lerch's formula,' Tokyo J. Math. 29 (2006),
61-73.
- K. Matsumoto and H. Tsumura, `On Witten multiple
zeta functions associated with seminsimple Lie algebras I,' Ann. Inst. Fourier
Grenoble 56 (2006), 1457-1504.
- R. Pemantle and C. Schneider, `When is 0.999... equal
to 1?,' Amer. Math. Monthly 114 (2007), 344-350.
- H. Furusho, `p-Adic multiple zeta values
II. Tannakian interpretations,' Amer. J. Math. 129 (2007), 1105-1144;
preprint NT/0506117.
- Y. Ohno and J. Okuda, `On the sum formula for
the q-analogue of non-strict multiple zeta values,'
Proc. Amer. Math. Soc. 135 (2007), 3029-3037.
- M. Kaneko, `On an extension of the derivation
relation for multiple zeta values,' in The Conference on L-Functions
(Fukuoka, 2006), L. Weng and M. Kaneko (eds.), World Scientific,
Singapore, 2007, pp. 89-94.
- Y. Komori, K. Matsumoto, and H. Tsumura, `Zeta
functions of root systems,' in The Conference on L-Functions
(Fukuoka, 2006), L. Weng and M. Kaneko (eds.), World Scientific,
Singapore, 2007, pp. 115-140.
- D. M. Bradley, `On the sum formula for multiple
q-zeta values,' Rocky Mountain J. Math. 37 (2007), 1427-1434;
preprint QA/0411274.
- S. Carr, `Periods on the moduli space of genus
0 curves,' Oberwolfach Reports 4 (2007), 1495-1497;
preprint 0911.2671[NT].
- J. Zhao, `Multiple q-zeta functions
and multiple q-polylogarithms,' Ramanujan J. 14 (2007), 189-221;
preprint QA/0304448.
- J. Okuda and Y. Takeyama, `On relations for the
multiple q-zeta values,' Ramanujan J. 14 (2007), 379-387;
preprint QA/0402152.
- H. Furusho and A. Jafari, `Regularization
and generalized double shuffle relations for p-adic multiple zeta
values,' Compositio Math. 143 (2007), 1089-1107;
preprint NT/0510681.
- T. Aoki, Y. Kombu, and Y. Ohno, `A generating
function for sums of multiple zeta values and its applications,'
Proc. Amer. Math. Soc. 136 (2008), 387-395
- A. Petojevic and H. M. Srivastava,
`Computation of the Mordell-Tornheim zeta values,
Proc. Amer. Math. Soc. 136 (2008), 2719-2728.
- Z-h. Li, `Sum of multiple zeta values
of fixed weight, depth, and i-height,' Math. Z. 258 (2008),
133-142.
- J. Cresson, S. Fischler and T. Rivoal,
`Séries hypergéométriques multiples et
polyzêtas,' Bull. Math. Soc. France 136 (2008), 97-145;
preprint
NT/0609743.
- J. Cresson, S. Fischler and T. Rivoal,
`Phénomènes de symétrie dans des formes
linéaires en polyzêtas,'
J. reine angew. Math. 617 (2008), 109-151;
preprint NT/0609744.
- K. Ihara and H. Ochiai, `Symmetry on linear
relations for multiple zeta values,' Nagoya Math. J. 189 (2008),
49-62.
- K. Matsumoto and H. Tsumura, `A new method
of producing functional relations among multiple zeta-functions,'
Quarterly J. Math. 59 (2008), 55-83.
- L. Guo and B. Zhang, `Renormalization of multiple
zeta values,' J. Algebra 319 (2008), 3770-3809;
preprint NT/0606076.
- L. Guo and B. Zhang, `Differential Algebraic
Birkhoff Decomposition and the renormalization of multiple zeta values,'
J. Number Theory 128 (2008), 2318-2339;
preprint 0710.0432[NT].
- M. E. Hoffman, `A character on the quasi-symmetric
functions coming from multiple zeta values,'
Electronic J. Combinatorics 15(1) (2008), R97 (21 pp).
- S. Fischler, `Multiple series connected to
Hoffman's conjecture on multiple zeta values,' J. Algebra 320 (2008),
1682-1703;
preprint NT/0609799.
- Y. Komori, K. Matsumoto, and H. Tsumura,
'Zeta and L-functions and Bernoulli polynomials of root systems,
Proc. Japan Acad. Ser. A Math. Sci.84 (2008), 57-62.
- M. Kaneko, `A note on poly-Bernoulli numbers and
multiple zeta values,' in Diophantine Analysis and Related Fields:
DARF 2007/2008, T. Komatsu (ed.), AIP Conference Proceedings 976,
American Institute of Physics, Melville, NY, 2008, pp. 118-124.
- Y-H. Chen, `Multiple zeta values and application
to the Lacunary recurrence formulas of Bernoulli numbers,'
Journal of Physics: Conference Series 96 (2008), paper 012212
(5 pp).
- K. Ebrahimi-Fard and L. Guo, `Multiple zeta values
and Rota-Baxter algebras,'
Integers 8(2) (2008), #A4 (18 pp).
- Y. Ohno and W. Zudilin, `Zeta stars,'
Commun. Number Theory Phys. 2 (2008), 325-347;
preprint MPIM2007-134.
- M. Kaneko, M. Noro, and K. Tsurumaki, `On
a conjecture for the dimension of the space of the multiple zeta values,'
in Software for Algebraic Geometry, M. Stillman et. al (eds.),
IMA Volumes in Mathematics and its Applications 148, Springer, New York,
2008, pp. 47-58.
- S. Muneta, `On some explicit evaluations of
multiple star-zeta values,' J. Number Theory 128 (2008), 2538-2548;
preprint
0710.3219[NT].
- R. Lu, `The Γ^-genus and a regularization
of an S1-equivariant Euler class,' J. Phys. A: Math. Theor.
41 (2008), 425204 (13 pp);
preprint 0804.2714[math-ph].
- M. Eie and C-S. Wei, `A short proof of the sum
formula and its generalization,' Arch. Math. (Basel) 91 (2008), 330-338.
- J. Zhao, `Renormalization of multiple
q-zeta values,'
Acta Math. Sinica, English Ser. 24 (2008), 1593-1616;
preprint NT/0612093.
- J. P. Kelliher and R. Masri, `Analytic continuation
of multiple Hurwitz zeta functions,' Math. Proc. Camb. Phil. Soc. 145
(2008), 605-617.
- S. A. Zlobin, `Relations for multiple zeta values'
(Russian), Mat. Zametki 84 (2008), 825-837; English translation
in Math. Notes 84 (2008), 771-782.
- J. Zhao, `An exotic shuffle relation for
multiple zeta values,' Arch. Math. (Basel) 91 (2008), 409-415; cf.
preprint
0707.3244[NT].
- S. Muneta, `A note on evaluations of multiple
zeta values,'
Proc. Amer. Math. Soc. 137 (2009), 931-935.
