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Multiple Zeta Values

For positive integers i1, i2, . . . ik with i1 > 1, we define multiple
zeta values (henceforth MZVs) by

ζ(i1, i2 . . . , ik) =
∑

n1>n2···>nk≥1

1

ni1
1 ni2

2 · · · n
ik
k

.

We call k the length of the series, and i1 + · · ·+ ik its weight.
Of course, if the length is 1 the MZVs are the values ζ(i) of
the Riemann zeta function at positive integers i > 1.
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Coding MZVs

The following coding scheme is remarkably useful. Associate to
each sequence (i1, . . . , ik) the word x i1−1yx i2−1y · · · x ik−1y in
noncommuting variables x and y . For example:

(2)↔ xy , (3, 2, 1, 1)↔ x2yxy 3

Every admissible sequence (i1, . . . , ik) (one with i1 > 1)
corresponds to an admissible word w (one that that begins
with x and ends with y); we can think of ζ as assigning a real
value to every such word. (It is convenient to treat the empty
word 1 as admissible and set ζ(1) = 1.) The length k of the
sequence is the y -degree of w (denoted `(w)), and the weight
i1 + · · ·+ ik of the sequence is the total degree |w | of w .
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The Duality Theorem

The coding scheme gives a striking way to state a class of
identities for MZVs which we call the Duality Theorem. Let τ
be the order-reversing function on words that exchanges x and
y (so τ(x2yxy) = xyxy 2).

Duality Theorem

For any admissible word w, ζ(w) = ζ(τ(w)).

For example,

ζ(3, 2, 1, 1) = ζ(x2yxy 3) = ζ(x3yxy 2) = ζ(4, 2, 1).
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Duality Theorem cont’d

Proof.

If we define iterated integrals by
∫ t

0 α1 =
∫ t

0 f (s)ds and∫ t

0
α1α2 · · ·αn =

∫ t

0
f (s)

(∫ s

0
α2 · · ·αn

)
ds

for α1 = f (t)dt, then it is straightforward to show that

ζ(xp1y · · · xpl y) =

∫ 1

0
αp1β · · ·αplβ,

where α = dt/t and β = dt/(1− t). The theorem then follows
from the change of variable
(t1, . . . , tn)→ (1− tn, . . . , 1− t1).
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Derivation Theorem

In an early attempt to prove the Duality Theorem, I managed
to prove something else (Hoffman, 1992). If we let H0 be the
rational vector space whose basis is the set of admissible words,
then ζ extends linearly to a map H0 → R, and τ to a map
H0 → H0. Also, define D(x) = 0, D(y) = xy , and extend D to
H0 as a derivation (of H0 as a subalgebra of Q〈x , y〉).

Derivation Theorem

For all admissible words w, ζ(D(w)) = ζ(Dτ(w)).

My proof of this used partial fractions. But perhaps the greater
significance of this result is that it showed the utility of the x , y
coding scheme goes beyond its correspondence with the
iterated integral representation.
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Sum Theorem

Much of the early work on MZVs (including my own) was
motivated by attempts to prove the following result.

Sum Theorem

For n ≥ 2 and fixed k < n,∑
w∈H0,|w |=n,`(w)=k

ζ(w) = ζ(n).

This result was proved by Granville and Zagier (independently)
in 1995, and has since been generalized in several ways. One
such generalization was obtained by Y. Ohno in 1999; his result
generalizes the Duality and Derivation Theorems as well. We
will state Ohno’s Theorem in our second lecture.
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Algebraic Structures on H0

There are two important algebraic structures on MZVs that we
will consider.

1 The shuffle algebra (H0,�), corresponding to the iterated
integral representation mentioned above.

2 The harmonic algebra (H0, ∗), based on the multiplication
of series. (H0, ∗) is a subalgebra of the algebra QSym of
quasi-symmetric functions.
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The Shuffle Algebra

Let H be Q〈x , y〉 as a graded rational vector space. Define a
multiplication � on H by requiring that it distribute over the
addition, and that it satisfy the following axioms:

S1. for any word w , 1� w = w � 1 = w ;

S2. for any words w1,w2 and letters a, b,

aw1 � bw2 = a(w1 � bw2) + b(aw1 � w2).

Induction on word length establishes the following.

