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Multiple Zeta Values

For positive integers i1, i2, . . . ik with i1 > 1 (to ensure
convergence), we define the multiple zeta value (henceforth
MZV) ζ(i1, i2 . . . , ik) as the sum of the k-fold series∑

n1>n2···>nk≥1

1

ni1
1 ni2

2 · · · n
ik
k

.

We call k the length of ζ(i1, . . . , ik), and i1 + · · ·+ ik its
weight. Of course, the MZVs of length 1 are the values ζ(i) of
the Riemann zeta function at positive integers i > 1.
MZVs go back to Euler (in the case k = 2), and recently have
appeared in a remarkable number of contexts—from the
Kontsevich knot invariants to calculations in perturbative
quantum field theory. We will mention some topological
appearances of MZVs later in this talk.
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Rational Reducibility

It is natural to ask if all MZVs can be written in terms of
ordinary zeta values. We say an MZV is rationally reducible if
it is a rational linear combination of products of the ζ(i). In
fact all MZVs through weight 7 are rationally reducible, e.g.,

ζ(2, 1, 3) = ζ(3)2 − 13

16
ζ(6).

But this seems to hit a brick wall in weight 8: ever since Euler,
no one has been able to write ζ(6, 2) as a rational linear
combination of products of the ζ(i). (Euler falsely claimed in a
1743 letter to Goldbach that

ζ(6, 2) = 2ζ(3)ζ(5)− 3

2
ζ(4)2 − 3

4
ζ(8),

but this claim is nowhere to be found in his 1776 paper.)
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Rational Reducibility Cont’d

By Euler’s well-known formula

ζ(2i) =
(2π)2i

2(2i)!
|B2i | (1)

all the ζ(i) for even i are rational multiples of powers of π2, so
a MZV is rationally reducible if it is a rational linear
combination of products of π2 and ζ(i) for odd i . It is not even
known if ζ(5) is irrational, so it is unrealistic to expect to prove
that, say, ζ(6, 2) is not a rational linear combination of
products of ζ(3), ζ(5), and π2, but in the other direction some
classes of MZVs can be proved rationally reducible. For
example, Euler actually showed in his 1776 paper that ζ(m, n)
is rationally reducible if m + n is odd.
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Height of MZVs

Call an exponent string (i1, . . . , ik) admissible if i1 > 1, and
minimal admissible if it cannot be written as the juxtaposition
of shorter admissible substrings. For example, (3, 1, 1, 2) is
admissible, but not minimal admissible (since it is the
juxtaposition of (3, 1, 1) with (2)). Any admissible string S is a
juxtaposition of h ≥ 1 minimal admissible substrings: we call h
the height of S (so, e.g., (3, 1, 1, 2) has height 2).
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Rational Reducibility Results

Here are two results that follow from the relation between
MZVs and the quasi-symmetric functions we are about to
describe.

Theorem (Symmetric Combination)

If i1, . . . , ik are all greater than or equal to 2, the symmetric
combination ∑

σ∈Sn

ζ(iσ(1), . . . , iσ(k)) (2)

is a rational linear combination of products of the ζ(i)’s. In
particular, any MZV of the form ζ(k, k , . . . , k) with k > 1 is
rationally reducible.

Theorem (Height One)

Any height one MZV is rationally reducible.
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Symmetric and Quasi-Symmetric Functions

Let x1, x2, . . . be a countable sequence of indeterminates, each
of degree 1, and let

P ⊂ Q[[x1, x2, . . . ]]

be the set of formal power series in the xi of bounded degree:
P is a graded Q-algebra. Any f ∈ P is quasi-symmetric if the
coefficients in f of

xp1
i1

xp2
i2
· · · xpn

in
and xp1

j1
xp2
j2
· · · xpn

jn

agree whenever i1 < · · · < in and j1 < · · · < jn. The
quasi-symmetric functions QSym form an algebra, which
properly includes the algebra Sym of symmetric functions, e.g.,∑

i<j

x2
i xj = x2

1x2 + x2
1x3 + x2

2x3 + · · · (3)

is quasi-symmetric but not symmetric.
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Monomial (Quasi)symmetric Functions

For a composition (ordered sequence of positive integers)
I = (i1, . . . , ik), the corresponding monomial quasi-symmetric
function MI ∈ QSym is defined by

MI =
∑

n1<n2<···<nk

x i1
n1x i2

n2 · · · x
ik
nk

(so (3) above is M(2,1)). Evidently {MI |I is a composition} is
an integral basis for QSym. For any composition I , let π(I ) be
the partition given by forgetting the ordering. For any partition
λ, the monomial symmetric function mλ is the sum of the MI

with π(I ) = λ, e.g.,

m21 = M(2,1) + M(1,2).

