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Multiple Zeta Values

The multiple zeta values (MZVs) are defined by

ζ(i1, . . . , ik) =
∑

n1>···>nk≥1

1

ni1
1 · · · n

ik
k

,

where i1, . . . , ik are positive integers with i1 > 1. We call k the
depth of the MZV, and i1 + · · ·+ ik its weight. There are many
remarkable relations among MZVs, starting with ζ(2, 1) = ζ(3)
(which is often rediscovered and posed as a problem, but was
known to Euler). One interesting fact is that all known
relations are homogeneous by weight, but we are very far from
proving this must be true.
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Ancient History

Euler studied MZVs of depth 1 (which are just the values of
the “Riemann” zeta function) and obtained the famous formula

ζ(2n) =
(−1)n−1B2n(2π)2n

2(2n)!
.

Somewhat less famously, he also studied MZVs of depth 2, and
of the many formulas he gave two are of interest here. First, he
found that the sum of all the depth-2 MZVs of weight m is just
ζ(m), that is

m−1∑
i=2

ζ(i ,m − i) = ζ(m).

Second, he gave an alternating sum formula for even weights:

2n−1∑
i=2

(−1)iζ(i , 2n − i) =
1

2
ζ(2n).
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Recent History

When MZVs of arbitrary depth started to be studied around
1988, one of the first results to attract interest was the
generalization of Euler’s sum theorem∑

i1,...,ik=m, i1>1

ζ(i1, . . . , ik) = ζ(m).

This was conjectured by C. Moen (who proved it for k = 3)
and proved in general by A. Granville and D. Zagier. More
recently there has been interest in the sums of MZVs of fixed
weight with even arguments, i.e.,

E (2n, k) =
∑

i1+···+ik=n

ζ(2i1, . . . , 2ik).
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Formulas for Even-Argument Sums

If you add Euler’s sum theorem in weight 2n to his alternating
sum theorem in the same weight, you get

E (2n, 2) =
3

4
ζ(2n).

Now it is true that E (2n, k) is always a rational multiple of
ζ(2n) (as I will shortly explain), but for k > 2 this multiple
depends on the weight 2n. Nevertheless, it is possible to get
formulas with weight-free coefficients if extra terms are allowed.
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The Shen-Cai Formulas

Earlier this year Z. Shen and T. Cai published the following
formulas for even-argument sums of depth 3 and 4:

E (2n, 3) =
5

8
ζ(2n)− 1

4
ζ(2)ζ(2n − 2)

E (2n, 4) =
35

64
ζ(2n)− 5

16
ζ(2)ζ(2n − 2).

What caught my eye was the coefficient of ζ(2n). Along with
E (2n, 1) = ζ(2n) and E (2n, 2) = 3

4ζ(2n) we have a sequence

1,
3

4
,

5

8
,

35

64
, . . .

1, 1 · 3

4
, 1 · 3

4
· 5

6
, 1 · 3

4
· 5

6
· 7

8
, . . .
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Symmetric Sums

Now I’ll explain why E (2n, k) ∈ Qπ2n.

Theorem (Hoffman, 1992)

Let i1, . . . , ik be integers larger than 1. If I = (i1, . . . , ik) and
the symmetric group Sk acts on I in the obvious way, then∑

σ∈Sk

ζ(σ · I ) =
∑

partitions Π of {1, . . . , k}

c(Π)ζ(I ,Π),

where for the partition Π = {P1, . . . ,Pt} we define

c(Π) = (−1)k−t(|P1| − 1)! · · · (|Pt | − 1)!

and ζ(I ,Π) =
t∏

s=1

ζ

∑
j∈Ps

ij

 .
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Symmetric Sums Cont’d

This theorem shows that any symmetric sum of MZVs (i.e.,
invariant under permutation of the exponent string) is a
rational linear combination of products of ordinary MZVs.
Thus ζ(6, 2) + ζ(2, 6) = ζ(6)ζ(2)− ζ(8), but it is unknown if
ζ(6, 2) is such a linear combination. In my 1992 paper I used
the theorem to prove that

E (2n, n) = ζ(2, 2, . . . , 2︸ ︷︷ ︸
n

) =
π2n

(2n + 1)!
.

