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Global Existence for the Vlasov-Poisson System
with Steady Spatial Asymptotics
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A collisionless plasma is modelled by the Vlasov-Poisson system in three space
dimensions. A fixed background of positive charge—dependant upon only velocity—
is assumed. The situation in which mobile negative ions balance the positive charge
as |x| — oo is considered. Thus, the total positive charge and the total negative
charge are both infinite. Smooth solutions with appropriate asymptotic behavior
for large |x|, which were previously shown to exist locally in time, are continued
globally. This is done by showing that the charge density decays at least as fast as
|x|~S. This article also establishes decay estimates for the electrostatic field and its
derivatives.
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Introduction

Let F: R?® — [0, 00), f,: R* x R* — [0, 00), and A : [0, 00) x R* — R? be given.
We seek a solution, f: [0, c0) x IR? x IR® — [0, o0) satisfying

o, f+v-Vif —(E+A)-V,f=0,

p(t.x) = [ (F@) = f(t. x, v))dv.
-y
B0 = [ o) = 5,

f(O’ X, U) = f()(-x’ U).

Here F describes a number density of positive ions which form a fixed
background, and f denotes the density of mobile negative ions in phase space.
Notice that if f,(x, v) = F(v) and A = 0, then f(z, x, v) = F(v) is a steady solution.
Thus, we seek solutions for which f(z, x, v) — F(v) as |x| — oo. It is important to
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notice that (1) is a representative problem, and that problems concerning multiple
species of ions can be treated in a similar manner.

Precise conditions which ensure local existence and conditions for continuation
were given in Schaeffer (2003b). Also, a priori bounds on p and a quantity related to
the energy were obtained in Schaeffer (2003a). Therefore, we will work towards estab-
lishing global existence with these bounds and using similar assumptions. Other work
on the infinite mass case has been done by Jabin (2001) and Caglioti et al. (2001).

The case when F(v) =0 and f — 0 as |x| — oo has been studied extensively.
Smooth solutions were shown to exist globally in time in Pfaffelmoser (1992)
and independently in Lions and Pertham (1991). Important results prior to global
existence appear in Batt (1977), Glassey and Strauss (1986), Horst (1981, 1982),
and Kurth (1952). Also, the method used by Pfaffelmoser (1992) is refined in Horst
(1993) and Schaeffer (1991). Global existence for the Vlasov-Poisson system in two
dimensions was established in Okabe and Ukai (1978) and Wollman (1980). A
complete discussion of the literature concerning Vlasov-Poisson may be found in
Glassey (1996). We also mention Batt and Rein (1991) and Rein and Rendall (1994)
since the problem treated in these papers is periodic in space, and thus the solution
does not decay for large |x|.

1. Section 1
Let p € (3,4) and denote

R(x) = R(|x]) = (1 + [x")*.
We will use the notation
||g||L°°(R”) = S;lusz lg(2)]
and
lell, = lp()R (X 1= r3)»

but never use L”. We will write, for example, ||p(2)]|, for the || - ||, norm of x = p(¢, x).
Following Schaeffer (2003a,b), we assume the following conditions hold for
some C > 0 and all + > 0, x € R?, and v € IR?, unless otherwise stated:

(I) F(v) = Fg(|v]) is non-negative and C* with
Fz(0) <0, (2

and there is W € (0, o0) such that

Fp(u) <0 for u e (0, W) 3)
Fr(u)=0 foru=>W.
(1) £, is C' and non-negative.
(TII) A is C' with
|A(t, x)| < CYR (), 4)

10, At )| < CR™ (), 5)
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and
V.- A(t,x) =0. (6)
Finally, we assume there is a continuous function a : [0, 7] — R such that

Mm%w@ﬁggﬁhh)

(IV) F — f, has compact support in v, and there is N > 0 such that for |x| > N,
we have

|F(v) — fo(x, v)] = CR™*(x).

Then, we have global existence.

Theorem 1. Assuming conditions (1)<(1V) hold, there exists f € €'([0, 00) x R® x IR?)
that satisfies (1) with | [(F — f)(t)dv||, bounded on t € [0,T], for every T > 0.
Moreover, f is unique.

