GENERATING FUNCTIONS

Suppose we want to find a formula for the generating function of the Fibonacci
numbers,

F(t) =Y Fpt* =t + 1>+ 2t° + 3t* + 5> + 8° + - - .
k>0

Then
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Hence (1 —t —t2)F(t) = t, or
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Note that the recurrence F,, = F,,_1 + F,,_> can be read off from the denominator:
in general, if a sequence S has a rational generating function

1+ ayt + agt? + -+ -+ apt?’

then S,, = —a15,-1 — a2S,—2 — -+ — apSp—p-
Ezercise 1. Expanding out F'(t) as in the first set of notes, i.e.,

t
1 —t(1+1)

=ty tF(1+t)t

k>0

F(t)

l
N
™
Ry
N

<

<
N—

5

Typeset by ApS-TEX



2 GENERATING FUNCTIONS

prove that

(1) Fori=Y (" - ’)

i

We can also expand F(t) in partial fractions. In doing this, the following com-
putational trick is useful. Let
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Now we can factor t2 —t — 1 = (¢t — a)(t — 3), where
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are the roots of the equation t2 —t — 1 = 0. Then in the partial-fractions decom-
position
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Then using the geometric series we have, at least for small %,
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Since the coefficient of t™ in F'(t) is F,, this means that
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an_ﬁn

F, = ;
V5
which is usually known as the Binet formula.

Ezercise 2. Recall that the Lucas numbers can be defined by Ly =1, Ly = 3, and
L,=1L,_1+ L,_5 for n > 3. The corresponding generating function is

L(t):Zthk=t+3t2+4t3+7t4+..._
k>1

a. Show that

t 4 2t2
Lt)= ————
(t) 1—t—t2

b. Use partial fractions to write L,, in terms of o and .

A very useful generating function can be obtained by differentiating the geomet-
ric series

1
e O

k>0
repeatedly: differentiating n times gives
LI k hn

k>n

or, after multiplying both sides by ¢" /n!,

g w2 )"

k>n

We shall use this result to find the generating function for the sequence G,, defined
by

anz<"2—k’“>,n20.
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Our generating function G(t) is
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From this we can read off the recurrence G,, = 2G,,_1 — Gp—2 + G, _3.

Ezercise 3. Apply a similar argument to show that the sequence

Hn:zk:<n—]€2k>

satisfies the recurrence H,, = H,,_1 + H,,_3.