Clearly any E (2n, k) is a symmetric sum, and although the
details look messy it must be linear combination of products of
even zetas homogeneous by weight, and so a rational multiple
of π2n (hence of ζ(2n)).
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But Which Rational Multiple?

The problem with using my theorem to actually compute
things is that it’s a sum over set partitions, which increase
according to Bell numbers

1, 2, 5, 15, 52, 203, 877, 4140 . . .

Further, the E (2n, k) get to be more complicated symmetric
sums as k gets smaller than n:

E (2n, n−1) = ζ(4, 2, . . . , 2)+ζ(2, 4, 2, . . . , 2)+· · ·+ζ(2, . . . , 2, 4)

E (2n, n − 2) = ζ(4, 4, 2, . . . , 2) + · · ·+ ζ(2, 2, . . . , 2, 4, 4)+

ζ(6, 2, . . . , 2) + · · ·+ ζ(2, . . . , 2, 6)
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But Which Rational Multiple? Cont’d

For example, it takes a fairly heroic calculation to get E (14, 5)
directly from my theorem: one has to add two sums of 52
products each, which eventually reduces to

1

24
ζ(2)4ζ(6) +

1

12
ζ(2)3ζ(4)2 − 3

4
ζ(2)2ζ(4)ζ(6)− 1

4
ζ(2)3ζ(8)

− 1

4
ζ(2)ζ(4)3 +

7

4
ζ(2)ζ(4)ζ(8) +

19

24
ζ(4)2ζ(6) +

5

6
ζ(2)ζ(6)2

+ ζ(2)2ζ(10)− 7

4
ζ(6)ζ(8)− 2ζ(4)ζ(10)− 5

2
ζ(2)ζ(12) + 3ζ(14)

=
π14

29189160000
.

Fortunately I didn’t persist in this foolishness for too long.
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But Which Rational Multiple? Cont’d

I realized that

E (2k , k) =
π2k

(2k + 1)!

has some only slightly more complicated cousins, e.g.,

E (2k + 2, k) =
kπ2k+2

3(2k + 1)!(2k + 3)

E (2k + 4, k) =
k(7k + 13)π2k+4

90(2k + 1)!(2n + 3)(2n + 5)
,

the latter of which makes the calculation of E (14, 5) much
faster. I’ll say where these formulas came from later, but first
I’ll explain what I did with them.
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Guessing the General Theorem

My idea was to come up with extensions of the Shen-Cai
formulas. Following the pattern of the leading coefficients, I
decided the formula for k = 5 should look like

E (2n, 5) =
63

128
ζ(2n) + aζ(2)ζ(n − 2) + bζ(4)ζ(n − 4)

for constants a and b. Setting n = 5 and n = 6 gave me two
equations in two unknowns, which I solved to get a = −21

64 and
b = 3

64 . So my guess was now

E (2n, 5) =
63

128
ζ(2n)− 21

64
ζ(2)ζ(n − 2) +

3

64
ζ(4)ζ(n − 4),

which I tested at n = 7: this is why I wanted to know E (14, 5).
The formula passed the test, so I worked out a conjectural
formula for E (2n, 6) in a similar way.

ME Hoffman Multiple Zeta Values of Even Arguments



Multiple Zeta
Values of

Even
Arguments

ME Hoffman

Outline

Introduction

Why E(2n, k)
is a Rational
Times π2n

Guessing the
General
Theorem

Symmetric
Functions

Proving the
General
Theorem

A Bernoulli-
Number
Formula

Accumulating Data

My idea was that the general formula looked like

E (2n, k) =
1

22(k−1)

(
2k − 1

k

)
ζ(2n) +

b k−1
2
c∑

j=1

ck,jζ(2j)ζ(2n − 2j),

and by solving systems with k close to n I got the following
coefficients ck,j (starting with k = 3)

k = 3 : c3,1 = −1
4

k = 4 : c4,1 = − 5
16

k = 5 : c5,1 = −21
64 c5,2 = 3

64
k = 6 : c6,1 = −21

64 c6,2 = 21
256

k = 7 : c7,1 = −165
512 c7,2 = 27

256 c7,3 = − 3
1024

k = 8 : c8,1 = −1287
4096 c8,2 = 495

4096 c8,3 = − 27
4096
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Guessing Coefficients

All these coefficients are consistent with the formulas

ck,1 =
−1

22(k−2)

(
2k − 3

k

)
ck,2 =

3

22(k−2)

(
2k − 5

k

)
ck,3 =

−3

22(k−2)

(
2k − 7

k

)
so I decided that

ck,j =
aj

22(k−2)

(
2k − 2j − 1

k

)
for some sequence a1, a2, . . . .
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What is the Next Term of this Sequence?

