COUNTING COMBINATIONS

Suppose you have pennies, nickels, dimes, and quarters. In how many ways can
you make change for $0.437 In a problem like this, we’re looking at how many ways
a combination can be built up from smaller pieces. Generating functions provide a
way to attack this problem.

First, let’s consider the problem of making change with just pennies. There is
exactly one way to make change for any amount with pennies, so the number P,
of ways of making change for n cents with pennies is P, = 1 for all n, and the
corresponding generating function is is

P@%:1+t+9+¢3+~-:Tt?.

(The constant term reflects the empty set as a way of making change for zero cents.)
Now suppose you're making change with just nickels. You can only make change

for amounts that are a multiple of five, and for such amounts you can do it in only

one way: so the number N,, of ways of making change for n cents with nickels is

B { 1, if n is a multiple of 5

0, otherwise

and the corresponding generating function is

Nt) =1+t +t10 1 ... =

1—t5°

What if you make change with pennies and nickels? Given any amount of n
cents, you can make it with n pennies, or n — 5 pennies and 1 nickel, or n — 10
pennies and 2 nickels, and so forth. That is, if C), is the number of ways of making
change for n cents using pennies and nickels, then

Cn=PFP,+P,_5Ns5+ P,_10N1io+ -

But this means, if C(t) = Cy + Cit + Cot? + -+ is the generating function for
making change with pennies and nickels, that

1

) = PONO) = =51y

The point is that multiplication of generating functions reflects the way that com-
binations are formed. It should be clear what the generating function for making
change with pennies, nickels, dimes and quarters is:

1
(1 —¢)(1 —¢t°)(1 — ¢10)(1 — ¢25)

Ft) =
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By multiplying this out (most easily using a computer algebra system) one finds
that the coefficient of #*2 is 31, so there are 31 ways to make change for $0.43.
Let’s formalize this a little. We are interested in counting the combinations
(let’s call them molecules) put together from certain basic elements (let’s call them
atoms). Each atom has a weight, and the weight of a molecule is the sum of the
weights of its atoms. Suppose there are a,, types of atoms of weight n, and let

C(t) =1+ Cyt + Cot® + C3t® + - - -

be the generating function for the number C), of molecules of weight n. We will
show that

(1) o = ﬁ

n>1

In fact, we’ve already introduced the basic ideas of the proof in our change-
making example. First, if there is a single type of atom of weight w, the number

C',, of molecules is
o - { 1, if n is a multiple of w,

0, otherwise,

and so the corresponding generating function is

2 L+t 2 3% o = :
(2) + T Y+ e

The second basic idea is about combining different types of atoms. Let suppose
we have two disjoint sets of atoms, say “red” and “green.” Let R,, be the number
of red molecules of weight n, and

R(t) =1+ Ryt + Ryt®> 4 - --
the corresponding generating function. Similarly we have a generating function
G(t) =1+ Gyt + Got®> 4 - -

that counts green molecules. Now let (', be the number of molecules of weight n
made from both types of atoms. Evidently

Cn - Rn + Rn—lGl + -+ RlGn—l + Gn

which is to say that the generating function C(t) for the C,, is the product of R(t)
and G(t).

To prove equation (1), we first observe that it reduces to equation (2) in the case
where there is only one type of atom. Now suppose we have a, types of atom of
weight n, and no other atoms. Then applying the idea of the last paragraph we see
that the generating function for the number of molecules is
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1 o\" 1
L—tn) (1 —tn)an’

Finally, put together atoms of different weights n = 1,2,3,..., to get equation (1).

Here is an example of how equation (1) can be used to solve a counting problem.
Suppose we want to count monomials in three variables z, y, and z by total degree
(the total degree of a monomial z%y°2¢ is @ + b + ¢). For example, there are six

monomials of total degree two:

2 2 2
T, y, 5 ry, Yz, Trz.