Theorem

The �-product is commutative and associative.
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Shuffle Algebra cont’d

There is a familiar presentation of the shuffle product in terms
of permutations: let S(n) be the symmetric group on n letters,
and for positive integers k , l such that k + l = n define S(k , l)
as the set of σ ∈ S(n) such that

σ(1) < · · · < σ(k) and σ(k + 1) < · · · < σ(k + l).

Then for letters a1, . . . , an,

a1 · · · ak � ak+1 · · · ak+l =
∑

σ∈S(k,l)

aσ(1) · · · aσ(n).

This description makes the following fact evident.

Theorem

τ is an automorphism of (H,�).
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Lyndon Words

Order the words of H as follows. For any words w1,w2,w3, set
w1xw2 < w1yw3; and if u, v are words with v nonempty, set
u < uv . A nonempty word w of H is called a Lyndon word if it
is smaller than any of its nontrivial right factors; i.e., w < v
whenever w = uv and u 6= 1 6= v . For example, the Lyndon
words of degree ≤ 4 are

x , y , xy , x2y , xy 2, x3y , x2y 2, xy 3.

From (Radford, 1979) we have

Theorem

As a commutative algebra, (H,�) is freely generated by the
Lyndon words.

Michael E. Hoffman Algebra of MZVs: Harmonic & Shuffle Products



Algebra of
MZVs:

Harmonic &
Shuffle

Products

Michael E.
Hoffman

Outline

Introduction

The Shuffle
Algebra

The Harmonic
Algebra

Shuffle Identities

The link to MZVs is the following result, which follows from
the iterated-integral representation mentioned before, together
with the well-known fact (Ree, 1957) that iterated integrals
multiply by shuffle product.

Theorem (Shuffle Homomorphism)

The map ζ : (H0,�)→ R is a τ -equivariant homomorphism.

The shuffle-algebra structure has been used to prove some
MZV identities. For example, Borwein, Bradley, Broadhurst
and Lisoněk (1998) first establish that

n∑
r=−n

(−1)r [(xy)n−r
� (xy)n+r ] = 4n(x2y 2)n
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Shuffle Identities cont’d

in (H,�), then apply ζ to get

n∑
r=−n

(−1)rζ((xy)n−r )ζ((xy)n+r ) = 4nζ((x2y 2)n).

Using the known result

ζ((xy)k) =
π2k

(2k + 1)!
(1)

(of which more later) together with some arithmetic, they
obtain a result conjectured by Zagier some years earlier:

ζ((x2y 2)n) =
1

2n + 1
ζ((xy)2n).

Other shuffle convolutions are used to prove instances of the
“cyclic insertion conjecture” for MZVs in the same paper. The
topic has been revisited by Bowman and Bradley (2002).
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The Harmonic Algebra

As before, let H be Q〈x , y〉 as a rational vector space. Define a
commutative multiplication ∗ on H by requiring that it
distribute over the addition and satisfy the following axioms:

H1. for any word w , 1 ∗ w = w ∗ 1 = w ;

H2. for any word w and integer n ≥ 1,

xn ∗ w = w ∗ xn = wxn;

H3. for any words w1,w2 and integers p, q ≥ 0,

xpyw1 ∗ xqyw2 = xpy(w1 ∗ xqyw2)

+ xp+q+1y(w1 ∗ w2) + xqy(xpyw1 ∗ w2).

Note that in (H3) each ∗-product on the right-hand side has
fewer factors of y than the ∗-product on the left-hand side, so
the ∗-product of any pair of words can be computed inductively.

Michael E. Hoffman Algebra of MZVs: Harmonic & Shuffle Products



Algebra of
MZVs:

Harmonic &
Shuffle

Products

Michael E.
Hoffman

Outline

Introduction

The Shuffle
Algebra

The Harmonic
Algebra

Harmonic Algebra cont’d

Induction on the y -degree `(w) establishes the following result.

Theorem

The ∗-product is commutative and associative.

While τ is not an automorphism of the harmonic algebra
(H, ∗), we do have counterparts of the results for the shuffle
algebra (Hoffman, 1997).

Theorem

As a commutative algebra, (H, ∗) is freely generated by the
Lyndon words.