Now I pressed ahead, just solving for aj by using the equation
E (2k , k) = π2k/(2k + 1)! repeatedly. So my sequence was

a1 = −1, a2 = 3, a3 = −3,

a4 =
5

3
, a5 = −3

5
, a6 =

105

691

It did not escape my notice that 691 is the numerator of the
Bernoulli number B12. In fact all the data was consistent with

aj =
−1

(4j + 2)B2j

and so

ck,j =
−1

22k−3(2j + 1)B2j

(
2k − 2j − 1

k

)
.
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Symmetric Functions

Now I had my formula; I just had to prove it. In fact, the proof
involved a detour through the algebra Sym of symmetric
functions. Here are some definitions.
Let x1, x2, . . . all have degree 1, and let P ⊂ Q[[x1, x2, . . . ]] be
the set of formal power series in the xi of bounded degree.
Then P is a graded Q-algebra. An element f ∈ P is symmetric
if the coefficient of any term

xn1
i1
· · · xnk

ik

with i1, . . . , ik distinct, agrees with that of

xn1
1 · · · x

nk
k .

The set of such f forms an algebra Sym ⊂ P.
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Bases for Sym

For any integer partition λ = (λ1, λ2, . . . , λk), the monomial
symmetric function mλ is the “smallest” symmetric function
containing the monomomial xλ1

1 xλ2
2 · · · x

λk
k . For example,

m21 = x2
1 x2 + x2

1 x3 + · · ·+ x2
2 x3 + · · ·+ x1x2

2 + x1x2
3 + · · ·

The set {mλ|λ is a partition} is an integral basis for Sym.
The elementary symmetric functions are

ek = m(1k ),

where (1k) is the partition of k into 1’s.
The complete symmetric functions are

hk =
∑

λ is a partition of k

mλ.
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Bases for Sym Cont’d

The power-sum symmetric functions are

pk = m(k).

If for a partition λ = (λ1, λ2, . . . , λk) we let

eλ = eλ1eλ2 · · · eλk

and similarly hλ and pλ, then it is well known that

{eλ|λ is a partition} and {hλ|λ is a partition}

are integral bases for Sym, while

{pλ|λ is a partition}

is a rational basis.
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Generating Functions

The generating function of the elementary symmetric
functions is

E (t) =
∑
i≥0

ei t
i =

∏
i≥1

(1 + txi ),

while that for the complete symmetric functions is

H(t) =
∑
i≥0

hi t
i =

∏
i≥1

1

1− txi
= E (−t)−1.

The logarithmic derivative of the latter is the generating
function P(t) for the power sums:

P(t) =
d

dt
log H(t) = −

∑
i≥1

d

dt
log(1− txi ) =

∑
i≥1

pi t
i−1.

ME Hoffman Multiple Zeta Values of Even Arguments



Multiple Zeta
Values of

Even
Arguments

ME Hoffman

Outline

Introduction

Why E(2n, k)
is a Rational
Times π2n

Guessing the
General
Theorem

Symmetric
Functions

Proving the
General
Theorem

A Bernoulli-
Number
Formula

Even MZVs as Homomorphic Images

There is a homomorphism Z : Sym→ R induced by sending xi
to 1/i2. Then

Z(pk) = ζ(2k), Z(ek) = E (2k , k) =
π2k

(2k + 1)!

and

Z(hk) =
k∑

i=1

E (2k , i).