In addition, due to the previously known result of Pankavich (2004), stated
here as Theorem 2, we are able to conclude further decay of the charge density in
Corollary 1.

Theorem 2. Let T > 0 and f be the €' solution of (1) on [0, T] x R? x IR3. Then,
we have

lells < C,.s

for any t € [0, T, where C,, depends upon

qu@M-

7€[0,1

Corollary 1. Let T > 0 and f be the €' solution of (1) on [0, T] x R x IR®. Then,
we have

<C
6

H/w—ﬂmm

Jor any t € [0, T.

To prove Theorem 1, we will use Theorems 1 and 3 of Schaeffer (2003b),
which guarantee local existence and continuation of the local solution so long as
I f(F = f)()], is bounded for some p > 3. Therefore, the following lemma will be
all that is needed to complete the proof of the theorem.

Lemma 1. Assume conditions (1)-(IV) hold. Let f be a €' solution of (1) on [0, T] x
R3 x R3. Then,

<C

)4

H/w—ﬂmm

for all t € [0, T], where C is determined by F, A, f,, and T.
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Define
Q,(t) := sup{[v| : 3x € R*, 7 € [0, 1] such that f(z, x, v) # 0} 7
and
Q,(1) :== max{W, Q,(1)}.

In Section 2, we will bound E, VE, and V, ,f. Also, we will estimate the energy,
and obtain bounds on Q,(7) and thus Q,(7). To better reveal the line of thought,
the proofs of Lemmas 2 through 4 are deferred to Section 3.

We will denote by “C” a generic constant which changes from line to line and
may depend upon f,, A, F, or T, but not on ¢, x, or v. When it is necessary to
refer to a specific constant, we will use numeric superscripts to distinguish them. For
example, C©, as in (I11), will always refer to the same numerical constant.

To estimate E and VE, we will use the following lemmas.

Lemma 2. For any g > 0 and b € [0, %) with b < % we have

|E(t, 0) < C(llp(0)]l,R™(x))"
for any t € [0, T), |x| = 1, where C may depend upon | p(t)|| -

Lemma 3. Forany g > 0 and a € [0, 1) with a < %, we have

IVE(z, x)| < C(llp(0)]l,R™*(x))*
for any t € [0, T], |x| = 1, where C may depend upon || p(t)| . and ||Vo(t)|| .-

Then, we will use the following lemma to bound the p-norm of p and obtain
decay of both E and VE.

Lemma 4. For any q € [0, ), p()|l, is bounded for t € [0, T], where C may depend
upon || p(1)|l.. [[Vo(2)]

oo and Q (D).

Thus, once we show | p(#)| . and ||Vp(?)||, are bounded for ¢ € [0, T], and Q,(T)
is finite, we may use Lemma 4 to bound ||p()]|, since p € (3, 4). Then, we can prove
Lemma 1, and thus Theorem 1.

00

2. Section 2

2.1. Characteristics

Define the characteristics, X(s, ¢, x, v) and V(s, t, x, v), by

0X
— (s, t,x,v) = V(s, t, x, v)
0s

0

O—Z(s, t, x,v) = —(E(s, X(s, t, x, v)) + A(s, X(s, £, x, v))) (8)
X(t, t,x,v) =x
V(t, t, x, v) = v.
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Then, we have

0
a—f(s, X(s, t, x,v), V(s, t,x,v))=0,f+V-V.f—(E+A)-V,f=0.
s
Therefore, f is constant along characteristics, and
Sf(t, x,v) = f(0, X(0, 1, x, v), V(0, 1, x, v)) = fo(X(O, t, x, v), V(O, 1, x, v)). 9)

Thus, we find by (IT) that f is non-negative.
Define g : [0, 00) x R3 x R* — IR by

g(t, x,v) := F(v) — f(t, x, v).