The set {mλ|λ is a partition} is an integral basis for Sym.
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Other Bases for Sym

1 The elementary symmetric functions are

ek = M(1)k = mπ((1)k ),

where (1)k is the composition consisting of k 1’s. Then
{eλ|λ is a partition} is an integral basis for Sym, where
eλ = eλ1eλ2 · · · for λ = π(λ1, λ2, . . . ).

2 The complete symmetric functions are

hk =
∑
|I |=k

MI =
∑
|λ|=k

mλ.

Then {hλ|λ is a partition} is a integral basis for Sym.

3 The power-sum symmetric functions are

pk = M(k) = mk .

Then {pλ|λ is a partition} is a rational basis for Sym.
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Multiplication of Monomial Quasi-Symmetric
Functions

Two monomial quasi-symmetric functions MI and MJ multiply
according to a “quasi-shuffle” rule in which the parts of I and
J are shuffled and also combined. For example,

M(1)M(1,2) = M(1,1,2) + M(1,1,2) + M(1,2,1) + M(2,2) + M(1,3)

= 2M(1,1,2) + M(1,2,1) + M(2,2) + M(1,3).

In general the number of terms in the product MIMJ is

min{`(I ),`(J)}∑
i=0

(
`(I ) + `(J)− i

i , `(I )− i , `(J)− i

)
so, e.g., M(1,1)M(2,1) has

(4
2

)
+
( 3
111

)
+
(2
2

)
= 13 terms:

M(1,1)M(1,2) = 3M(1,1,1,2) + 2M(1,1,2,1) + M(1,2,1,1)

+ M(1,2,2) + M(2,1,2) + M(2,2,1) + 2M(1,1,3) + M(1,1,3,1) + M(2,3).
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Algebraic Structure of QSym

Over the rationals, the algebraic structure of QSym can be
described as follows. Order compositions lexicographically:

(1) < (1, 1) < (1, 1, 1) < · · · < (1, 2) < · · ·
< (2) < (2, 1) < · · · < (3) < · · ·

A composition I is Lyndon if I < K whenever I = JK for
nonempty compositions J,K .

Theorem (Reutenauer-Malevenuto, 1995)

QSym is a polynomial algebra on MI , I Lyndon.

Since the only Lyndon composition ending in 1 is (1) itself, the
subspace QSym0 of QSym generated by the MI such that I
ends in an integer greater than 1 is a subalgebra, and in fact
QSym = QSym0[M(1)].
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The Function A− : QSym→ QSym

Consider the linear function from QSym to itself defined by

A−(M(a1,...,ak−1,ak )) =

{
M(a1,...,ak−1), if ak = 1,

0, otherwise.

(Here M∅ is interpreted as 1, so A−(M(1)) = 1.)
From the quasi-shuffle description of multiplication in QSym
the following result can be proved.

Proposition

A− : QSym→ QSym is a derivation.

Note that ker A− = QSym0. So if we think of QSym as
QSym0[M(1)], then A− is differentiation by M(1).
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MZVs as Homomorphic Images

There is a homomorphism ζ : QSym0 → R given by

ζ(MI ) = ζ(ik , ik−1, . . . , i1)

for I = (i1, . . . , ik), induced by sending xj → 1
j . (This is

well-defined since ik > 1 for MI ∈ QSym0.) Note
ζ(pi ) = ζ(M(i)) = ζ(i) for i > 1. The intersection

Sym0 = QSym0 ∩Sym

is the subspace of Sym generated by the mλ such that all parts
of λ are 2 or more, and is in fact the subalgebra of Sym
generated by the pi with i > 1. This proves the Symmetric
Combination Theorem: any combination (2) of MZVs is the
image under ζ of an element of Sym0, hence a polynomial in
ζ(2), ζ(3), . . . with rational coefficients.
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Explicit Formulas

In the case of ζ((k)n), k > 1, one can be quite explicit: from
the theory of symmetric functions

en =
1

n!