For k ≤ n, we define symmetric functions Nn,k so that
Z(Nn,k) = E (2n, k): that is, Nn,k is the sum of all monomial
symmetric functions corresponding to partitions of n having
length k.
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Recurrences

Now one of the first things I proved about the Nn,k was the
recurrence

p1Nn−1,k+p2Nn−2,k+· · ·+pn−kNk,k = (n−k)Nn,k+(k+1)Nn,k+1,

which somewhat resembles the standard recurrence

p1hn−1 + p2hn−2 + · · ·+ pn−1h1 + pn = nhn

of power-sum and complete symmetric functions. In particular,

p1Nk,k = Nk+1,k + (k + 1)Nk+1,k+1,

or
Nk+1,k = p1Nk,k − (k + 1)Nk+1,k+1.
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Recurrences Cont’d

Apply Z to the latter equation to get

E (2k + 2, k) = ζ(2)E (2k , k)− (k + 1)E (2k + 2, k + 1)

leading to the formula

E (2k + 2, k) =
π2m+2

6(2k + 1)!
− (k + 1)π2k+2

(2k + 3)!

=
kπ2k+2

3(2k + 1)!(2k + 3)

we saw earlier; the formula for E (2k + 4, k) arises in a similar
way. In fact, the desire for such formulas is what led me to
prove the recurrence.
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Generating Function for the Nn,k

It’s actually easy to write the generating function

F(t, s) = 1 +
∑

n≥k≥1

Nn,ktnsk ,

if we remember that the power of t keeps track of degree,
while s must keep track of the number of distinct xi ’s involved
in a symmetric function:

F(t, s) =
∞∏
i=1

(1 + stxi + st2x2
i + st3x3

i + · · · )

=
∞∏
i=1

1 + (s − 1)txi
1− txi

= H(t)E ((s − 1)t).
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Generating Function for the E (2n, k)

Now let’s apply Z to this result: if

F (t, s) = 1 +
∑

n≥k≥1

E (2n, k)tnsk

is the generating function for the E (2n, k), we have

F (t, s) = Z(F(t, s)) = Z(H(t))Z(E ((s − 1)t)

From our formula for ζ(ei ) we have

Z(E (t)) =
∞∑
i=0

π2i t i

(2i + 1)!
=

sinh(π
√

t)

π
√

t
.
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Generating Function for the E (2n, k) Cont’d

But H(t) = E (−t)−1, so

Z(H(t)) =
π
√
−t

sinhπ
√
−t

=
π
√

t

sinπ
√

t

and thus

F (t, s) =Z(H(t))Z(E (−(1− s)t))

=
π
√

t

sinπ
√

t

sin(π
√

1− s
√

t)

π
√

1− s
√

t

=
sin(π

√
t
√

1− s)√
1− s sinπ

√
t
.
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Using the Generating Function

Now that we have the generating function, we can use any
computer algebra system that does series (like PARI or Maple)
to spit out as many of the E (2n, k) as we like. This makes it
easy to compute not only E (14, 5), but also, say,

E (28, 9) =
19697π28

142327470280408148736000000
.

(In practice one finds that the hardest thing is finding the right
term in the output and reading out all the digits correctly.)
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Expanding out the Generating Function

There’s still the problem of proving the conjecture. We want a
formula for E (2n, k) for fixed k , which means we want to look
at the coefficient of sk in F (t, s). Writing

F (t, s) = 1 +
∑
k≥1

skGk(t),

then it is easy to see from the explicit formula that

Gk(t) =(−1)k
π
√

t

sinπ
√

t

∑
j≥k

(−1)jπ2j t j

(2j + 1)!

(
j

k

)

=(−1)k
π
√

t

sinπ
√

t

(−t)k

k!

dk

dtk

(
sinπ
√

t

π
√

t

)
.
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A Little Calculus Problem

So we have the small calculus problem of finding the nth
derivative of sin(π

√
t)/π
√

t. Evidently

(−t)n

n!

dn

dtn

(
sinπ
√

t

π
√

t

)
= Pn(π2t) cosπ

√
t + Qn(π2t)

sinπ
√

t

π
√

t

for some polynomials Pn, Qn.

One finds that

Pn(x) =−
b n−1

2
c∑

j=0

(−4x)j

22n−1(2j + 1)!

(
2n − 2j − 1

n

)

Qn(x) =

b n
2
c∑

j=0

(−4x)j

22n(2j)!