- S. Muneta, `Algebraic setup of non-strict multiple
zeta values,' Acta Arithmetica 136 (2009), 7-18;
preprint
0711.0252[NT].
- G. Kawashima, `A class of relations among multiple
zeta values,' J. Number Theory 129 (2009), 755-788;
preprint NT/0702824.
- M. Eie, W-C. Liaw, and Y. L. Ong, `A restricted
sum formula among multiple zeta values,' J. Number Theory 129 (2009),
908-921.
- Y. Sasaki, `Multiple zeta values for coordinatewise
limits at non-positive integers,' Acta Arithmetica 136 (2009), 299-317.
- F. C. S. Brown, `The massless higher-loop
two-point function,' Commun. Math. Phys. 287 (2009), 925-958;
preprint 0804.1660[AG].
- Y. Takeyama, `A q-analogue of non-strict
multiple zeta values and basic hypergeometric series,
Proc. Amer. Math. Soc. 137 (2009), 2997-3002.
- T. Tanaka, `On the quasi-derivation relation for
multiple zeta values,' J. Number Theory 129 (2009), 2021-2034;
preprint
0710.4920[NT].
- T. Nakamura, `Zeroes and the universality for
the Euler-Zagier-Hurwitz type of multiple zeta values,'
Bull. London Math. Soc. 41 (2009), 691-700.
- T. Okamoto, `Generalizations of Apostol-Vu
and Mordell-Tornheim zeta functions,' Acta Arithmetica 140 (2009),
169-187.
- X. Zhou, D. M. Bradley, and T. Cai, `Depth reduction
of a class of Witten zeta functions,'
Electronic J. Combinatorics 16(1) (2009), N27 (7 pp).
- L. Guo and B. Xie, `Weighted sum formula for
multiple zeta values,' J. Number Theory 129 (2009), 2747-2765;
preprint
0809.5110[NT].
- F. C. S. Brown, `Multiple zeta values and periods
of moduli spaces M0,n,' Ann. Sci. Éc. Norm. Supér.
(4) 42 (2009), 371-489;
preprint AG/0606419.
- M. Eie, Topics in Number Theory, Monographs
in Number Theory 2, World Scientific, Singapore, 2009.
- P. Guha, `Witten's volume formula, cohomological
pairings of moduli spaces of flat connections and applications of multiple
zeta functions,' in Quantum Field Theory: Competitive Models,
B. Fauser et. al. (eds.), Birkhaüser Basel, Basel, 2009, 95-116.
- Y. Komori, K. Matsumoto and H. Tsumura,
`Functional relations for zeta-functions of root systems,' in
Number Theory: Dreaming in Dreams (Osaka, 2008),
T. Aoki et. al. (eds.), World Scientific, Singapore, 2009, pp. 135-183.
- Z-h. Li, `Sum of multiple q-zeta values,'
Proc. Amer. Math. Soc. 138 (2010), 505-516.
- Z-h. Li, `Gamma series associated to elements
satisfying regularized double shuffle relations,' J. Number Theory
130 (2010), 213-231.
- T. Tanaka and N. Wakabayashi, `An algebraic
proof of the cyclic sum formula for multiple zeta values,' J. Algebra
323 (2010), 766-778;
preprint
0902.2723[NT].
- Z-h. Li, `Higher order shuffle regularization of
multiple zeta values,'
Proc. Amer. Math. Soc. 138 (2010), 2321-2333.
- I. Soudères, `Motivic double shuffle,'
Int. J. Number Theory 6 (2010), 339-373;
preprint
0808.0248[AG].
- Y. Komori, K. Matsumoto, and H. Tsumura, `On
Witten multiple zeta-functions associated with semisimple Lie algebras II,'
J. Math. Soc. Japan 62 (2010), 355-394.
- F. C. S. Brown, S. Carr, and L. Schneps,
`Algebra of cell-zeta values,' Compositio Math. 146 (2010), 731-771;
preprint 0910.0122[NT].
- J. M. Borwein and O-Y. Chan, `Duality in tails
of multiple zeta values,' Int. J. Number Theory 6 (2010), 501-514.
- L. Guo, `Algebraic Birkhoff decomposition and its
applications,' in Automorphic Forms and the Langlands Program
(Guangzhao, 2007), Lizhen Ji et. al. (eds.), International Press,
Somerville, Mass. 2010, pp. 277-319;
preprint 0807.2266[RA].
- C. Yamazaki, `On the duality for multiple
zeta-star values of height one,'
Kyushu J. Math. 64 (2010), 145-152.
- Y. Sasaki, `The first derivative multiple
zeta values at non-positive integers,' Ramanujan J. 21 (2010),
267-284.
- T. Terasoma, `Period integral and multiple zeta
values,' Sugaku Expositions 23 (2010), 91-103. (Translation of
Japanese original that appeared in Sūgaku 57 (2005), 255-266.)
- M. Kaneko, `Poly-Bernoulli numbers and
related zeta functions,' in
Algebraic and Analytic Aspects of Zeta Functions and L-Functions,
G. Bhowmik et. al. (eds.), MSJ Memoirs vol. 21, Mathematical Society
of Japan, Tokyo, 2010, pp. 73-85.
- Y. Komori, K. Matsumoto and H. Tsumura,
`An introduction to the theory of zeta functions of root systems,' in
Algebraic and Analytic Aspects of Zeta Functions and L-Functions,
G. Bhowmik et. al. (eds.), MSJ Memoirs vol. 21, Mathematical Society
of Japan, Tokyo, 2010, pp. 115-140.
- T. Rivoal, `Hypergeometric constructions of
rational approximations of (multiple) zeta values, in
Algebraic and Analytic Aspects of Zeta Functions and L-Functions,
G. Bhowmik et. al. (eds.), MSJ Memoirs vol. 21, Mathematical Society
of Japan, Tokyo, 2010, pp. 167-183.
- L. Guo, S. Paycha, B. Xie, and B. Zhang,
`Double shuffle relations and renormalization of multiple zeta values,'
in The Geometry of Algebraic Cycles (Columbus, 2008),
R. Akhtar et. al (eds.), Clay Math. Proc. 9, Amer. Math. Soc.,
Providence, 2010, pp. 145-187;
preprint 0906.0092[NT].
- L. Guo and B. Zhang, `Polylogarithms and
multiple zeta values from free Rota-Baxter algebras,' Sci. China Math.
53 (2010), 2239-2258;
preprint 1210.1818[NT].
- Y. L. Ong, M. Eie, and C-S. Wei, `Explicit
evaluations of quadruple Euler sums,' Acta Arithmetica 144 (2010),
213-230.
- M. Eie, F-Y. Yang, and Y. L. Ong,
`Some alternating double sum formulae of multiple zeta values,'
Comput. Appl. Math. 29 (2010),
375-391.