Then, we see that sup, , |g] < ||F|l.~ + || foll .~ < oo, and

0
—g(s, X(s, 1, x,v), V(s, t, x,v)) =0,g+V-Vg—(E+A)- Vg
s

= —V,F(V(s)) - (E + A)(s, X(5)). (10)

Finally, for any se[0, 7] with f(s, X(s), V(s)) #0, we have for tr€[0,7] and
x,veR3,

|X(s, t, x,v) — x| =

t .
/ X(z, t, x, v)dt

< /r |V(z, t, x, v)|dt < TQ,(T).

So, assuming we can bound Q,(7), we have for |x| > 2TQ,(T), v € R?, 1 € [0, T],
and s € [0, ],

1
|X (s, 2, x, v)| > |x[ = TQ,(T) > Elxl (11)
and
3
[X(s, 1, x,0)| < |x| + TQ,(T) < EIXI- (12)

Unless it is necessary, we will omit writing the dependence of X(s) and V(s) on
t, x, and v for the remainder of the article.

2.2. Bounds on the Field

Much of the work that follows will rely on energy estimates found in Schaeffer
(2003a). In particular, we combine Lemma 3 and Theorem 4 from Schaeffer (2003a)
to obtain an a priori bound on p.

First, define ¢ : [0, 0) — R by

G(h) _ _/Omin{h,F(O)} (F_l(iz))zdil
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and S : [0, 00) x [0, 00) — [0, o) by

S(h,n) = (h— Fm)n® + a(h) — a(F(n)).

Then, from Schaeffer (2003a), we have the following lemma.

Lemma 5. Let
k(t,x) = [ S((t, %, 0), lol)dv.
Assuming conditions (1)—(1V) hold, we have
[ 1F@) = (e, x v)ldv < Clk(r, 0)F + k(1. 0)})
and
/ k(1, x)dx < C.
It follows directly from (13) that
[p(t. )| = C(k (1, )7 + k(1. )7).

Then, using Lemma 5 , we may bound the field.

(13)

(14)

(15)

Assume ||p(1)]| j~rs) < C for all 7 € [0, T]. Then, for >0, x€ IR?, and any R > 0

lx =yl
< lo@llslx =312y + [ oG yllx =y 2dy
[x—y|<R |x—y|>R

R
<o)l [ dr €[ (k) + R @)=l Py
xX—y|>

< 4l R+ C( [ kt, y)dy)%(f

lx—y[>R

+c( [ ka, y)dy);(/lxy>R | — yl’s)%
= anlplk+ ([ rar) ([ rar)

< C(lp()]| =R+ R™* + R™%).

1

= y1™)’

(16)

Obviously, we may choose R =1 and deduce that |E(z, x)| < C. Suppose that

the v-support of g is bounded for bounded times. Then, we find

ol < [ gt x wldv < (Ufallis + 1F]2)30) < CO0).

[v]<Q, (1

Thus, we know for every ¢ € [0, T],

o))~ < CO(0).
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Now, choose R = Q;%(t). If R > 1, then Q,(7) is bounded. Otherwise, R < 1 and
thus R~? < R-3.
Then, we have

|E(t, x)| < C(||p(t)||LmR+R*4§>
< c(QWae W+ @ o))
< 05 ()

= 0} (1.

(17)

2.3. Bounds on Derivatives of Density and Field

We proceed as in Section 4.2.5 of Glassey (1996) with one modification: we will not
assume that p(f) € L'(IR?) for all ¢ € [0, 7]. Instead, we find for any R > 0, (letting
r=|x—yl)

1 3 —x)? 1
— ] LA,
4n \/\.y—x\sz(t y)( r’ )

1

=— [ deylrdy=c [ (k) +K @ )rdy
T Jly—x|zR [y—x|>R

< c(( [ k) [ rody)” + ([ kenay) ' ( [ rlsdy)?)

=c(RI+R?).

Thus, introducing this estimate into the result of Glassey (1996), we have for
any 0 <d <R

3 )
IV.E(t, x)| = C(1 +In(R/d))||p(D)]| .~ + Cd[|V,p(D)]| .~ + C(R> + R73). (18)
Then, we may follow the argument in Section 4.2.6 of Glassey (1996) and find a

priori bounds on ||V,E(?)||;~ and ||V, f(#)||.~ as long as ||p(?)]|,~ is bounded. This
work will be included in Appendix A.