(
2n − 2j

n

)
.
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A Little Calculus Problem

So we have the small calculus problem of finding the nth
derivative of sin(π

√
t)/π
√

t. Evidently

(−t)n

n!

dn

dtn

(
sinπ
√

t

π
√

t

)
= Pn(π2t) cosπ

√
t + Qn(π2t)

sinπ
√

t

π
√

t

for some polynomials Pn, Qn. One finds that

Pn(x) =−
b n−1

2
c∑

j=0

(−4x)j

22n−1(2j + 1)!

(
2n − 2j − 1

n

)

Qn(x) =

b n
2
c∑

j=0

(−4x)j

22n(2j)!

(
2n − 2j

n

)
.
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Expanding out the Generating Function

Making use of our calculus exercise, we can now write

Gk(t) = −
b k−1

2
c∑

j=0

(−4π2t)j

22k−1(2j + 1)!

(
2k − 2j − 1

k

)
π
√

t cotπ
√

t

+

b k
2
c∑

j=0

(−4π2t)j

22k(2j)!

(
2k − 2j

k

)

=
1

2
(1− π

√
t cotπ

√
t)

b k−1
2
c∑

j=0

(−4π2t)j

22k−2(2j + 1)!

(
2k − 2j − 1

k

)
+ terms of degree < k .
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Restating the Conjecture

Now going back to the statement of our conjecture, we can
write it a bit more simply if we use Euler’s formula for ζ(2j);
this cancels the Bernoulli number in the denominator, leaving
us with the cleaner version

E (2n, k) =

b k−1
2
c∑

j=0

(−1)jπ2jζ(2n − 2j)

22k−2j−2(2j + 1)

(
2k − 2j − 1

k

)
.

Thus, we will be done if we can show Gk(t) is equal to

∑
n≥k

tk
b k−1

2
c∑

j=0

(−1)jπ2jζ(2n − 2j)

22k−2j−2(2j + 1)

(
2k − 2j − 1

k

)
.
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Restating the Conjecture Cont’d

Write the latter sum in the form

b k−1
2
c∑

j=0

(−4π2t)j

22k−2(2j + 1)!

(
2k − 2j − 1

k

)∑
n≥k

ζ(2n − 2j)tn−j ,

and note that∑
n≥k

ζ(2n − 2j)tn−j =
∑

n≥j+1

ζ(2n − 2j)tn−j −
k−1∑

n=j+1

ζ(2n − 2j)tn−j

=
∑
m≥2

ζ(m)tm −
k−1∑

n=j+1

ζ(2n − 2j)tn−j

=
1

2
(1− π

√
t cotπ

√
t)−

k−1∑
n=j+1

ζ(2n − 2j)tn−j .
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Conclusion

Hence the conjecture reads

Gk(t) =
1

2
(1−π

√
t cotπ

√
t)

b k−1
2
c∑

j=0

(−4π2t)j

22k−2(2j + 1)!

(
2k − 2j − 1

k

)
+ terms of degree < k ,

where the “terms of degree < k” are exactly those necessary to
cancel the terms of degree < k in the preceeding sum. But this
agrees with the result we got by expanding out the generating
function, so we’re done.
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Another Formula for E (2n, k)

We can get another sum for E (2n, k) as follows. Using the
recurrence mentioned earlier, we can obtain an explicit formula
for Nn,k in terms of elementary and complete symmetric
functions:

Nn,k =
n−k∑
i=0

(
n − i

k

)
(−1)n−k−ihien−i .

Apply Z to get

E (2n, k) =
(−1)n−k−1π2n

(2n + 1)!

n−k∑
i=0

(
n − i

k

)(
2n + 1

2i

)
2(22i−1−1)B2i .

Notice that this has n − k + 1 terms rather than bk−1
2 c+ 1

terms as the other formula does.
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A Bernoulli-Number Formula

Now if we equate our two formulas for E (2n, k) and use Euler’s
formula to eliminate values of zeta functions in favor of
Bernoulli numbers, we get the identity

b k−1
2
c∑

i=0

(
2k − 2i − 1

k

)(
2n + 1

2i + 1

)
B2n−2i =

(−1)k22k−2n
n−k∑
i=0

(
n − i

k

)(
2n + 1

2i

)
(22i−1 − 1)B2i , k ≤ n.

Curiously, there is a known Bernoulli-number identity that says
the left-hand side equals 2n+1

2

(2k−2n
k

)
on the complementary

range k > n.
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