- M-A. Coppo and B. Candelpergher, `The Arakawa-Kaneko
zeta function,' Ramanujan J. 22 (2010), 153-162.
- D. Manchon and S. Paycha, `Nested sums of symbols
and renormalised multiple zeta functions,' Int. Math. Res. Notices
2010, 4628-4697;
preprint NT/0702135.
- D. M. Bradley and X. Zhou, `On Mordell-Tornheim
sums and multiple zeta values,' Ann. Sci. Math. Québec 34 (2010),
15-23.
- M. Zakrzewski and H. Żołądek,
`Linear differential equations and multiple zeta values I. Zeta(2),'
Fund. Math. 210 (2010), 207-242.
- M. Kaneko and Y. Ohno, `On a kind of duality
of multiple zeta-star values,' Internat. J. Number Theory 6 (2010),
1927-1932.
- K. Matsumoto, `The analytic theory of multiple
zeta-functions and its applications,' Sugaku Expositions 23 (2010),
143-167. (Translation of Japanese original that appeared in Sūgaku
59 (2007), 24-45.)
- K. Onodera, `Generalized log sine integrals
and the Mordell-Torheim zeta values,'
Trans. Amer. Math. Soc. 363 (2011), 1463-1485.
- M. Igarashi, `Cyclic sum of certain parametrized
multiple series,' J. Number Theory 131 (2011), 508-518.
- T. Aoki, Y. Ohno, and N. Wakabayashi,
`On generating functions of multiple zeta values and generalized
hypergeometric functions,' Manuscripta Math. 134 (2011), 139-155.
- S. Saito, T. Tanaka, and N. Wakabayashi,
`Combinatorial remarks on the cyclic sum theorem for multiple zeta values,'
J. Integer Sequences 14 (2011), art. 11.2.4 (20 pp).
- K. Ihara, J. Kajikawa, Y. Ohno, and J. Okuda,
`Multiple zeta values vs. multiple zeta-star values,'
J. Algebra 332 (2011), 187-208.
- D. Manchon, `Renormalized multiple zeta values
which respect quasi-shuffle relations,' in Combinatorics and Physics
(Bonn, 2006-2007), K. Ebrahimi-Fard et. al. (eds.), Contemp.
Math. 539, Amer. Math. Soc., Providence, RI, 2011, pp. 255-267.
- Y. Komori, K. Matsumota and H. Tsumura,
`On Witten multiple zeta-functions associated with semisimple Lie
algebras IV,' Glasgow Math. J. 53 (2011), 185-206;
preprint 0907.0972[NT].
- J. Zhao, `Witten volume formulas for semi-simple
Lie algebras,'
Integers 11A
(2011), art. 22 (21 pp).
- E. A. Ulanskii, `Multiple zeta values' (Russian),
Vestnik Moskov. Univ. Ser. I Math. Mekh. 66 (2011), 14-19; English
translation in Moscow Univ. Math. Bull. 66 (2011), 105-109.
- T. Okamoto, `Multiple zeta values related
with the zeta-functions of the root system of type Br,'
JP J. Algebra Number Theory Appl. 22 (2011), 1-44.
- S. V. Duzhin, Conway polynomial and Magnus expansion'
(Russian), Algebra i Analiz 23 (2011), 175-188; English translation
in St. Petersburg Math. J. 23 (2012), 541-550;
preprint 1001.2500[GT].
- Y. Komori, K. Matsumoto, and H. Tsumura,
`Shuffle products of multiple zeta values and partial fraction decompositions
of zeta-functions of root systems,' Math. Z. 268 (2011),
993-1011; preprint 0908.0670[NT].
- T. Nakamura and Ł. Pańkowski, `Applications
of hybrid universality to multivariable zeta-functions,'
J. Number Theory 131 (2011), 2151-2161.
- M. Zakrzewski and H. Żołądek,
`Linear differential equations and multiple zeta values II. A generalization
of the WKB method,' J. Math. Anal. Appl. 383 (2011), 55-70.
- H. Furusho, `Double shuffle relation for
associators,'
Annals of Math. 174 (2011), 341-360.
- J. Zhao and X. Zhou, `Witten multiple zeta
values attached to sl(4),' Tokyo J. Math. 34 (2011), 135-152;
preprint 0903.2383[NT].
- L. Guo and B. Xie, `The shuffle relation
of fractions from multiple zeta values,' Ramanujan J. 25 (2011),
307-317.
- Y. Komori, K. Matsumoto, and H. Tsumura,
`Multiple zeta values and zeta-functions of root systems,'
Proc. Japan Acad. Ser. A Math. Sci. 87 (2011), 103-107.
- S. Gun, M. Ram Murty, and P. Rath, `On a conjecture
of Chowla and Milnor,' Canad. J. Math. 63 (2011), 1328-1344.
- Y. Ohno, J. Okuda, and W. Zudilin,
`Cyclic q-MZSV sum,' J. Number Theory 132 (2012), 144-155;
preprint MPIM2008-31.
- Z. Shen and T. Cai, `Some identities for multiple
zeta values,' J. Number Theory 132 (2012), 314-323.
- F. C. S. Brown, `Mixed Tate motives over Z,'
Annals of Math. 175 (2012), 949-976.
- D. Zagier, `Evaluation of the multiple zeta
values ζ(2,...,2,3,2,...,2),'
Annals of Math. 175 (2012), 977-1000.
- M. Igarashi, `A generalization of Ohno's relation
for multiple zeta values,' J. Number Theory 132 (2012), 565-578.
- Y. Takeyama, `Quadratic relations for a q-analogue
of multiple zeta values,' Ramanujan J. 27 (2012), 15-28;
preprint 1008.0686[NT].
- H. Kondo, S. Saito, and T. Tanaka, `The Bowman-Bradley
theorem for multiple zeta-star values,' J. Number Theory 132 (2012),
1984-2002; preprint 1003.5973[NT].
- M. Zakrzewski and H. Żołądek,
`Linear differential equations and multiple zeta-values III. Zeta(3),'
J. Math. Phys. 53 (2012), art. 013507 (40 pp).
- M. Eie and C-S. Wei, `Evaluations of some quadruple
Euler sums of even weight,' Funct. Approx. Comment. Math. 46 (2012),
63-77.
- T. Chatterjee, `The strong Chowla-Milnor spaces
and a conjecture of Gun, Murty and Rath,' Int. J. Number Theory 8
(2012), 1301-1314.
- Z-h. Li, `On a conjecture of Kaneko and Ohno,'
Pacific J. Math.
257 (2012), 419-430.
- L. Schneps, `Double shuffle and Kashiwara-Vergne
Lie algebras,' J. Algebra 367 (2012), 54-74;
preprint 1201.5316[AG].
