
Maxwell’s Equations for Electricity and
Magnetism

1 Electrostatics

According to Coulomb’s Law, the force on a charge q′ at location ~r = xi +
yj + zk due to a point charge q at the origin is

1

4πε0

qq′~r

|~r|3
=

qq′

4πε0|~r|2
r̂, (1)

where r̂ is the unit vector in the direction of ~r and ε0 is a physical constant
(the permittivity of vaccum, 8.854 × 10−12 farad/meter). We can rephrase
this law by introducing the electric field

~E =
q

4πε0|~r|2
r̂ (2)

due to the point charge q: then the force on any charge q′ is simply q′ ~E.
Now consider a sphere SR of radius R centered on the origin. We want

to compute the total flux of the electric field (2) through SR, that is,∫∫
SR

~E · d~S =

∫∫
SR

q

4πε0|~r|2
r̂ · d~S =

q

4πε0

∫∫
SR

r̂

R2
· d~S. (3)

Using the parametrization

~r = R cos θ sinφi +R sin θ sinφj +R cosφk

for SR, we have

d~S =
∂~r

∂φ
× ∂~r

∂θ
dφdθ = (cos θ sinφi + sin θ sinφj + cosφk)R2 sinφdφdθ

= r̂R2 sinφdφdθ
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and so the integral (3) becomes

q

4πε0

∫ 2π

0

∫ π

0

r̂

R2
· r̂R2 sinφdφdθ =

q

4πε0

∫ 2π

0

∫ π

0

sinφdφdθ =

q

4πε0
4π =

q

ε0
. (4)

Notice that this result is independent of the radius R of the sphere. In fact
this calculation can be generalized: if Σ is any closed surface containing the
origin, then ∫∫

Σ

~E · d~S =
q

ε0
. (5)

Now the electric field is additive: that is, the electric field ~E due to two point
charges q and q′ is the sum of the electric field due to q and the electric field
due to q′. It follows that for any collection of point charges, the electric field
~E satisfies the equation∫∫

Σ

~E · d~S =
1

ε0
(sum of charges contained in Σ) (6)

This is the integral form of Gauss’s Law. Notice that if Σ surrounds a positive
charge, then both sides of equation (6) are positive: if Σ surrounds a negative
charge, both sides of (6) are negative. That is, positive charges are sources

of the electric field ~E, and negative charges are sinks of ~E.
Now if we think of charges as being “spread out” rather than concentrated

at a point, there is a charge density ρ so that∫∫∫
D

ρdV = total charge contained in D

Thus, equation (6) becomes∫∫
Σ

~E · d~S =
1

ε0

∫∫∫
D

ρdV,

where D is the region inside Σ. Using the divergence theorem, this is∫∫∫
D

∇ · ~EdV =
1

ε0

∫∫∫
D

ρdV, or

∫∫∫
D

(∇ · ~E − ρ

ε0
)dV = 0.

Since this holds for any region D, we have

∇ · ~E =
ρ

ε0
, (7)

which is the differential form of Gauss’s Law.
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2 The Magnetic Field

There is also a magnetic field ~B. Stationary charges are not affected by the
magnetic field, but moving charges are. In fact, a charge q′ with velocity
vector ~v will feel a magnetic force q′~v × ~B. Putting this together with the
electrical force, the force felt by a charge q′ is the so-called Lorentz force

q′( ~E + ~v × ~B). (8)

Unlike the electrical field, the magnetic field ~B has no sources or sinks.
That is, there are no isolated magnetic “charges” (magnetic monopoles).
Instead, magnets always have a north pole and a south pole: if you break
a magnet in half, you get two smaller magnets each with its own north and
south pole. The lack of sources and sinks can be expressed as

∇ · ~B = 0. (9)

It was discovered experimentally that moving electrical charges (current)
create a magnetic field. If we consider a small pierce of wire d~r with a current
I flowing through it, the contribution it makes to the magnetic field at the
point ~r is given by the Biot-Savart Law:

d ~B =
µ0

4π

Id~r × ~r
|~r|3

=
µ0

4π

Id~r × r̂

|~r|2
, (10)

where µ0 is a physical constant (the permeability of vacuum, 4π × 10−7

henry/meter). Note the similarity to Coulomb’s Law (2): like the electric
field, the magnetic field is inversely proportional to the square of the distance.

Now we consider an infinite straight wire carrying current I, and calculate
the magnetic field ~B at a point distance R from the wire. Choose coordinates
so i points down the wire, and our point is at position Rj. Then equation
(10) says that

~B =
µ0

4π

∫ ∞
−∞

Iidx× (−xi +Rj)

(x2 +R2)
3
2

=
µ0k

4π

∫ ∞
−∞

RIdx

(x2 +R2)
3
2

=
µ0I

2πR
k.

That is, the field strength is µ0I
2πR

, and the direction is perpendicular to the
axis of the wire. It follows that if we take a circle C of radius R whose center
is on the wire (and whose diameters are perpendicular to the wire), then∫

C

~B · d~r =

∫
C

µ0I

2πR
dr =

µ0I

2πR
(2πR) = µ0I. (11)
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Note that the result does not depend on R (as in equation (4)). As with
equation (4), equation (11) generalizes: For any path C around the wire,∫

C

~B · d~r = µ0I = µ0(current enclosed by C) (12)

This is Ampere’s Law (in integral form). Now Stokes’s theorem says that∫
C

~B · d~r =

∫∫
S

(∇× ~B) · d~S,

where S is a surface with boundary curve C. If we introduce a current density
~J so that

I =

∫∫
S

~J · d~S,

then equation (12) becomes∫∫
S

(∇× ~B) · d~S = µ0

∫∫
S

~J · d~S, or

∫∫
S

(∇×B − µ0J) · d~S = 0.

