COUNTING LABELLED COMBINATIONS

Often, we are interested in counting objects with labels. For example, there are
3 labelled trees with three vertices:
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Similarly, there are 16 labelled trees with four vertices.

As in the case of unlabelled counting, we will consider “molecules” built from
“atoms,” with each atom having a weight and the weight of a molecule being the
sum of the weights of an atom. We think of an atom of weight n as being able to
accept n labels: a labelled atom of weight n is an atom of weight n labelled by the
set {1,2,...,n}. A labelled molecule of weight n is a collection of atoms labelled by
disjoint subsets of {1,2,...,n}. For example, if the atoms are labelled trees, there
are 7 molecules of weight three:
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R If we know how to count labelled atoms, can we count labelled molecules? Let
A(t) be the exponential generating function of (nonempty) labelled atoms
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A(t) :a1t+a2§+a3§+---

and let M (t) be the exponential generating function of labelled molecules. We shall
prove the following “exponential formula”:
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(1) M(t) = exp(A(t))-

As in the unlabelled case, we will do this by stages. Suppose first that there is
only one kind of labelled atom, of weight n. Then A(¢) has only one term:
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A(t)
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Now how many labelled molecules are there? There is just one labelled molecule
of weight n, the one-atom molecule. The next heavier molecule has weight 2n, and
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must contain exactly two atoms. But we have choices in how to split up the label
set {1,2,...,2n}: more precisely, we have

L/2n\  (2n)!

2 ( n ) ~ 2(n!)?
choices. This is because there are (27;’) ways to choose the n labels for the first
atom, leaving n labels for the second: but its doesn’t really matter which atom
is first or second, hence the division by 2. As for molecules of weight 3n, we can
choose the n labels for the first atom in (3:) ways, leaving (2:) choices for the n

labels on the second, which also determines the labels of the third. But it doesn’t
really matter which atom is first, second, or third, so we divide by 6:
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Thus, our exponential generating function for molecules is
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and equation (1) holds in this case.
Now suppose we have two kinds of atoms, “green” and “red.” Let

2
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Mg ()_1+g1t+gz2,+ o

and
2

. t
Mg ()—1+r1t+r22'+

be the exponential generating functions for labelled molecules built exclusively of
green and red molecules respectively. How many ways can we make a multicolored
molecule of weight n? For any 0 < k < n, we can combine a weight-£ green molecule
and a weight-(n — k) red molecule. We can choose the green molecule in g ways,
the red molecule in r,,_j ways, and we can split up the label set {1,2,...,n} in (Z)
ways (the number of ways of picking the labels for the green molecule). So in all
we can make our multicolored weight-n molecule in

r+n r +n Tp—2 + -+ —zn:n r
n 1 g1Tn—-1 9 g2Tn—2 In = L 9kTn—k

k=0
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ways: but this means that the exponential generating function M (t) for multicol-
ored molecules is Mg (t) Mg(t).

Now we're ready to prove equation (1) in general. First suppose we have a,
atoms of weight n (and no atoms of any other weight). The result of the previous
paragraph says we should multiply the exponential generating functions for each

type of atom together:
" an mn
<exp <_>> ~ exp <an_> .
n! n!

Now let’s combine atoms of different weights. Again we multiply the generating
functions:

. t2 t3 t? t3
M (t) = exp(ait) exp <a25> exp <a3§> -e- = exp (alt + a2§ + agi + - ) .
But this is equation (1).

Perhaps the simplest application of equation (1) is to count set partitions. Here
the only labelled atom of weight n is the set {1,2,...,n}, and a molecule of weight
n is a partition of {1,2,...,n}. Since a; = 1 for i = 1,2,..., in this case, the
exponential generating function for counting partitions is

R t2 t3
M(t) = exp <t+§+§+---> = exp(e’ — 1),
a result we have already proved by other methods. But we can now do a lot more.
For example, let F),, be the number of partitions of {1,2,...,n} into subsets with
an even number of elements. What is the exponential generating function

A tn
E@%:1+§:Eﬂg?
n>1 ’

Since now we are only allowing atoms of even weight, equation (1) gives

. U
E(t) = exp <§ tato ) = exp(cosht — 1).
Ezercise 1. Work out a formula for the exponential generating function for O,,, the
number of partitions of {1,2,...,n} into subsets with an odd number of parts.

As another example of equation (1), suppose we want to count permutations.
Each permutation can be written as a product of disjoint cycles: so a permutation
is just a molecule, and a labelled atom of weight n is a cycle of {1,2,...,n}. There
are (n — 1)! labelled atoms of weight n: for example, the 3! = 6 cycles of {1,2, 3,4}
are

11,2,3,4], [1,2,4,3], [1,3,2,4], [1,3,4,2], [1,4,2,3], [1,4,3,2].

Thus, the exponential generating function for atoms is

t2 213 (n —1)itm t2 13 tn
t+ =+ —+———F =t -+ —F
2 6 n! 2 3 n
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Now from integrating the geometric series

1+t+t2+t2+-.-zi
1-1
we have
2t loa(1
P — 4+ — 4= — —t
+2+3+ og( )

and so the exponential generating function for permutations is

(2) exp(—log(l—t)):%:l+t+t2+t3+---.

This is certainly right: the coefficient of ¢"/n! in (2) is n!, which is indeed the
number of permutations of {1,2,...,n}. But it hardly seems worth the effort—we
already knew there are n! permutations of {1,2,...,n}. The real power of the
generating-function method, though, is that we can now solve a host of related
problems. For example, how many derangements d,, of {1,2,...,n} are there?
(Recall that a derangement is a permutation with no fixed points.) This is just
like counting permutations, except that we don’t allow cycles of length 1. So our
exponential generating function for atoms is now

2 3
— 4+ —4---=—log(l—1t)—t
s tgt og(1—1)

and the exponential generating function for derangements is

tm e
(3) 1+§ dnm:exp(—log(l—t)—t):l_t.
n>1
Since
i 2 13
e :1—t+§—§+

and multiplying by (1 — ¢)~! replaces the coefficient of t" with the sum of the
coefficients of 1,¢,...,t" 1 t", we have

U VI SR NV SS S P & VL 3
11—t 2! 2! 3!

and so equation (3) implies

dy 1 1 n 1
H_1_1+§_§+"'+(_1) —,
which is a result we obtained earlier by binomial inversion.
Here is another question: how many permutations od, of {1,2,...,n} involve
only cycles of odd length? Here we are allowing only atoms of odd weight, so our
exponential generating function for atoms is
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Observe that we get the same series from integrating

1
1=

t+t3+t5+ /t ds 11 1+t
J— J— “ e — —— = — 10 P .
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Now apply equation (1) to conclude that the exponential generating function for
the odd-cycle permutations is

m 1. [(1+1t 1+t
1 dy = Slog [0} ) =/
+;0 "l eXp(2 0g<1—t>> 11

Ezercise 2. Show that the exponential generating function for the number of per-

L+ +t 10+
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mutations ev,, of {1,2,...,n} involving only cycles of even length is
1+ " *1
vy — = ——.
n>1 ! n! 112