2.4. Energy Bound

First, notice from (3) that we may write W > 0 as
W =inf{n > 0: F(n) = 0}.
Recall the definitions of g, S, and k, as well as, (14), which we may write as

// S(f(t, x, v), |[v))dvdx < C

for any ¢ € [0, 7] .
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Let n > 2W. We find

S(h,n) = (h = Fm)* + a(h) — o(F()) = hii* + a(h) — (0) = hn* + a(h)

min{h, F(0)
= h}’]z —/
0

> hy? — hW? = h(y> — W?).

\(F-1(1))2dh = i — min{h, FO)})(F~(0))’

Then, since y > 2W, we have inz > W2 and

1 1 1
h(p* — W?) = 5/1172 + h<§n2 — W2> > 5}“12-

Thus, for any 2 > 0 and n > 2W,

1
SCh,n) = hiy?
2
and, finally, for P > 2W

//‘ | W f(1, x, v)dv dx < 2/] S(f(t, x, v), |v])dv dx < C. (19)

2.5. The Good, The Bad, and The Ugly Revisited

The method we will employ is very similar to that used in Section 4.4 of Glassey

(1996). The differences are due mainly to the lack of positivity in the charge density,

changes in the conserved energy, and the contribution of the applied field. We will

assume throughout this section that Q,(#) is not already bounded and (17) applies.
Define

15

1

3

0(1) == (max{(zwﬁ, c<°>}) +0,(0).

Then, define C@ := (C©)~% 4+ C" so that we use (17) and (III) to find

1 20
13

E(x, x) + Az, x)| < D0 (1) + COR(x) < V@3 (1) + (€)= (C?)
= CV0 0 +(CV) ot = 0} ()

forany t € [0,7].
Now, let (X(7), V(¢)) be any fixed characteristic

127 Y9_pu®
dt- 7 dr T Y

for which

[, X(1), V(1) #0.
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For any 0 < A < ¢, we have
lg(s, y, w)|
|E(s, X(s))|ds < C —————dwdyds (20)
/, / f/ ly — X(s)]?

r b X b t’ b b V b t, b
Cof [] XD
|X(s, 1, x, v) — X(9)?

Let P= Q% (1), R > 0, and A = . From the definition of Q, notice that

P >2W.
Let us partition the integral into I, I, and I, where I, is the integral in (21)
over the set A, and the three sets are defined as:

c<2>Q§ (r)

G:={(s,x,v):1—A<s<rand (Jv] < Por|v—V()| <P},

B:={(s,x,v):1—A <s<tand |v| > P and lv— V()| > P
and |X(s, 1, x, v) — X(s)| < R},

U:={(s,xv):1—A<s<tand|v > Pand |v— V()| > P
and |X(s, 1, x, v) — X(s)| > R}.

We will use the invertibility of the characteristics as described in Glassey (1996),
so that when we set

y = X(s, t, x, v),
w = V(s, t, x,v)
we can invert using

x = X(t, s, y, w),
v=V(t,s,y,w).
In particular, notice w = V(s, t, X(¢, s, y, w), V(¢, s, y, w)) and C((’X 'j)) =1.

To handle the integral over G, we must first deal with some preliminary
inequalities:
1. First notice that |V(s, ¢, x, v) —v| < f; |E(t, X(7)) + A(z, X(7))|dx.
Thus, for s € [t — A, t], we have

1
IV(s, £, x,v) — v] < ACP Q3 (1) = e
2. For |v| < P,
1
[V(s, t, x, v)| < |v| + ZP < 2P.
3. For [v—V(1)| < P,
[V(s, t, x,v) = V()| < [v—= V()| + V() = V()| + |V(s, 1, x, v) — 1]

1 1
<P+ -P+-P<2P.
< +4 +4 <
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4. For |v] > Pand T € [t — A, 1],

|V(z, ¢ )| > |v] 1P 3'P>32W w.
——P> - - > W.
T,t,x,0) > |v ) F=7
Now, let
1 (s,x,v) G
2 (s, x,v) 1=
0 else.

