
Motion in an Inverse-Square Central Force
Field

1 Central Forces and Angular Momentum

Suppose we have a central force, that is, a force that depends only on the
distance to the origin and is directed either toward or away from the origin.
Then we can write the force as

~F = f(r)~r (1)

where f(r) is a scalar function (We write r =
√
x2 + y2 + z2 for the length of

the vector ~r: of course this is just the distance to the origin). For a particle
of mass m whose position as a function of time is given by ~r(t), we define its
angular momentum by

~L(t) = m~r(t)× ~r′(t)
Fact: If a particle moves subject to a central force, its angular momentum
is constant.
Proof: Using the product rule, we compute the derivative of ~L(t) as

~L′(t) = m~r′(t)× ~r′(t) +m~r(t)× ~r′′(t) = m~r(t)× ~r′′(t)

since ~r′(t) crossed with itself is the zero vector. But Newton’s second law
says that

~F = m~r′′(t),

so our equation is
~L′(t) = ~r(t)× ~F .

But then, using equation (1), we have

~L′(t) = ~r(t)× f(r)~r(t) = 0
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and so ~L(t) must be a constant vector.

The constancy of the vector ~L has two important consequences.
Consequence 1: The motion takes place in a plane containing the origin.
This is because the vector ~r must always be perpendicular to the constant
vector ~L.
Consequence 2: The radius vector ~r sweeps out areas at a constant rate.
(This is Kepler’s first law in the context of planetary motion.)
Let ∆A be the area swept out by r(t) in the time interval ∆t. Then

∆A =
1

2
|~r(t)× ~r(t+ ∆t)| ≈ 1

2
|~r(t)× (~r(t) + ~r′(t)∆t| = 1

2
|~r(t)× ~r′(t)|∆t

so that
∆A

∆t
≈ 1

2
|~r(t)× ~r′(t)| = L

2m
,

where L = |~L| (which is constant). In the limit,

dA

dt
=

L

2m
.

2 Inverse-Square Force

Suppose now that f(r) = −K/r3, where K is a constant. (Note that the

force is attractive if K > 0 and repulsive if K < 0.) In this case ~F is called
an inverse-square force since

~F = −K
r3
~r = −K

r3
rr̂ = −K

r2
r̂,

where r̂ is the unit vector in the direction of ~r. In the case of planetary
motion, K = GM , where G is the universal gravitational constant and M
is the mass of the sun. In the case of motion in the electric field of a static
charged particle, K = Cq, where C is a universal constant and q is the
particle charge: in this case K can be negative.

From the product rule

~L = m~r × (rr̂)′ = mrr̂× (r′r̂ + rr̂′) = mr2r̂× r̂′,

and since ~F = −Kr−2r̂, we have

~F × ~L = −Kr−2r̂× (mr2r̂× r̂′) = −Kmr̂× (r̂× r̂′).
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Now use the vector identity

a× (b× c) = (a · c)b− (a · b)c (2)

to write this as
~F × ~L = −Km((r̂ · r̂′)r̂− (r̂ · r̂)r̂′).

But r̂ · r̂ = 1, and it follows from differentiating this equation that r̂ · r̂′ = 0.
Hence

~F × ~L = Kmr̂′. (3)

Since
d

dt

(
m~r′ × ~L

)
= m~r′′ × ~L = ~F × ~L,

equation (3) implies that

m~r′ × ~L = Kmr̂ + ~c,

for some vector constant ~c. Dot both sides with ~r to get

~r · (m~r′ × ~L) = Kmr + ~r · ~c. (4)

On the other hand, the vector identity (2) implies that

m~r′ × ~L = m2~r′ × (~r × ~r′) = m2|~r′|2~r −m2(~r′ · ~r)~r′

and thus
~r · (m~r′ × ~L) = m2r2|~r′|2 −m2(~r′ · ~r)2. (5)

Now
|a|2|b|2 − (a · b)2 = |a× b|2

for any vectors a and b, so equation (5) gives

~r · (m~r′ × ~L) = m2|~r′ × ~r|2 = L2.

Compare this with equation (4) to get

L2 = Kmr + ~r · ~c. (6)

Now choose polar coodinates in the plane of motion so that ~c points in
the direction of the positive x-axis. Then equation (6) is

L2 = Kmr + cr cos θ
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(where c = |~c|), or

r =
L2

c cos θ +Km
. (7)

Equation (7) is always a conic section (ellipse, parabola or hyperbola). It is
the equation of an ellipse if c < Km (and a circle if c = 0). If Km = c it is
a parabola, and for Km < c it is an hyperbola (in particular, we always get
hyperbolic orbits for a repulsive force). If the path of a particle is a closed
orbit, then it must be an ellipse: this is Kepler’s second law.
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