Motion in an Inverse-Square Central Force
Field

1 Central Forces and Angular Momentum

Suppose we have a central force, that is, a force that depends only on the
distance to the origin and is directed either toward or away from the origin.
Then we can write the force as

F = f(r)F (1)

where f(r) is a scalar function (We write r = y/x2 + y? + 22 for the length of
the vector 7 of course this is just the distance to the origin). For a particle
of mass m whose position as a function of time is given by 7(¢), we define its
angular momentum by

L(t) = mi(t) x 7(t)

Fact: If a particle moves subject to a central force, its angular momentum
is constant.
Proof: Using the product rule, we compute the derivative of L(t) as

L'(t) = mi (t) x 7(t) + mi(t) x 7(t) = mF(t) x 7(t)

since 77(t) crossed with itself is the zero vector. But Newton’s second law
says that

so our equation is

L'(t) =7(t) x F.

But then, using equation (1), we have
L'(t) = () x f(r)i(t) =0
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and so L(t) must be a constant vector.

The constancy of the vector L has two important consequences.
Consequence 1: The motion takes place in a plane containing the origin.
This is because the vector ¥ must always be perpendicular to the constant
vector L.

Consequence 2: The radius vector 7 sweeps out areas at a constant rate.
(This is Kepler’s first law in the context of planetary motion.)
Let AA be the area swept out by r(¢) in the time interval At. Then

1 1 1
AA = §|F(t) X 7t + At)| ~ §‘F(t) X (F(t) + 7 (t)At] = §|F(t) x 7 (t)| At
so that AA 1 I
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L L) < (1) = o
where L = |L| (which is constant). In the limit,
dA L
dt — 2m’
2 Inverse-Square Force
Suppose now that f(r) = —K/r® where K is a constant. (Note that the

force is attractive if K > 0 and repulsive if K < 0.) In this case F is called
an inverse-square force since

~ K K
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where 1 is the unit vector in the direction of . In the case of planetary
motion, K = GM, where G is the universal gravitational constant and M
is the mass of the sun. In the case of motion in the electric field of a static
charged particle, K = (C'q, where C' is a universal constant and ¢ is the
particle charge: in this case K can be negative.

From the product rule

L =mix (rt) = mrt x (r't + ri') = mrt x 1/,

and since F' = —Kr~2t, we have

S~

FxL=—Kr % x (mrtx#) = —Kmit x (f x #).
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Now use the vector identity
ax(bxc)=(a-c)b—(a-b)c

to write this as
FxL=—-Km((t- )t —(r-0)).

But r -1 =1, and it follows from differentiating this equation that r -1

Hence

Since p
£<mf'><f,> =mi" x L=F x L,
equation (3) implies that
mi’ x L = Kmi + ¢,
for some vector constant ¢. Dot both sides with 7" to get
7o (mi x L) = Kmr +7-¢.

On the other hand, the vector identity (2) implies that

and thus

Now
lal*[b* — (a-b)* = |a x b|”
for any vectors a and b, so equation (5) gives
7o (mi x L) =m?|f x 7> = L2,
Compare this with equation (4) to get

L?=Kmr+7-¢

(2)

'=0.

(3)

(6)

Now choose polar coodinates in the plane of motion so that ¢ points in

the direction of the positive z-axis. Then equation (6) is

L? = Kmr + crcosf



(where ¢ = |d]), or
L2

r:ccost9+Km' (7)

Equation (7) is always a conic section (ellipse, parabola or hyperbola). It is
the equation of an ellipse if ¢ < K'm (and a circle if ¢ = 0). If Km = c it is
a parabola, and for K'm < ¢ it is an hyperbola (in particular, we always get
hyperbolic orbits for a repulsive force). If the path of a particle is a closed
orbit, then it must be an ellipse: this is Kepler’s second law.