Then, we have

’X ’l’ b 9 V ’t’ b
I, = // / |85, X(s, 1, %, ), V(s, b X, D]y
G |X(s, t, x, v) — X(5)|?

t 16 (s, x, v)|g(s, X(s, 1, x, v), V(s, t, x, v))|
=/ / = dvdxds
—A |X(s, £, x, v) — X(s)|?

! 26(s, X(1, 5, y, w), V(1. s, y, w))|g(s, y, w)|
= — dwdyds.
A [y — X(s)I?

If g5 # 0, then |V(t, s, y, w)| < P or |V(¢,s,y, w) — V(r)| < P. Then, by Preliminary
Inequalities 2 and 3, we have either |w| < 2P or |w — V(s)| < 2P. Set

w), V(t, s, y, w))dw.

p(s,3) = [ 18Gs. .
Then, ||p(s)|,~ < CP*. Also, using (13), we know
p(5,3) = [ 1g(s. v, w)ldw = C(KE (s, 3) + k(5. ).

Thus, we employ the method of (16) and (17) to find

POV < cpt
ly — X(s)|?
and, finally, we have
—/ / PV as < capt, (22)
=2y = X(s)P2

Estimating 7, we have

7X 9t9 b ’V ,t, 9
I = [/ |85, X(s, 1, %, ), V(s, & 6, D] o0
|X(s, t, x, v) — X(5)|?

t
<[] lgts, vl J s
=aTy-X@I<RY |y — X(5)?
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= (Fl= +1fel) QO [ [ =X Pdwds
t—A J|y—X(s)|<R
t R
< CQ(t dr ds,
=cQ@ | [ aras
and thus
I, < CAQ*(1)R. (23)

Finally, to estimate I, we use Section 3 (specifically, line (15)) of Schaeffer
(1991) to find

t . C
| IXC 1 x0) = R 25, x, v)ds < 2, (24)
t—A RP

for (x, v) as in U. The proof of this result is quite long, so we shall include a sketch
rather than the entire proof. First, let

Z(s) = X(s, 1, x, v) — X(s).
Then, choose s, € [t — A, ¢] such that
1Z(s0)| < |Z(s)|

for all s € [t — A, ¢]. It is shown in Schaeffer (1991) that

1
12(5)| = Pls = sl 5)
Now, define

— 0<r<Rk

2(r) = R
1
-~ r>R%.
,

Notice that ¥ is non-negative, non-increasing and

|Z(s)| 7 1u (s, x, v) < Z(1Z(s)P).
Using these properties of 3 with (25), we find
t t t 1 2
| 126 Pt xvds < [ S(Z6)Pds < | 2((-P|s - s0|) )ds
1=A —A —A 4
P, 16
=/ E<R‘c >d‘5— =

This shows (24).
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Now, using (24) with (3), (9), (19), and preliminary inequality 4, we have

dvdxds

_ lg(s, X(s, t, x,v), V(s, t, x, v))|
fv= //U 1X(s, 1, x, v) — X(s)|2

_ / / / |F(V(s, 1, x, v)) — f(s, X(s, 1, x, v), V(s, 1, x, V)|
U 1X(s, 1, x, v) — X(s)2

= f/ / =/t x, v)/|\ dvdxds
vl |X(s, t, x,v) — X(5)|?

! t, X,V
= / / ~ / R H )A dxdvds
1=A Yol >Plv=V(1)|>P J|X(s,1.x,0)-X ()| >R | X (s, £, x, v) — X(5)[?

dvdxds

[ s ([ 1X6n 0 = ROz G s ) dxay

é //|U|>P f(t, x, v)dvdx

C 2
w5 // LRI

IA

IA

and so

I, <<
Y= RPY

Finally, collecting the estimates (22), (23), and (26), we find,

1 /! ~ 4
3 [ RO = P+ RO0 + )

We take R = Q% (1) and then
<[ 1EG. R@)lds < col),
AJia -
Using (I11), we have
1t - -
3, (EG X)) + Al X(s))ds
< coB() + 4 f[ COR2(R(s))ds < COP (1) + - /t Oy
- AJia A= A Jiia y

< cof () + ((C™F)F = cofn + 0f (1 = coB .