- Y. Komori, K. Matsumota and H. Tsumura,
`On Witten multiple zeta-functions associated with semisimple Lie
algebras III,' in Multiple Dirichlet Series, L-Functions and
Automorphic Forms, D. Bump et. al. (eds.), Progress in Math. 300,
Birkhaüser, New York, 2012, pp. 223-286;
preprint 0907.0955[NT].
- T. Machide, `Weighted sums with two parameters
of multiple zeta values and their formulas,' Int. J. Number Theory
8 (2012), 1903-1921;
preprint 1112.2554[NT].
- N. Wakabayashi, `On Hoffman's relation for multiple
zeta-star values,' Int. J. Number Theory 8 (2012), 1971-1976.
- S. T. Joyner, `On an algebraic version of the
Knizhnik-Zamolodchikov equation,' Ramanujan J. 28 (2012), 361-384;
preprint 1009.5659.
- T. Okamoto, `Multiple zeta values related
with the zeta-function of root systems of type A2, B2
and G2, Comment. Math. Univ. St. Pauli 61 (2012), 9-27.
- I. Soudères, `Explicit associator relations
for multiple zeta values,'
Math. J. Okayama Univ. 55 (2013), 1-52;
preprint 1007.1076[AG].
- Z-h. Li, `Regularized double shuffle and
Ohno-Zagier relations of multiple zeta values,' J. Number Theory
133 (2013), 596-610.
- S. Ünver, `Drinfel'd-Ihara relations
for p-adic multi-zeta values,' J. Number Theory 133 (2013),
1435-1483.
- S. Ding and W. Liu, `Algorithms for some
Euler-Type Identities for Multiple Zeta Values,' Journal of Applied
Mathematics, 2013, art. 802791 (7 pp.)
- Y. Takeyama, `A restricted sum formula for a
q-analogue of multiple zeta values,'
in Symmetries, Integrable Systems and Representations,
K. Iohara et. al. (eds.), Springer Proc. in Math. and Statistics
40, Springer, London, 2013, pp. 561-573;
preprint 1112.0118[NT].
- L. Guo and P. Lei, `Sixfold restricted sum
forumla for multiple zeta values at even integers,' J. Lanzhou U.
(Nat. Sci.) 49 (2013), 100-102.
- M. Eie and C-S. Wei, Generalizations of Euler
decomposition and their applications, J. Number Theory 133 (2013),
2475-2495.
- Z-h. Li, `Some identities in the harmonic
algebra concerned with multiple zeta values,' Int. J. Number Theory
9 (2013), 783-798.
- J. Okuda and K. Ueno, `New approach to Ohno
relations for multiple zeta values,'
preprint NT/0106148.
- S. Kitani, E. Sawada, and K. Ueno, `Finite automata
and relations of multiple zeta values,'
preprint NT/0403458.
- S. A. Zlobin, `A certain integral over a triangle,'
preprint NT/0511239.
- S. A. Zlobin, `A note on arithmetic properties of
multiple zeta values,'
preprint NT/0501151.
- I. Horozov, `Multiple zeta values, modular forms,
and adeles,'
preprint NT/0611849.
- O. Mathieu, `On a symmetric space attached to
polyzeta values,'
preprint 0810.0396[NT].
- K. Imatomi, T. Tanaka, K. Tasaka, and N. Wakabayashi,
`On some combinations of multiple zeta-star values,'
preprint 0912.1951[NT].
- Y. Komori, K. Matsumoto and H. Tsumura,
`Zeta-functions of weight lattices of compact connected semisimple Lie
groups,' preprint 1011.00323[NT].
- F. C. S. Brown, `On the decomposition of motivic
multiple zeta values,' preprint
1102.1310[NT].
- J. Kuipers and J. A. M. Vermaseren, `About a
conjectured basis for multiple zeta values,'
preprint 1105.1884[math-ph].
- M. Igarashi, `Note on relations among multiple
zeta-star values,'
preprint 1106.0481[NT].
- M. Igarsahi, `On generalizations of the sum formula
for multiple zeta values,'
preprint 1110.4875[NT].
- Y. Komori, K. Matsumoto and H. Tsumura,
`Functional relations for zeta-functions of weight lattices of
type A3,'
preprint 1202.0874[NT].
- S. Yamamoto, `Explicit evaluation of certain
sums of multiple zeta-star values,'
preprint 1203.1111[NT].
- S. Yamamoto and K. Tasaka, `On some multiple
zeta-star values of one-two-three indices,'
preprint 1203.1115[NT].
- S. Yamamoto, `Interpolation of multiple zeta
and zeta-star values,'
preprint 1203.1118[NT].
- Z-h. Li, `Another proof of Zagier's evaluation
formula of the multiple zeta values ζ(2,...,2,3,2,...,2)'
preprint 1204.2060[NT].
- Y. Komori, K. Matsumoto and H. Tsumura,
`A study on multiple zeta values from the viewpoint of zeta-functions
of root systems,'
preprint 1205.0182[NT].
- O. Schlotterer and S. Stieberger, `Motivic
multiple zeta values and superstring amplitudes,'
preprint 1205.1516[hep-th].
- T. Onozuka, `Analytic continuation of multiple
zeta-functions and the asymptotic behavior at non-positive integers,'
preprint 1205.2768[NT].
- M. E. Hoffman, `On multiple zeta values of even
arguments,'
preprint 1205.7051[NT].
- G. Combariza, `A few conjectures about the multiple
zeta values,'
preprint 1207.1735[NT].
- J. Zhao, `Sum formula of multiple Hurwitz-zeta
values,'
preprint 1207.2368[NT].
- J. Merker, `Multizeta calculus I,'
preprint 1208.5643[NT].
- T. Machide, `A parametrized generalization of
the sum formula for quadruple zeta values,'
preprint 1210.8005[NT].
- J. M. Drummond and E. Ragoucy, `Superstring amplitudes
and the associator,'
preprint 1301.0794[hep-th].
- F. Brown, `Depth-graded motivic multiple zeta
values,'
preprint 1301.3053[NT].
- L. Guo, S. Paycha, and B. Zhang, `Conical zeta values
and their double subdivision relations,'
preprint 1301.3370[NT].
- V. Baldoni, A. Boysal, and M. Vergne,
`Multiple Bernoulli series and volumes of moduli spaces of flat bundles
over surfaces,'
preprint 1301.4127[RT].
- T. Terasoma, `Brown-Zagier relation for associators,'
preprint 1301.7474[NT].
- S. Leurent and D. Volin, `Multiple zeta functions
and double wrapping in planar N = 4 SYM,'
preprint 1302.1135[hep-th].
- Y. Komori, K. Matsumoto, and H. Tsumura, `On
Witten multiple zeta-functions associated with semisimple Lie algebras V,'
preprint 1302.4285[NT].
- S. Ünver, `Cyclotomic p-adic
multi-zeta values in depth two,'
preprint 1302.6406[NT].
- T. Tanaka, `Restricted sum formula and
derivation relation for multiple zeta values,'
preprint 1303.0398[NT].
