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Notation and Recollections

We recall from last time the noncommutative polynomial
algebra H = Q〈x , y〉 and its two commutative products: shuffle
product � and harmonic product ∗. We also recall the
subalgebras (with respect to either � or ∗) H0 = Q1 + xHy
and H1 = Q1 + Hy . The subalgebra H0 can be thought of as
representing those sequences that have convergent multiple
zeta values:

ζ(x i1−1y · · · x ik−1y) =
∑

n1>n2>...n1≥1

1

ni1
1 ni2

2 · · · n
ik
k

.

As a vector space, H1 is the noncommutative polynomial
algebra on generators zi = x i−1y . There is an isomorphism
from (H1, ∗) to the algebra QSym of quasi-symmetric functions
sending zi to the ith power-sum pi (= M(i)) and z i

1 to the ith
elementary symmetric function ei (= M(1,1,...,1)).
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Algebraic Structures

In this talk we will look at some classes of identities expressed
in terms of algebraic structures on H and its subalgebras:

1 The Hopf algebra structure of QSym: essentially this is a
coproduct ∆ : QSym→ QSym⊗QSym compatible with
the algebra structure.

2 The structure of H = Q〈x , y〉 as a QSym-module algebra.
This means QSym acts on H in the “natural” way a Hopf
algebra acts on an algebra. This provides a setting for
Ohno’s Theorem, which in turn implies the Derivation,
Sum and Duality Theorems.

3 Linear endomorphisms called “cyclic derivations” on H,
which permit a nice statement of the Cyclic Sum
Theorem. Recent work has shown the latter result follows
from Kawashima’s Theorem, an even more
all-encompassing result than Ohno’s.
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QSym as a Hopf Algebra

(H1, ∗) ∼= QSym can be given a Hopf algebra structure by
giving it the comultiplication

∆(zi1zi2 · · · zin) =
n∑

j=0

zi1 · · · zij ⊗ zij+1
· · · zin

and the counit ε with ε(u) = 0 for all elements u of positive
degree. This extends the well-known Hopf algebra structure on
the algebra Sym of symmetric functions (Geissinger, 1976);
note that the power sums pi (↔ zi ) are primitive, i.e.,

∆(pi ) = pi ⊗ 1 + 1⊗ pi .

(In a graded connected Hopf algebra like QSym the terms
u ⊗ 1 and 1⊗ u must occur in ∆(u) for any u of positive
degree, so primitive elements have ∆(u) as simple as possible.)
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QSym as a Hopf Algebra cont’d

On the other hand, the elementary symmetric functions
ei (↔ y i ) and complete symmetric functions hi each form a
system of divided powers, i.e.,

∆(ei ) =
i∑

j=0

ej ⊗ ei−j

and similarly for the hi .
The Hopf algebra (H1, ∗,∆) is commutative but not
cocommutative. For example,

∆(z1z2) = z1z2 ⊗ 1 + z1 ⊗ z2 + 1⊗ z1z2.

Its (graded) dual is the Hopf algebra of noncommutative
symmetric functions as defined by Gelfand et. al. (1995).
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QSym-Action on H

Now define · : H1 ⊗Q〈x , y〉 → Q〈x , y〉 by setting 1 · w = w for
all words w ,

zk · 1 = 0, zk · x = 0, zk · y = xky

for all k ≥ 1, and

u · w1w2 =
∑
u

(u′ · w1)(u′′ · w2),

where ∆(u) =
∑

u u′ ⊗ u′′; the coassociativity of ∆ insures this
is well-defined. It turns out that

u · w = terms of length `(w) in u ∗ w ,

which implies that u · (v · w) = (u ∗ v) · w for words u, v of H1

and w ∈ H, so we have the following result.
Michael E. Hoffman Algebra of MZVs: Ohno’s & Kawashima’s Theorems
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Ohno’s Theorem

Theorem

(u, v)→ u · v defines an action of the Hopf algebra QSym on
Q〈x , y〉, and makes Q〈x , y〉 a QSym-module algebra.

The action gives us a nice way to state Ohno’s 1999 theorem.

Theorem (Ohno, 1999)

For any word w ∈ H0 and nonnegative integer i ,

ζ(hi · w) = ζ(hi · τ(w)).