∣∣∣∣∣∣∣∣∣∣∣

p1 1 0 · · · 0
p2 p1 2 · · · 0
...

...
...

. . .
...

pn−1 pn−2 pn−3 · · · n − 1
pn pn−1 pn−2 · · · p1

∣∣∣∣∣∣∣∣∣∣∣
and hence ζ((k)n) is

1

n!

∣∣∣∣∣∣∣∣∣∣∣

ζ(k) 1 0 · · · 0
ζ(2k) ζ(k) 2 · · · 0

...
...

...
. . .

...
ζ((n − 1)k) ζ((n − 2)k) ζ((n − 3)k) · · · n − 1
ζ(nk) ζ((n − 1)k) ζ((n − 2)k) · · · ζ(k)

∣∣∣∣∣∣∣∣∣∣∣
.
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Extending ζ to ζu : QSym→ R[u]

Since QSym = QSym0[M(1)], we can extend ζ to a
homomorphism ζu : QSym→ R[u] by defining ζu(w) = ζ(w)
for w ∈ QSym0 and ζu(M(1)) = u. In view of the Proposition
above, we have the following commutative diagram:

QSym
ζu−−−−→ R[u]

A−

y d
du

y
QSym

ζu−−−−→ R[u]

In the case u = γ ≈ 0.5572 (Euler’s constant), the
homomorphism ζu turns out to be especially useful. To explain
why we must digress a bit to introduce some generating
functions.

Michael E. Hoffman MZVs & QSym: Theme & Variations



MZVs &
QSym:

Theme &
Variations

Michael E.
Hoffman

Outline

Multiple Zeta
Values

The Quasi-
Symmetric
Functions

ζ : QSym0 →
R and its
Extension ζu

u = γ and
Generating
Functions

Genera and
Topology

Factoring ζγ

Generating Functions

1 The generating function of the elementary symmetric
functions is

E (t) =
∑
i≥0

ei t
i =

∏
i≥1

(1 + txi ).

2 That for the complete symmetric functions is

H(t) =
∑
i≥0

hi t
i =

∏
i≥1

1

1− txi
= E (−t)−1.

3 The logarithmic derivative of H(t) is the generating
function P(t) for the power sums:

P(t) =
d

dt
log H(t) = −

∑
i≥1

d

dt
log(1− txi ) =

∑
i≥1

pi t
i−1.
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Generating Functions Cont’d

The power series expansion of ψ(1− t), where ψ is the
logarithmic derivative of the gamma function, is

ψ(1− t) = −γ −
∑
i≥2

ζ(i)t i−1.

If u = γ, then ζu(p1) = γ and so ζu(P(t)) = −ψ(1− t).
Hence (since P(t) = d

dt log H(t)) we have

Theorem (Generating Function)

ζγ(H(t)) = Γ(1− t) .

From E (t) = H(−t)−1 follows ζγ(E (t)) = Γ(1 + t)−1.
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Generating Functions Cont’d

Now it can be shown analytically that the generating function

F (s, t) =
∑

n,m≥1
ζ(n + 1, (1)m−1)sntm

of the height one MZVs can be written

F (s, t) = 1− Γ(1− t)Γ(1− s)

Γ(1− t − s)
.

Applying the Generating Function Theorem, this is

F (s, t) = ζγ

(
1− H(t)H(s)

H(t + s)

)
.

Now

H(t) = exp

∑
i≥1

pi t
i

i

 = ep1t exp

∑
i≥2

pi t
i

i

 ,
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Generating Functions Cont’d

so it follows that

1− H(t)H(s)

H(t + s)
= 1− exp

∑
i≥2

pi
t i + s i − (t + s)i

i


and hence, applying ζγ ,∑

n,m≥1
ζ(n + 1, (1)m−1)sntm =

1− exp

∑
i≥2

ζ(i)
t i + s i − (t + s)i

i

 .

This proves the Height One Theorem: any height-one MZV
ζ(n + 1, (1)m−1) is a polynomial in the ζ(i), i ≥ 2, with
rational coefficients, though M((1)m−1,n+1) /∈ Sym for m > 1.
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Hirzebruch’s Theory of Genera

A genus is a function φ that assigns to any manifold M in
some class (say those with an almost complex structure) a
number φ(M), subject to the requirement that

φ(M × N) = φ(M)φ(N).