- H. Yuan and J. Zhao, `Restricted sum formula
of multiple zeta values,'
preprint 1303.3607[NT].
- H. Yuan and J. Zhao, `New families of
weighted sum formulas for multiple zeta values,'
preprint 1303.3608[NT].
- Kh. Hessami Pilehrood and T. Hessami
Pilehrood, `On q-analogues of two-one formulas for multiple harmonic
sums and multiple zeta star values,'
preprint 1304.0269[NT].
- J. Brödel, O. Schlotterer, and S. Stieberger,
`Polylogarithms, multiple zeta values and superstring amplitudes,'
preprint 1304.7267[hep-th].
- J. Brödel, O. Schlotterer, S. Stieberger,
and T. Terasoma, `All order alpha'-expansion of superstring trees from
the Drinfeld associator,'
preprint 1304.7304[hep-th].
D. MULTIPLE ZETA VALUES OVER FUNCTION FIELDS
- D. Thakur, Function Field Arithmetic,
World Scientific, Singapore, 2004.
- R. Masri, `Multiple zeta values over global
function fields,' in Multiple Dirichlet Series, Automorphic Forms,
and Analytic Number Theory (Bretton Woods, 2005), S. Friedberg
et. al. (eds.),
Proc. Symp. Pure Math. 75, Amer. Math. Soc., Providence, RI, 2006,
pp. 157-175.
- G. W. Anderson and D. Thakur, `Multizeta
values for Fq[t], their period interpretation, and
relations between them,' Int. Math. Res. Notices 2009,
2038-2055;
preprint 0902.1180[NT].
- D. Thakur, `Relations between multizeta values
for Fq[t]', Int. Math. Res. Notices 2009,
2318-2346.
- D. Thakur, `Power sums with applications to multizeta
and zeta zero distribution for Fq[t]', Finite Fields
Appl. 15 (2009), 534-552.
- J. A. Lara Rodríguez, `Some conjectures and
results about multizeta values over Fq[t]', J. Number
Theory 130 (2010), 1013-1023.
- D. Thakur, `Shuffle relations for function field
multiple zeta values,' Int. Math. Res. Notices 2010, 1973-1980.
- J. A. Lara Rodríguez, `Relations between
multizeta values in characteristic p,' J. Number Theory 131
(2011), 2081-2099.
- J. A. Lara Rodríguez, `Special relations
between multizeta values and parity results,' J. Ramanujan Math. Soc.
27 (2012), 275-293;
preprint 1108.4726[NT].
- C-Y. Chang, `Linear independence of monomials of
multizeta values in positive characteristic,'
preprint 1207.2326[NT].
E. ALTERNATING SERIES
- D. H. Bailey, J. M. Borwein, and R. Girgensohn,
`Experimental evaluation of Euler sums,'
Experiment. Math. 3 (1994), 17-30.
- D. Borwein, J. M. Borwein, and R. Girgensohn,
`Explicit evaluation of Euler sums,' Proc. Edinburgh Math. Soc. 38
(1995), 277-294.
- V. Adamchik, `On Stirling numbers and Euler sums,'
J. Comp. Appl. Math. 79 (1997), 119-130.
- D. J. Broadhurst, J. M. Borwein, and
D. M. Bradley, `Evaluation of k-fold
Euler/Zagier sums: a compendium of results for arbitrary k,'
Electronic J. Combinatorics 4(2) (1997), R5.
- P. Flajolet and B. Salvy, `Euler sums and contour
integral representations,'
Experiment. Math. 7 (1998), 15-35.
- M. Bigotte, G. Jacob, N. E. Oussous, and
M. Petitot, `Lyndon words
and shuffle algebras for generating the coloured multiple zeta values
relations tables,' Theoret. Comput. Sci. 273 (2002), 271-283.
- D. Borwein, J. M. Borwein, and D. M. Bradley,
`Parametric Euler sum identities,' J. Math. Anal. Appl. 316 (2006),
328-338.
- J. M. Borwein and D. M. Bradley, `Thirty-two
Goldbach variations,' Intl. J. Number Theory 2 (2006), 65-103;
preprint NT/0502034.
- M. N. Lalín, `On a certain combination of
colored multizeta values,' J. Ramanujan Math. Soc. 20 (2006),
115-127;
preprint NT/0603442.
- J-Y. Enjalbert and Hoang Ngoc Minh, `Analytic
and combinatoric aspects of Hurwitz polyzêtas', J. Théor.
Nombres Bordeaux 19 (2007), 595-640.
- D-Y. Zheng, `Further summation formulae related
to generalized harmonic numbers,' J. Math. Anal. Appl. 335 (2007),
692-706.
- R-O. Vîlceanu, `The multiple zeta function
and the computation of some integrals in compact form,' An. Univ. Craiova
Ser. Mat. Inform. 35 (2008), 182-198.
- J. Choi and H. M. Srivastava,
`Some applications of the Gamma and polygamma functions involving
convolutions of the Rayleigh functions, multiple Euler sums and
log-sine integrals,' Math. Nachr. 282 (2009), 1709-1723.
- J. Blümlein, D. J. Broadhurst, and J. A. M.
Vermaseren, `The multiple zeta value data mine,' Comput. Phys. Commun.
181 (2010), 582-625;
preprint 0907.2557[math-ph].
- J. Zhao, `On a conjecture of Borwein, Bradley and
Broadhurst,' J. reine angew. Math. 639 (2010), 223-233; cf.
preprint 0705.2267[NT].
- J. Zhao, `Alternating Euler sums and special
values of Witten multiple zeta function attached to so(5),'
J. Aust. Math. Soc. 89 (2010), 419-430;
preprint 0903.0473[NT].
- D. J. Broadhurst, `On the enumeration of
irreducible k-fold Euler sums and their roles in knot theory and
field theory,'
preprint hep-th9604128.
- D. J. Broadhurst, `Conjectured enumeration of
irreducible multiple zeta values, from knots and Feynman diagrams,'
preprint hep-th9612012.
- Z-h. Li, `On harmonic sums and alternating Euler
sums,' preprint 1012.5192[NT].
- J. Zhao, `Restricted sum formula of alternating
Euler sums,'
preprint 1207.5366[NT].
F. MULTIPLE POLYLOGARITHMS/NESTED SUMS
- A. B. Goncharov, `Multiple polylogarithms, cyclotomy,
and modular complexes,' Math. Res. Lett. 5 (1998), 497-516.
- D. J. Broadhurst, `Massive 3-loop Feynman
diagrams reducible to SC* primitives of algebras of the sixth root of unity,'
European Phys. J. C (Fields) 8 (1999), 311-333;
preprint hep-th9803091.
- M. E. Hoffman, `Quasi-shuffle products,' J. Algebraic
Combin. 11 (2000), 49-68; preprint.
- E. Remiddi and J. A. M. Vermaseren, `Harmonic
polylogarithms,' Int. J. Modern Phys. A 15 (2000), 725-754;
preprint hep-ph/9905237.