Since z1 · u = D(u) and h1 = z1, the cases i = 0 and i = 1 of
Ohno’s Theorem are the Duality and Derivation Theorems
respectively. Ohno’s Theorem also implies the Sum Theorem.
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Kaneko’s Conjecture

M. Kaneko defined derivations ∂n of Q〈x , y〉 such that

∂n(x) = −∂n(y) = x(x + y)n−1y ,

and conjectured that ∂n(w) ∈ ker ζ for all w ∈ H0 and n ≥ 1.
Since ∂1 = D̄ −D, the conjecture holds for n = 1, and the case
n = 2 is easily seen from Ohno’s Theorem.
Eventually Kaneko and K. Ihara proved this conjecture by
showing it equivalent to Ohno’s Theorem. We shall prove this
using the action of QSym on H: extend this to an action of
QSym[[t]] on H[[t]] in the obvious way. Let

H(t) = 1 + h1t + h2t2 + · · · ∈ QSym[[t]],

and set σt(u) = H(t) · u for u ∈ H.
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The Exponentiation Theorem

Then Ohno’s Theorem says that ζ(σt(u)) = ζ(σt(τ(u))), or
ζ(σ̄t(u)− σt(u)) = 0, where σ̄t = τσtτ . Now σt is an
automorphism of H0[[t]] (in fact σ−1

t (u) = E (−t) · u, where
E (t) = 1 + yt + y2t2 + · · · ), so Ohno’s Theorem is equivalent
to

σ̄tσ
−1
t (u)− u ∈ ker ζ

for all u ∈ H0[[t]]. The following result then implies Kaneko’s
conjecture.

Theorem (Exponentiation)

σ̄tσ
−1
t = exp

( ∞∑
n=1

tn

n
∂n

)
. (1)
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Exponentiation Theorem cont’d

The Exponentiation Theorem is proved by showing that both
sides of equation (1) are the unique automorphism of H[[t]]
fixing t that

1 takes x to x(1− ty)−1, and

2 fixes x + y .

That σ̄tσ
−1
t has the first property follows from the calculation

σ̄tσ
−1
t (x) = σ̄t(E (−t) · x)

= σ̄t(x)

= τ(H(t) · y)

= τ(y + txy + t2x2y + · · · )
= x + txy + t2xy2 + · · · ,

and the second property is similar.
Michael E. Hoffman Algebra of MZVs: Ohno’s & Kawashima’s Theorems
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Exponentiation Theorem cont’d

On the other hand, to show that exp(∂t) has these properties,
where

∂t =
∞∑

n=1

tn

n
∂n,

we first note that ∂n(x + y) = 0 for all n implies exp(∂t) fixes
x + y . To show exp(∂t)(x) = x(1− ty)−1, we show that

G (s) = exp(s∂t)(x)

and

x

(
1− 1− (1− tz)s

z
y

)−1

both satisfy the initial-value problem G ′(s) = ∂tG (s),
G (0) = x ; hence G (1) = exp(∂t)(x) = x(1− ty)−1.
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Exponentiation Theorem cont’d

The derivations ∂n are related to the derivations Dn defined by
Dn(u) = zn · u as follows. Since

d

dt
log H(t) =

H ′(t)

H(t)
=
∞∑

n=1

pntn−1,

the map σt can also be written

σt = exp

( ∞∑
n=1

tn

n
Dn

)
.
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Exponentiation Theorem cont’d

Hence the Exponentiation Theorem says that

exp

( ∞∑
n=1

tn

n
∂n

)
= exp

( ∞∑
n=1

tn

n
D̄n

)
exp

(
−
∞∑

n=1

tn

n
Dn

)
,

and so the ∂n can be expressed in terms of the Dn and D̄n via
the Campbell-Baker-Hausdorff formula. For example,

∂2 = D̄2 − D2 − [D̄1,D1],

and

∂3 = D̄3 − D3 −
3

4
[D̄1,D2]− 3

4
[D̄2,D1]

+
1

4
[[D̄1,D1],D1]− 1

4
[D̄1, [D̄1,D1]].
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Cyclic Derivations

Cyclic derivations, originally due to Rota, Sagan and Stein, can
be formulated in several ways. What follows is D. Voiculescu’s
variant. Think of H⊗ H as a two-sided module over H via
a(b ⊗ c) = ab ⊗ c and (a⊗ b)c = a⊗ bc. Now define a cyclic
derivation to be a composition µδ, where δ : H→ H⊗ H is an
ordinary derivation and µ(a⊗ b) = ba.
We will be interested in the case where δ = Ĉ is the derivation
with Ĉ (x) = 0 and Ĉ (y) = y ⊗ x . Letting C = µĈ , we have,
e.g.,

C (x3yxy) = µ(x3(y ⊗ x)xy + x3yx(y ⊗ x))

= µ(x3y ⊗ x2y + x3yxy ⊗ x)

= x2yx3y + x4yxy .
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Cyclic Sum Theorem

The following result (Hoffman and Ohno, 2003) was
conjectured by myself and proved by Ohno, using a
partial-fractions argument.