As S is arbitrary, this implies

∇×B = µ0J, (13)

the differential form of Ampere’s Law.
A changing magnetic field creates an electric field. This Faraday In-

duction Law was discovered experimentally, and can be stated as follows.
Suppose we have a loop C of wire. Then the line integral

∫
C
E · d~r is related

to the flux of the magnetic field ~B through a surface S having boundary
curve C: ∫

C

~E · d~r = − d

dt

∫∫
S

~B · d~S (14)

(note the presence of the time derivative here!). That is, the circulation of the
electric field is minus the rate of change in the magnetic flux. The integral
form (14) has a corresponding differential form. Using Stokes’s theorem,
equation(14) becomes∫∫

S

(∇× ~E)d~r = − d

dt

∫∫
S

~B · d~S,

from which we get the differential equation

∇× ~E = −d
~B

dt
(15)
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3 Maxwell’s Equations

If we collect equations (7), (15), (9) and (13), we have

∇ · ~E =
ρ

ε0
(16)

∇× ~E = −∂
~B

∂t
(17)

∇ · ~B = 0 (18)

∇× ~B = µ0
~J (19)

Maxwell studied these equations, and realized there was something not quite
right about the last one. If we take divergences of both sides of equation
(19), we get (since divergence of a curl is zero)

0 = µ0∇ · ~J (20)

But experimentally, electrical charge is seen to be conserved. For any closed
surface Σ, the rate at which current flows out of Σ is equal to the decrease
of total charge in the volume D enclosed by Σ. That is,∫∫

Σ

~J · d~S = − d

dt

∫∫∫
D

ρdV

Using the divergence theorem, this is∫∫∫
D

(
∇ · ~J +

∂ρ

∂t

)
dV = 0.

Since D is arbitrary, this means

∇ · ~J = −∂ρ
∂t
, (21)

which contradicts equation (20) if the charge density ρ isn’t constant. Maxwell

reasoned that since a changing magnetic field ~B produces an electric field ~E,
perhaps a changing electric field ~E also produces a magnetic field ~B. That
is, he tried adding a term to equation (19):

∇× ~B = µ0
~J +K

∂ ~E

∂t
. (22)
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Now take the divergence of both sides of (22) to get

0 = µ0∇ ~J +K
∂

∂t
(∇× ~E) = µ0∇J +

K

ε0

∂ρ

∂t
,

(using equation (17)), or

∇ ~J = − K

ε0µ0

∂ρ

∂t
. (23)

To make equation (23) agree with (21), we must take

K = µ0ε0

and so the corrected equation (19) reads

∇× ~B = µ0
~J + µ0ε0

∂ ~E

∂t
,

and the correct Maxwell equations are

∇ · ~E =
ρ

ε0

∇× ~E = −∂
~B

∂t

∇ · ~B = 0

∇× ~B = µ0
~J + µ0ε0

∂ ~E

∂t
.

4 A Consequence: Electromagnetic Waves

In a region of space without current or charge, the Maxwell equations imply

∇ · ~E = 0 (24)

∇× ~E = −∂
~B

∂t
(25)

∇× ~B = µ0ε0
∂ ~E

∂t
. (26)

Now for any vector field ~F = F1i + F2j + F3k, it’s true that

∇× (∇× ~F ) = ∇(∇ · ~F )− (∇2F1i +∇2F2j +∇2F3k) (27)
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where ∇2f is the Laplacian

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
,

as can be shown by a direct (but somewhat tedious) calculation. Applying

equation (27) to ~F = ~E and using equation (24), we have

∇× (∇× ~E) = −(∇2E1i +∇2E2j +∇2E3k). (28)

On the other hand, using equations (25) and (26), we have

∇× (∇× ~E) = −∇×

(
∂ ~B

∂t

)
= − ∂

∂t
(∇× ~B) = −µ0ε0

∂2 ~E

∂t2
. (29)

Comparing equations (28) and (29), we must have

∇2E1 = µ0ε0
∂2E1

∂t2
, ∇2E2 = µ0ε0

∂2E2

∂t2
, and ∇2E3 = µ0ε0

∂2E3

∂t2
.

Now the differential equation

∇2f =
1

c2

∂2f

∂t2

is the wave equation for a wave travelling with speed c. Thus, it follows from
Maxwell’s equations that in regions of space without charge or current, all
components of ~E satisfy the wave equation with speed

c =
1

√
µ0ε0

. (30)

A similar argument shows that all components of ~B satisfy the wave equation
with the same c.

This led to a profound realization: light (as well as ultraviolet, infrared,
radio waves, etc.) is really an electromagnetic wave. Further, the speed of
light c can be calculated from the electric and magnetic constants µ0 and
ε0 using equation (30). Thus, one of the most important discoveries of the
nineteenth century came from a mathematical reformulation of the laws of
electromagnetism.
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