- A. B. Goncharov, `The dihedral Lie algebras and
Galois symmetries of π1(l)(
P1-({0,∞}∪μN)),'
Duke Math. J. 110 (2001), 397-487;
preprint AG/0009121.
- M. Yu. Kalmykov and O. Veretin, `Single scale diagrams
and multiple binomial sums,' Phys. Lett. B 483 (2000), 315-323;
preprint hep-th/0004010.
- A. I. Davydychev and M. Yu. Kalmykov,
`Some remarks on the ε-expansion of dimensionally regulated
Feynman diagrams,' Nuclear Phys. B (Proc. Suppl.) 89 (2000), 283-288;
preprint hep-th/0005287.
- A. I. Davydychev and M. Yu. Kalmykov,
`New results for the ε-expansion of certain one-, two- and three-loop
Feynman diagrams,' Nuclear Phys. B 605 (2001), 266-318;
preprint hep-th/0012189.
- J. M. Borwein, D. M. Bradley, D. J. Broadhurst,
and P. Lisoněk, `Special values of multidimensional polylogarithms,'
Trans. Amer. Math. Soc. 353 (2001), 907-941.
- J. M. Borwein, D. J. Broadhurst, and J. Kamnitzer,
`Central binomial sums, multiple Clausen values, and zeta values,'
Experiment. Math. 10 (2001), 25-34.
- Hoang Ngoc Minh, G. Jacob, M. Petitot, and
N. E. Oussous, `De l'algèbre des ζ de Riemann multivariées
à l'algèbre des ζ de Hurwitz multivariées,'
Sém. Lothar. Combin. 44 (2001), art. B44i (21 pp).
- D. Bowman and D. M. Bradley, `Multiple polylogarithms:
a brief survey,' in Conference on q-Series with Applications to
Combinatorics, Number Theory, and Physics (Urbana, IL, 2000),
B. C. Berndt and K. Ono (eds.),
Contemp. Math. 291, Amer. Math. Soc., Providence, RI, 2001, pp. 71-92.
- G. Racinet, `Torseurs associés à
certaines relations algébriques entre polyzêtas aux racines
de l'unité,'
C. R. Acad. Sci. Paris Ser. I 333 (2001), 5-10.
- G. Racinet, `Algèbre de Lie de valeuers
formelles d'hyperlogarithmes aux racines de l'unité'
C. R. Acad. Sci. Paris Ser. I 333 (2001), 11-16.
- S. Moch, P. Uwer, and S. Weinzierl, `Nested sums,
expansion of transcendental functions and multiscale multiloop integrals,'
J. Math. Phys. 43 (2002), 3363-3386;
preprint hep-ph0110083.
- A. B. Goncharov, `Multiple ζ-values,
Galois groups, and geometry of modular varieties,' in
European Congress of Mathematics (Barcelona, 2000), Vol. I,
Progr. Math. 201, Birkhäuser, Basel, 2001, pp. 361-392;
preprint AG/0005069.
- G. Racinet, `Doubles mélanges des
polylogarithmes multiples aux racines de l'unité,' Publ. Math. IHES
95 (2002), 185-231;
preprint QA/0202142;
English translation (courtesy of D. Moskovich).
- M. Waldschmidt, `Multiple polylogarithms: an
introduction,' in
Number Theory and Discrete Mathematics (Chandigarh, 2000),
A. K. Agarwal et. al. (eds.), Birkhäuser, Basel, 2002, pp. 1-12.
- S. Akiyama and H. Ishikawa, `On analytic
continuation of multiple L-functions and related zeta functions,'
in Analytic Number Theory, C. Jia and K. Matsumoto (eds.),
Developments in Math. 6, Kluwer, Dordrecht, 2002, pp. 1-16.
- M. Lalín, `Some examples of Mahler measure
as multiple polylogarithms,' J. Number Theory 103 (2003), 85-108.
- E. A. Ulanskii, `Identities for generalized
polylogarithms' (Russian),
Mat. Zametki 73 (2003), 613-624; English translation in Math.
Notes 73 (2003), 571-581.
- M. Kaneko and T. Arakawa, `On multiple L-values,'
J. Math. Soc. Japan 56 (2004), 967-991.
- Hoang Ngoc Minh, `Shuffle algebra and differential
Galois group of colored polylogarithms,' Nuclear Phys. B (Proc. Suppl.)
135 (2004), 220-224.
- J. Okuda, `Duality formulas of the special values
of multiple polylogarithms,' Bull. London Math. Soc. 37 (2005), 230-242;
preprint CA/0307137.
- J. Vollinga and S. Weinzierl, `Numerical evaluation
of multiple polylogarithms,' Comput. Phys. Commun. 167 (2005), 177-194;
preprint hep-ph/0410259.
- K. Matsumoto and H. Tsumura, `Generalized multiple
Dirichlet series and generalized multiple polylogarithms,' Acta Arithmetica
124 (2006), 139-158.
- Q. Wang, `Moduli spaces and multiple polylogarithm
motives,' Adv. in Math. 206 (2006), 329-357;
preprint AG/0610670.
- M. de Crisenoy, `Values at T-tuples of negative
integers of twisted multivariable zeta series associated to polynomials of
several variables,' Compos. Math. 142 (2006), 1373-1402.
- Yu. I. Manin, `Iterated integrals of modular forms
and noncommutative modular symbols,' in Algebraic Geometry and Number
Theory, V. Ginzburg (ed.),
Progress in Math. 256, Birkhäuser Boston, Boston, 2006, pp. 565-597;
preprint AG/0502576.
- M. Yu. Kalmykov, B. F. L. Ward and S. Yost,
`All order ε-expansion of Gauss hypergeometric functions with
integer and half-integer values of parameters,'
J. High
Energy Phys. (2007), 02#040 (20 pp).
- M. Yu. Kalmykov, B. F. L. Ward and S. Yost,
`Multiple (inverse) binomial sums of arbitrary weight and depth and the
all-order ε-expansion of generalized hypergeometric functions
with one half-integer value of parameter,'
J. High
Energy Phys. (2007), 10#048 (26 pp).
- M. Yu. Kalmykov, B. F. L. Ward and S. Yost,
`On the all-order ε-expansion of generalized hypergeometric
functions with integer values of parameters,'
J. High
Energy Phys. (2007), 11#009 (12 pp).
- J. Zhao, `Analytic continuation of multiple
polylogarithms,' Analysis Math. 33 (2007), 301-323;
preprint AG/0302054.
- J. Sondow and S. A. Zlobin, `Integrals over
polytopes, multiple zeta values and polylogarithms, and Euler's constant'
(Russian),
Mat. Zametki 84 (2008), 606-626; English translation in
Math. Notes 84 (2008), 568-583;
preprint 0705.0732[NT].