For an almost complex M of dimension 2n, a genus can be
given by

φ(M) = 〈Kn(c1, . . . , cn), [M]〉,
where the ci ∈ H2i (M;Z) are the Chern classes of M,
[M] ∈ H2n(M;Z) is the fundamental class of M, and {Ki} is a
multiplicative sequence: i.e., a sequence of homogeneous
polynomials (with deg Ki = i) so that, if

K (1 + c1 + c2 + · · · ) = 1 + K1(c1) + K2(c1, c2) + · · · ,
then K (a)K (b) = K (ab) for any formal series a, b having
constant term 1.
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Multiplicative Sequences

In fact, a multiplicative sequence {Ki} is determined by the
power series

K (1 + t) = 1 + r1t + r2t2 + r3t3 + . . . , (4)

since (by the algebraic independence of the elementary
symmetric functions ei ) we can think of the homogeneous
terms of an arbitrary formal series as the ei of new variables
x1, x2, . . . :

1 + e1 + e2 + e3 · · · = (1 + x1)(1 + x2) · · ·

and thus

K (1 + e1 + e2 + · · · ) = K (1 + x1)K (1 + x2) · · · .

We say {Ki} is the multiplicative sequence belonging to the
power series (4).
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Mirror Symmetry and the Γ-Genus

The Γ-genus is given by

Γ(M2n) = 〈Qn(c1, . . . , cn), [M2n]〉,

where {Qi} is the multiplicative sequence belonging to the
series

Γ(1 + t)−1 = 1 + γt +
1

2
(γ2 − ζ(2))t2 + · · · .

The polynomials Qi occur in the context of mirror symmetry,
which involves Calabi-Yau manifolds (for our purposes, Kähler
manifolds whose first Betti number and first Chern class both
vanish).
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Mirror Symmetry and the Γ-Genus Cont’d

String theorists are interested in Calabi-Yau manifolds of (real)
dimension 6, since they occur in supersymmetry theory.
(10-dimensional spacetime looks locally like R4 ×M6, where
M6 is a Calabi-Yau manifold.) They found that Calabi-Yau
manifolds seemed to come in “mirror pairs,” i.e. distinct
manifolds that gave the same physics. At present there are
mathematically rigorous constructions of mirrors only for
certain classes of Calabi-Yau manifolds (or orbifolds), e.g.,
hypersurfaces or complete intersections in toric varieties.
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Mirror Symmetry Cont’d

For one such class, Hosono, Klemm, Theisen and Yau (1995)
found relations between the Chern classes of a manifold and
period functions on its mirror: e.g., for a Calabi-Yau 3-fold X
that is a complete intersection in a product of weighted
projective spaces,

〈c3, [X ]〉 =
1

6ζ(3)
Kijk

∂3c

∂ρi∂ρj∂ρk
(0, . . . , 0). (5)

Here c(ρ1, ρ2, . . . ) are coefficients of a generalized
hypergeometric series for the period function on a mirror of X
(with gamma functions replacing the factorials so it can be
differentiated), and Kijk is the Yukawa coupling (B-model
correlation function).
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Libgober’s Formula

A. Libgober (1999) generalized these relations to higher
dimensions: e.g., if X is a Calabi-Yau d-fold which is a
hypersurface in a toric Fano manifold satisfying a technical
condition,

〈Qd(c1, . . . , cd), [X ]〉 =
1

d!
Ki1,i2,...,id

∂dc(0, . . . , 0)

∂ρi1∂ρi2 · · · ∂ρid
(6)

where Ki1,...,id is the suitably normalized d-point function
corresponding to a mirror X̃ of X and c(ρ1, . . . , ) are the
coefficients of the hypergeometric series for the holomorphic
period of X̃ at a maximal degeneracy point (of a partial
compactification of the deformation space of X̃ ).
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Libgober’s Formula Cont’d

We can write the coefficients of the Qi in terms of MZVs.

Theorem

The coefficient of eλ in Qi (e1, . . . , ei ) is ζγ(mλ) for any
partition λ of i .

Proof.