Theorem (Harmonic Homomorphism)

(H0, ∗) is a subalgebra of (H, ∗), and ζ : (H0, ∗)→ R is a
homomorphism.
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Comparing the Multiplications ∗ and �

Since the multiplications ∗ and � differ, The Shuffle
Homomorphism and Harmonic Homomorphism Theorems imply
that ζ has a large kernel. For example, from

xy ∗ x2y = xyx2y + x2yxy + x4y

xy � x2y = xyx2y + 3x2yxy + 6x3y 2.

it follows that

ζ(x4y − 2x2yxy − 6x3y 2) = 0.

In fact, the Derivation Theorem can be obtained this way, since

y � w − y ∗ w = τDτ(w)− D(w)

for words w ∈ H0.
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Harmonic Algebra and QSym

The vector subspace H1 := Q1 + Hy of H is evidently a
subalgebra of (H, ∗). In fact, since x is the only Lyndon word
that ends in x , it is easy to see that H1 is the subalgebra of H

generated by the Lyndon words other than x . Note that any
word w ∈ H1 is a product of words zi = x i−1y , which are
ordered as

z1 > z2 > · · · > zn > · · · ,

and that `(w) is its length when expressed this way. In terms
of the zi , the inductive rule for the ∗-product can be written

zpw1 ∗ zqw2 = zp(w1 ∗ zqw2)+

zq(zpw1 ∗ w2) + zp+q(w1 ∗ w2).

Now for each positive integer n, define a a map
φn : H1 → Q[t1, . . . , tn] (where |ti | = 1 for all i) as follows.
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Harmonic Algebra and QSym cont’d

Let φn(1) = 1 and

φn(zi1zi2 · · · zik ) =
∑

n≥n1>n2>···>nk≥1

t i1
n1

t i2
n2
· · · t ik

nk

for words of length k ≤ n, and let φ(w) = 0 for words of length
exceeding n; extend φn linearly to H1. For any n, φn is a
homomorphism of graded algebras that is injective through
degree n. For each m ≥ n, there is a restriction map

ρm,n : Q[t1, . . . , tm]→ Q[t1, . . . , tn]

sending ti to ti if i ≤ n and ti to 0 if i > n. The φn define a
homomorphism φ from H1 to the inverse limit

P = lim←−
n

Q[t1, . . . , tn]

since they commute with restriction.
Michael E. Hoffman Algebra of MZVs: Harmonic & Shuffle Products
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Harmonic Algebra and QSym cont’d

In fact, P is the set of formal power series of bounded degree.
Inside P is the algebra of symmetric functions

Sym = lim←−
n

Q[t1, . . . , tn]Σn

and also the algebra QSym of quasi-symmetric functions, which
can be described as follows. A formal series p ∈ P is in QSym
if the coefficient of tp1

i1
· · · tpk

ik
in p is the same as the coefficient

of tp1

j1
· · · tpk

jk
in p whenever i1 < · · · < ik and j1 < · · · < jk .

Evidently Sym ⊂ QSym. A vector space basis for QSym is
given by the monomial quasi-symmetric functions

M(p1,p2,...,pk ) =
∑

i1<i2<···<ik

tp1

i1
tp2

i2
· · · tpk

ik
,

which are indexed by compositions (p1, . . . , pk). Since evidently
φ(zi1zi2 · · · zik ) = M(ik ,...,i1), we have the following result.
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Theorem

φ is an isomorphism of H1 onto QSym.

As is well known, the algebra Sym of symmetric functions is
generated by the elementary symmetric functions ei , as well as
by the power-sum symmetric functions pi (Note that we are
working over Q). It is easy to see that φ−1(ei ) = z i

1 = y i and
φ−1(pi ) = zi = x i−1y .
If Sym0 is the subalgebra of Sym generated by the power-sum
symmetric functions pi with i ≥ 2, then we have the following
result.

Theorem

If a ∈ φ−1(Sym0), then ζ(a) is a sum of products of values ζ(i)
of the zeta function with i ≥ 2.
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In fact, to write an MZV corresponding to a symmetric
function in terms of values of the zeta function one can write
that symmetric function in terms of power-sum symmetric
functions pi and apply ζ. This includes

ζ(zp
i ) = ζ(i , i , . . . , i),

treated by generating-functions arguments in (Bailey et. al.,
1996). For example, since M22 = 1

2 (p4 − p2
2) in Sym0, we have

ζ(2, 2) =
1

2
(ζ(4)− ζ(2)2) =

π4

120
,

and more generally equation (1) can be proved this way.
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