- J. Zhao, `Multiple polylogarithm values at
roots of unity,' C. R. Acad. Sci. Paris Ser. I 346 (2008),
1029-1032; cf.
preprint 0810.1064[NT].
- M. de Crisenoy and D. Essouabri,
`Relations between values at T-tuples of negative integers of twisted
multivariable zeta series associated to polynomials of several variables,'
J. Math. Soc. Japan 60 (2008), 1-16.
- N. Kurokawa, M. Lalín and H. Ochiai,
`Higher Mahler measures and zeta functions,' Acta Arithmetica 135
(2008), 269-297;
preprint 0908.0171[NT].
- M. Yu. Kalmykov and B. A. Kniehl, `Towards
all-order Laurent expansion of generalized hypergeometric functions
around rational values of parameters,' Nuclear Phys. B 809 (2009),
365-405;
preprint 0807.0567[hep-th].
- K. Kimoto and Y. Yamasaki, `A variation
of multiple L-values arising from the spectral zeta function of the
non-commutative harmonic oscillator,'
Proc. Amer. Math. Soc. 137 (2009), 2503-2515.
- Y. Yamasaki, `Evaluations of multiple Dirichlet
L-values via symmetric functions,' J. Number Theory 129 (2009),
2369-2386;
preprint 0712.1639[NT].
- T. Mansour, `Identities for sums of a
q-analogue of polylogarithm functions,'
Lett. Math. Phys. 87 (2009), 1-18.
- S. Oi, `Gauss hypergeometric functions, multiple
polylogarithms, and multiple zeta values,' Publ. Res. Inst. Mat. Sci. 45
(2009), 981-1009; cf.
preprint 0810.1829[QA].
- J. Zhao, `Standard relations of
multiple polylogarithms at roots of unity,'
Documenta Math.
15 (2010), 1-34.
- A. Zaharescu and M. Zaki, `On the singularities
of multiple L-functions,' Cent. Eur. J. Math. 8 (2010), 289-298.
- Y. Komori, K. Matsumoto and H. Tsumura,
`On multiple Bernoulli polynomials and multiple L-functions of
root systems,' Proc. London Math. Soc. (3) 100 (2010), 303-347.
- J. Zhao, `Multi-polylogs at twelfth roots
of unity and special values of Witten multiple zeta function attached
to the exceptional Lie algebra g2,' J. Algebra Appl.
9 (2010), 327-337;
preprint 0904.0888[NT].
- M. Yu. Kalmykov and B. A. Kniehl, `"Sixth root
of unity" and Feynman diagrams: hypergeometric function approach point
of view,' Nuclear Phys. B (Proc. Suppl.) 205-206 (2010), 129-134;
preprint 1007.2373[math-ph].
- S. Oi and K. Ueno, `Iterated integrals and
relations of multiple polylogarithms,' in
Representation Theory and Combinatorics,
RIMS Kôkyûroku 1689 (2010), pp. 101-116.
- Y. Komori, K. Matsumoto, and H. Tsumura,
`Multiple Bernoulli polynomials and multiple zeta-functions of root systems,'
in Representation Theory and Combinatorics,
RIMS Kôkyûroku 1689 (2010), pp. 117-132.
- Y. Komori, K. Matsumoto, and H. Tsumura,
`A survey on the theory of multiple Bernoulli polynomials and multiple
L-functions of root systems,'
RIMS Kôkyûroku Bessatsu B28 (2011), 99-120.
- D. Essouabri, K. Matsumoto, and H. Tsumura,
`Multiple zeta-functions associated with linear recurrence sequences
and the vectorial sum formula,' Canad. J. Math. 63 (2011),
241-276.
- G. Kawashima, T. Tanaka, and N. Wakabayashi,
`Cyclic sum formula for multiple L-values,' J. Algebra 348
(2011), 336-349.
- J. Ablinger, J. Blümlein and C. Schneider,
`Harmonic sums and polylogarithms generated by cyclotomic polynomials,'
J. Math. Phys. 52 (2011), art. 102301 (52 pp);
preprint 1105.6063[math-ph].
- J. Zhao and X. Zhou, `Reducibility of
signed cyclic sums of Mordell-Tornheim zeta and L-values,'
J. Ramanujan Math. Soc. 26 (2011), 383-414;
preprint 0902.1262[NT].
- B. Enriquez and H. Furusho, `Mixed pentagon, octagon
and Broadhurst duality equations,' J. Pure Appl. Algebra 216 (2012),
982-995.
- S. Zlobin, `Special values of generalized
polylogarithms,' J. Math. Sci. 182 (2012), 484-504;
preprint 0712.1656[NT].
- S. Oi and K. Ueno, `KZ equation
on the moduli space M0,5 and the harmonic product of multiple
polylogarithms,' Proc. London Math. Soc. (3) 105 (2012), 983-1020;
preprint 0910.0718[QA].
- J. Enjalbert and Hoang Ngoc Minh, `Combinatorial
study of colored Hurwitz polyzêtas,' Discrete Math. 312 (2012),
3489-3498;
preprint 1206.1216[CO].
- L. Guo and B. Xie, `Explicit double shuffle
relations and a generalization of Euler's decomposition formula,'
J. Algebra 380 (2013), 46-77;
preprint 0808.2618[NT].
- K.-G. Schlesinger, `Some remarks on q-deformed
multiple polylogarithms,'
preprint QA/0111022.
- W. Zudilin, `One parameter models of Hopf
algebras associated with multiple zeta values,'
preprint.
- S. Oi, `Representaion of the Gauss hypergeometric
function by multiple polylogarithms and relations of multiple zeta values,'
preprint NT/0405162.
- S. Yamamoto, `A sum formula of multiple
L-values,'
preprint 1101.3948[NT].
- S. Oi and K. Ueno, `Connection problem of
Knizhnik-Zamolodchikov equation on moduli space M0,5,'
preprint 1109.0715[QA].
- T. Anzai and Y. Sumino, `Algorithms to evaluate
multiple sums from loop computations,'
preprint 1211.5204[hep-th].
- J. Ablinger and J. Blümlein, `Harmonic sums,
polylogarithms, special numbers, and their generalizations,'
preprint 1304.7071[math-ph].
G. FINITE MULTIPLE HARMONIC SUMS
- J. Blümlein and S. Kurth, `Harmonic sums
and Mellin transforms up to two-loop order,'
Phys. Rev. D 60 (1999), art. 01418 (31 pp);
preprint hep-ph9810241.
- J. A. M. Vermaseren, `Harmonic sums, Mellin transforms
and integrals,' Int. J. Modern Phys. A 14 (1999), 2037-2076;
preprint hep-ph9806280.
- S. Moch and J. A. M. Vermaseren, `Deep inelastic
structure functions at two loops,' Nuclear Phys. B 573 (2000), 853-907;
preprint hep-ph9912355.