We use Generating Function Theorem, together with the
symmetry of the transition matrices between the bases {eλ}
and {mλ} of Sym:

∑
j≥0

Qj(e1, . . . , ej) =
∏
i≥1

1

Γ(1 + xi )
=

∏
i≥1

∑
j≥0

ζγ(ej)x j
i =

∑
λ

ζγ(eλ)mλ =
∑
λ

ζγ(mλ)eλ.
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Libgober’s Formula Cont’d

Thus, for example,

Q2(c1, c2) = ζ(2)c2 +
1

2
(γ2 − ζ(2))c2

1 (7)

and

Q3(c1, c2, c3) = ζ(3)c3 + (γζ(2)− ζ(3))c1c2+

1

6
(γ3 − 3γζ(2) + 2ζ(3))c3

1 (8)

In the Calabi-Yau case we have c1 = 0 and terms involving γ
don’t appear: e.g.,

Q3(0, c2, c3) = ζ(3)c3

which shows that (6) generalizes (5).
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Lu’s Γ̂-genus

Rongmin Lu (2008) considered the genus belonging to the
power series

e−γtΓ(1 + t)−1, (9)

which he calls the Γ̂-genus, and related it to a regularized
S1-equivariant Euler class.
The logarithmic derivative of (9) is

−γ − ψ(1 + t) =
∑
i≥2

ζ(i)(−t)i−1,

which is just the corresponding one for the Γ-genus with γ
removed. If we write {Pn} for the multiplicative sequence
corresponding to the Γ̂-genus, then Pn is Qn with γ set to zero.
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Lu’s Genus Cont’d

That is, the coefficient of eλ in Pn(e1, . . . , en) is ζ0(mλ). For
example,

P2(c1, c2) = ζ(2)c2 −
1

2
ζ(2)c2

1

from equation (7), and

P3(c1, c2, c3) = ζ(3)c3 − ζ(3)c1c2 +
1

3
ζ(3)c3

1

from equation (8).
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Lu’s Genus Cont’d

Let π : E → M be an m-dimensional complex vector bundle
with a spin structure, π` : LE → LM the corresponding loop
bundle (LM is the infinite-dimensional manifold of unbased
loops on M), and ν(E ) the E -normal bundle over M (i.e.,
i∗(LE )/E ). Lu defined a regularized Euler class ereg(ν(E )) and
gave a formula for it as follows. Let E = L1 ⊕ L2 ⊕ · · · ⊕ Lm be
the formal factorization of E into line bundles, xi = c1(Li ).
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Lu’s Genus Cont’d

Then

ereg(ν(E )) =

(
2π√

v

)m m∏
j=1

[
f

(
2πxj

v

)]−1
, (10)

where v is an indeterminate of degree 2 and
f (x) = eγxΓ(1 + x). Since

m∑
j=1

Pj(c1, . . . , cj) =
m∏
i=1

(f (xi ))−1,

equation (10) represents ereg as a kind of normalized Γ̂-genus.
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Hopf Algebra Characters

Now QSym is a graded Hopf algebra, with coproduct

∆(MI ) =
∑
I=JK

MJ ⊗MK

where the sum is over all decompositions of I as a juxtaposition
(including the cases J = ∅ and K = ∅). Also, ζγ is a real
character of the Hopf algebra QSym (that is, an algebra
homomorphism QSym→ R). A character χ of QSym is even if

χ(w) = (−1)|w |χ(w) (11)

for homogeneous elements w of QSym, and odd if

χ(w) = (−1)|w |χ(S(w)), (12)

where S is the antipode of QSym.
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The ABS Theorem

Theorem (Aguiar, Bergeron and Sottille, 2006)

Any real character of a Hopf algebra has a unique
decomposition in the convolution algebra into an even
character times an odd one.

Thus, there is an even character ζ+ and an odd character ζ− so
that ζγ = ζ+ζ− in the convolution algebra, i.e.,

ζγ(w) =
∑
(w)

ζ+(w(1))ζ−(w(2)) (13)

using Sweedler’s notation for coproducts:

∆(w) =
∑
(w)

w(1) ⊗ w(2).
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Primitives

The power sums pi = M(i) are primitive, i.e.