To apply equation (1), we treat z, y, z, as the atoms, and monomials as molecules.
The total degree is the weight. Since z, y, and z all have degree one, the generating
function for counting monomials is

1
(1—1)%

But we know that . )
n—+
S t"
(1—1)° 2 ( 2 ) ’
n>0
so the number of monomials of degree n is

<n+2> (n+1)(n+2)

9 )= 2

Ezercise 1. Work out a formula for the number of monomials of total degree n in
four variables u, v, w, and x, and use it to compute the number of four-variable
monomials of degree 10.

A famous example of formula (1) is the generating function for partitions of
integers. A partition of a positive number n is a way of writing it as a sum of
positive integers. For example, n = 5 has seven partitions:

1+1+14141, 2414141, 34+1+1, 24241, 441, 3+2, 5.

Here the atoms are the positive integers, the molecules sums of them; the weight
of a “molecule” is the sum of its atoms. Since there is one atom of each weight, the
generating function for the sequence p(n) that counts partitions of n is

P@)=2 " =]] ;= = (-1 —2)(1—13)---

n>0 n>1

How can such an infinite product be used for anything? Actually, you never have
to multiply out infinitely many factors to find a particular coefficient. Note that
the product can be written

(T+t+t2 4+ )A+ 2+t o)A+ 1)
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so the nth factor only affects the coefficients of ™ and higher terms. Thus, if we
want the coefficient of 7, it is enough to multiply out the first seven factors. (It’s
still convenient to use computer algebra: the coefficient of x”

1
(1 —2)(1 —2?)(1 = 2?)(1 — 2 (1 - 2°)(1 - 2°)(1 — 27)

is 15.) We can also study variations on the problem: for example, if p,q(n) is the
number of partitions of n into odd parts, the corresponding generating function is

1
=2 _poa(n) T A1) —t5) -

n>0

Ezercise 2. Show that the generating function

t) = Zpev (n)tn7

n>0

where pe,(n) is the number of ways to write n as a sum of even numbers, is given

by P.y,(t) = P(t?). What is P, (t)P.q(t)?

Generating functions can be useful even when there is no simple closed form. For
example, we consider the problem of counting rooted trees. Let T;, be the number
of rooted trees with n vertices. (We saw earlier that the number of planar rooted
trees with n vertices is a Catalan number C,,_;, but now we’re not thinking of the
trees as embedded in the plane: we count

N

as the same rooted tree.) Then Ty = 4, since there are four rooted trees with four

AN

How can we find the T,,7 Here is an indirect approach. Let’s define a rooted
forest to be a collection of rooted trees. For example, here’s a rooted forest with
five vertices:

Y I A

Now think of rooted trees as atoms and rooted forests as molecules, with the number
vertices giving the weight. If Fj, is the number of rooted forests with n vertices,
then equation (1) says that
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n 1
Z Int™ = (1 _ t)Tl (1 — tQ)Tz(l — t3)T3 .

On the other hand, we have T},.1 = F},, because we can always form a rooted tree
from a rooted forest by adding a new root and connecting it to the root of each
tree in the forest, and conversely we can get a rooted forest from a rooted tree
by deleting the root. For example, the rooted forest (3) above corresponds to the

rooted tree

(4) Ty + Tot + Tat? + Tyt +--- =

Thus, we have

1
10T (1— )1 3)h ...

This may not seem like progress, since the unknown 7},’s appear on both sides. But
notice that to find the coefficient of t” (and thus T),41), you only need to multiply
the first n factors on the right. Starting with 77 = 1 (which really is obvious), we

know that )

1-1
agrees with the left-hand side of equation (4) through the ¢ term, so T, = 1. Then

=1+t+t2+t3 4

1

=14+t+22+23+ ...
(DD +t4 2t 4+ 2t° +

is good through the t? term, so T3 = 2, and

1

=1 4+t+22+ 43+ -
I—Hi—@)(l—@)p i rars

tells us that T, = 4.

Ezxercise 3. Carry this process one step further to find Tk.