- J. Blümlein, `Analytic continuation of Mellin
transforms up to two-loop order,' Comput. Phys. Commun. 133 (2000),
76-104;
preprint hep-ph0003100.
- J. Blümlein, `Algebraic relations between
harmonic sums and associated quantities,' Comput. Phys. Commun. 159
(2004), 19-54;
preprint hep-ph0311046.
- M. E. Hoffman, `The Hopf algebra structure of
multiple harmonic sums,' Nuclear Phys. B (Proc. Suppl.) 135 (2004),
214-219;
preprint QA/0406589.
- A. I. Davydychev and M. Yu. Kalmykov, `Massive
Feynman diagrams and inverse binomial sums,' Nuclear Phys. B 699
(2004), 3-64;
preprint hep-th/0303162.
- J. Blümlein and S. Moch, `Analytic
continuation of the harmonic sums for the 3-loop anomalous dimensions,'
Phys. Lett. B 614 (2005), 53-61;
preprint hep-ph/0503188.
- D. M. Bradley, `Duality for finite multiple
harmonic q-series', Disc. Math. 300 (2005), 44-56.
- C. Costermans, J-Y. Enjalbert and Hoang Ngoc Minh,
`Algorithmic and combinatoric aspects of multiple harmonic sums,'
in 2005 International Conference on Analysis of Algorithms, C.
Martínez (ed.),
DMTCS Conference Vol. AD (2005), pp. 59-70.
- C. Costermans, J-Y. Enjalbert, Hoang Ngoc Minh
and M. Petitot,
`Structure and asymptotic expansion of multiple harmonic sums,' in
International Symposium on Symbolic and Algebraic Computation
(Beijing, 2005), M. Kauers (ed.), ACM Press, New York, 2005,
pp. 100-107.
- C. Costermans and Hoang Ngoc Minh,
`Some results à l'Abel obtained by use of techniques à la
Hopf,' in
Global Integrability of Field Theories (Daresbury, UK, 2006),
J. Calmet et. al. (eds.), Universitätsverlag Karlsruhe, 2006,
pp. 63-83.
- C. Sekine, `Partial sums of multiple zeta value
series,' Tokyo J. Math. 29 (2006), 465-474.
- J. Zhao, `Bernoulli numbers, Wolstenholme's
theorem, and p5 variations of Lucas' theorem,'
J. Number Theory 123 (2007), 18-26.
- J. Zhao, `Wolstenholme type theorem for
multiple harmonic sums,' Int. J. Number Theory 4 (2008), 73-106;
preprint NT/0301252.
- M. Kuba, H. Prodinger, and C. Schneider,
`Generalized reciprocity laws for sums of harmonic numbers,'
Integers 8(1)
(2008), #A17 (20 pp).
- S. Albino, `Analytic continuation of harmonic
sums,' Phys. Lett. B 674 (2009), 41-48.
- C. Costermans and Hoang Ngoc Minh,
Noncommutative algebra, multiple harmonic sums and applications in
discrete probability, J. Symbolic Comp. 44 (2009), 801-817.
- J. Blümlein, `Structural relations of
harmonic sums and Mellin transforms up to weight w = 5,' Comput. Phys.
Commun. 180 (2009), 2218-2249;
preprint 0901.3106[hep-ph].
- G. Kawashima, `A generalization of the duality
for multiple harmonic sums,' J. Number Theory 130 (2010), 347-359;
preprint 0802.1228[NT].
- M. Kuba and H. Prodinger,`On a reciprocity
law for finite multiple zeta values,'
Int. J. Combinatorics 2010, art. no. 153621 (13 pp).
- M. Kuba and H. Prodinger, `A note on Stirling series,'
Integers 10
(2010), #A34, 393-406.
- R. Tauraso, `Congruences involving alternating
multiple harmonic sums,'
Electronic J. Combinatorics 17(1) (2010), R16 (11 pp).
- M. Kuba, `On functions of Arakawa and Kaneko
and multiple zeta functions,'
Appl. Anal. Discrete Math. 4 (2010), 45-53.
- R. Tauraso, `New harmonic number identities
with applications,'
Sém. Lothar. Combin. 63 (2010), art. B63g (8 pp).
- G. Kawashima, `A generalization of the duality
for finite multiple harmonic q-series,' Ramanujan J. 21 (2010),
335-347;
preprint 0905.0244[NT].
- R. Tauraso and J. Zhao, `Congruences of alternating
multiple harmonic sums,' J. Comb. Number Theory 2 (2010), iss. 2, art. 3;
preprint 0909.0670[NT].
- J. Blümlein, `Structural relations of
harmonic sums and Mellin transforms at weight w = 6,' in
Motives, Quantum Field Theory and Pseudodifferential Operators
(Boston, 2008), A. Carey et. al. (eds.),
Clay Math. Proc. 12, Amer. Math. Soc., Providence, RI, 2010, pp. 167-187;
preprint 0901.0837[math-ph].
- J. Zhao, `Mod p structure of alternating
and non-alternating multiple harmonic sums,'
J. Théor. Nombres Bordeaux 23 (2011), 299-308.
- Kh. Hessami Pilehrood and T. Hessami Pilehrood,
`Congruences arising from Apéry-type series for zeta values,'
Adv. Appl. Math. 49 (2012), 218-238;
preprint 1108.1893[NT].
- J. Zhao, `Finiteness of p-divisible sets
of multiple harmonic sums,' Ann. Sci. Math. Québec 36 (2012),
419-443;
preprint NT/0303043.
- J. Zhao, `On q-analog of Wolstenholme
type congruences for multiple harmonic sums,'
Integers 13 (2013)
, #A23 (11 pp).
- M. E. Hoffman, `Quasi-symmetric functions and
mod p multiple harmonic sums,'
preprint NT/0401319.
- G. Kawashima, `Multiple series expressions
for the Newton series which interpolate finite multiple harmonic sums,'
preprint 0905.0243[NT].
- Kh. Hessami Pilehrood, T. Hessami Pilehrood,
and R. Tauraso, `New properties of multiple harmonic sums modulo p
and p-analogues of Leshchiner's series,'
preprint 1206.0407[NT].
- J. Rosen, `Multiple harmonic sums and Wolstenholme's
theorem,'
preprint 1302.0073[NT].
- A. Ablinger, J. Blümlein, and C. Schneider,
`Analytic and algebraic aspects of generalized harmonic sums and
polylogarithms,'
preprint 1302.0378[math-ph].
- J. Zhao, `Identity families of multiple harmonic
sums and multiple zeta (star) families,'
preprint 1303.2227[NT].
- S. Saito and N. Wakabayashi, `The Bowman-Bradley
type theorem for finite multiple zeta values,'
preprint 1304.2608[NT].
- E. Linebarger and J. Zhao, `A family of
multiple harmonic sum and multiple zeta star value identities,'
preprint 1304.3927[NT].
 |
 |
 |
 |
| home |
research |
MZV page |
index |