∆(pi ) = 1⊗ pi + pi ⊗ 1,

and so
ζ(i) = ζ(pi ) = ζ−(pi ) + ζ+(pi ). (14)

Equation (11) implies that ζ+(w) = 0 for any odd-dimensional
w , particularly w = pi , i odd. On the other hand, equation
(12) gives ζ−(pi ) = 0 for i even, since S(pi ) = −pi . Together
with equation (14), this says

ζ+(pi ) =

{
ζ(i), i even,

0, i odd,
and ζ−(pi ) =


0, i even,

ζ(i), i > 1 odd,

γ, i = 1.
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Even Parts Theorem

In general, computing ζ+(MI ) and ζ−(MI ) for an arbitrary
monomial quasi-symmetric function MI is difficult, apart from
the general fact that

ζ+(MI ) = 0 if |I | is odd.

Nevertheless, there is the following result, which can be proved
from the general theory of Aguiar-Bergeron-Sottille together
with a specific result of Aguiar-Hsiao (2004).

Theorem

If all parts of I are even, then ζ−(MI ) = 0.
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Computing ζ+ and ζ− on Sym

The situation is dramatically different if ζγ is restricted to Sym
(which is all we need for the Γ- and Γ̂-genera). The pi generate
Sym, so for every partition λ

mλ = Pλ(p1, p2, p3, p4, . . . )

for some polynomial Pλ with rational coefficients. Since ζ+ and
ζ− are homomorphisms,

ζ−(mλ) = Pλ(γ, 0, ζ(3), 0, . . . )

and
ζ+(mλ) = Pλ(0, ζ(2), 0, ζ(4), . . . ).

In view of Euler’s identity (1), the latter formula means that
ζ+(mλ) is a rational multiple of π|λ| when |λ| is even (and of
course ζ+(mλ) = 0 when |λ| is odd).
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Generating Functions Yet Again

Since the involution of Sym that exchanges the ei and the hi

leaves the odd pi fixed, it follows that ζ−(en) = ζ−(hn), i.e.,

ζ−

(
H(t)

E (t)

)
= 1.

On the other hand, ζ+(E (t)) is an even function, so
ζ+(E (t)) = ζ+(E (−t)) = ζ+(H(t))−1 and thus

ζ+

(
H(t)

E (t)

)
= ζ+(H(t))2.

Hence, using ζ+ζ− = ζγ and the Generating Function Theorem,

ζ+(H(t))2 = ζ+

(
H(t)

E (t)

)
ζ−

(
H(t)

E (t)

)
= ζγ

(
H(t)

E (t)

)
=

Γ(1− t)Γ(1 + t).
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Factored Generating Function Theorem

Because of the reflection formula for the gamma function, this
is

ζ+(H(t))2 =
πt

sinπt
.

Thus we have the following result.

Theorem (Factored Generating Function)

The ABS factors of ζγ are given by

ζ+(E (t)) = ζ+(H(t))−1 =

√
sinπt

πt

ζ−(E (t)) = ζ−(H(t)) =

√
sinπt

πt
Γ(1− t).
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Explicit Formula for ζ−(en)

There is also the explicit formula for en in terms of power sums:

en =
∑

i1+2i2+···+nin=n

(−1)n

i1!i2! · · · in!
(−p1)i1 · · ·

(
−pn

n

)in
,

which follows from

E (t) = H(−t)−1 = exp

(
−
∫ −t
0

P(s)ds

)
.

If we apply ζ− to this, the minus signs cancel nicely to give

ζ−(en) =
∑

i1+3i3+5i5···=n

γ i1ζ(3)i3ζ(5)i5 · · ·
i1!3i3 i3!5i5 i5! · · ·

. (15)
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An Example

To see how to put these results together, we note that√
sinπt

πt
= 1− π2t2

12
+
π4t4

1440
− · · ·

Then since the ei are divided powers,

∆(e4) = 1⊗ e4 + e1 ⊗ e3 + e2 ⊗ e2 + e3 ⊗ e1 + e4 ⊗ 1

and from the Factored Generating Function Theorem together
with equations (13) and (15) it follows that

ζγ(e4) = ζ−(e4) + ζ+(e2)ζ−(e2) + ζ+(e4)

=
γ4

4!
+
γζ(3)

3
− π2

12
· γ

2

2
+

π4

1440

=
γ4

24
− γ2ζ(2)

4
+
γζ(3)

3
+
ζ(4)

16
.
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