Theorem (Cyclic Sum Theorem)

For any word w of H1 that is not a power of y ,

ζ(C (w)− τCτ(w)) = 0.

For example, applying this result to w = (x2y)n gives

ζ((x3y)(x2y)n−1) = ζ((x2y)ny) + ζ((xy)(x2y)n−1(xy)),

or ζ(4, 3, . . . , 3) = ζ(3, 3, . . . , 3, 1) + ζ(2, 3, . . . , 3, 2).
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Cyclic Sum and Sum Theorems

In fact, the Cyclic Sum Theorem implies the Sum Theorem of
our last lecture. To see this, let u = x + ty . Then the
coefficient of tk in xun−2y is the sum of all words w ∈ H0 with
|w | = n and `(w) = k . Calculation shows

C (un−1) = (n − 1)txun−2y and

τCτ(un−1) = (n − 1)xun−2y ,

so the Cyclic Sum Theorem implies that ζ applied to the
coefficient of tk−1 equals ζ applied to the coefficent to tk . But
this means the results of applying ζ is independent of k, i.e., it
is ζ(n).
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Kawashima’s Relations

More recently, G. Kawashima has established the following
relations. Let ψ be the automorphism of Q〈x , y〉 sending x to
x + y and y to −y . Then ψ is a linear involution of H (but is
not a homomorphism for the harmonic product). Let
Lx : H→ H the linear map defined by Lx(u) = xu.

Theorem (Kawashima, 2009)

Lx(ψ(Hy ∗ Hy)) ⊂ ker ζ.

For example,

Lxψ(y ∗ xy) = Lx(−x2y + y3) = −x3y + xy3

so in this case Kawashima’s relation is an instance of the
Duality Theorem.
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Kawashima’s Relations Imply Ohno’s

Indeed Kawashima’s relations imply duality in full generality.
As Kawashima proves in his recent paper, even more is true:
the Kawashima relations imply the Ohno relations. As we’ve
already seen, the latter imply the Sum Theorem, the Duality
Theorem, and (Kaneko-Ihara’s generalized) Derivation
Theorem. Kawashima leaves open the question of whether his
relations imply the Cyclic Sum Theorem, but this has recently
been resolved.
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Generalized Cyclic Sum Theorem

T. Tanaka and N. Wakabayashi (preprint) have generalized the
Cyclic Sum Theorem with the following result, which they show
to follow from Kawashima’s Theorem. Make H⊗(n+1) a
two-sided module over H as we did in the case n = 1 above,
i.e.,

a(w1 ⊗ w2 ⊗ · · · ⊗ wn+1) = aw1 ⊗ w2 ⊗ · · · ⊗ wn+1

and

(w1 ⊗ w2 ⊗ · · · ⊗ wn+1)b = w1 ⊗ · · · ⊗ wn ⊗ wn+1b,

and let µn : H⊗(n+1) → H be the reverse multiplication map,
i.e.,

µn(w1 ⊗ w2 ⊗ · · · ⊗ wn+1) = wn+1 · · ·w2w1.
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Generalized Cyclic Sum Theorem cont’d

Now let Ĉn : H→ H⊗(n+1) be the derivation with

Ĉn(x) = 0 and Ĉn(y) = y ⊗ (x + y)⊗(n−1) ⊗ x ,

and put Cn = µnĈn (so C1 = C , the cyclic derivation defined
above). Then the result of Tanaka and Wakabayashi is as
follows.

Theorem (Tanaka-Wakabayashi)

For any word w of H1 that is not a power of y ,
ζ(Cn(w)− τCnτ(w)) = 0 for all n ≥ 1.

Note the close analogy between this result and the result of
Kaneko-Ihara that ∂n(w) ∈ ker ζ for w ∈ H0.
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