(26)

27)

Finally, we use the argument in Section 4.5 of Glassey (1996) to bound the
velocity support, since the power of Q(z) is less than one. This work will be explored

in Appendix B. Thus, for all ¢ € [0, T,

o) <C,

(28)
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and this implies bounds on Q,(t) and Q,(¢) for all 7 € [0, 7]. Furthermore, if
V(s, t, x, v) satisfies f,(X(0, ¢, x, v), V(0, ¢, x, v)) # 0, then

|V(s, t, x,v)| < C

for any s € [0, 7], including V(z, ¢, x, v) = v.

Notice then, the bound on the velocity support implies a priori bounds on
Io@ll=> 1E@) =, IVeE@) | 1~ and ||V, ,f(1)] .~ for all £ € [0, T].

Now that |[p(#)| . < C and [|Vp(?)||, < C for all ¢ € [0, T], and Q/(7) is finite,

we apply Lemma 4 since p > 3, and find |[p(?)||, < C for all # € [0, T], and the proof
of Theorem 1 is complete.

3. Section 3

To conclude the article, this section contains the proofs of Lemmas 2 through 4.

Proof of Lemma 2. Let g, T > 0 be given with ||p(¢)|. < C for all t € [0, T]. Let
€ [0, {3) be given with b < 2. Consider |x| > 1, define

= (|p®ll R (x))"
and divide the field into the pieces
|E(t, x)| < T+ 11+ IIL

where

L= [ 1p(ey)llx =yl 2y,
[x—yl<n

n= [ ot ) I1x = yI~2dy,
n<lx—y|<

11l
M= [ e y)llx =] 2.
[x=y|>3 |x]
Then, the first estimate satisfies

L=< Cllp()lln- (29)

The second estimate satisfies, for any m € [0, %),

I < C(lp(l, R (x))" ‘ lp(t ' =y~ dy

1
n<lx—y|l<sz|x

< Cllp@ [, R (x))" n<h—yl<}ix] (k

3(1

—m) _ Lom _
()l = | 4 (1) x = 9172 dy

1+m
2

< IR ([ el ea)

1
<lx=yl<3lx]

10 et
w([ o rra)
n<lx=yl<}lx|
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- m| —2+3(14m _py3(dme2
= C([lp(M)l,R(x)) [;7 23O 4 g3 )]

3m—1

_ nr, nx>1
q m
< O,k () {n i
Then, for n > 1, we choose m = %, and for n <1, we choose m= m To

guarantee convergence of the above integrals, we must have m < ;, and thus, b < =
Thus, we find

I < C(lp()]|,R™(x))". (30)

Finally, for b 5%{
1\
= Gl (51) [ e sl ROy
x=y|>3|x

x— }\>l | x|

1 bg—2
< @l R @) [ 1o (3R0) R

< C(lp(ll,R™(x))" ¥ (K7 (1, ) + K308, y))R2(y)dy

x=y|>3lx|
< C(lp()], R (x))” [( [ R i) v ([ R opay) ™ ]
< C(lp(@) R ()"

for _1_

L < =3, which is satisfied since b < .

Combining the estimates for I, II, and III, the lemma follows.

Proof of Lemma 3. Let g, T > 0 be given with ||p(?)||, < C and ||Vp(?)|. < C for
all r € [0, T]. Let a € [0, 1) be given with a < 3 Consider |x| > 1 and define

1= (llp(l,R(x))".

For any i,k =1, 2, 3, we have

(x—y) (x =y (x =)
el = | [ el | [ o EEE RS

(x — )
+ p(t, )0, ( dy
/Ix—YI>f1 T\ Jx =P
=: 1411+ III.
Then,
I< IV.p(D)llx — y|2dy < Cn.

[x=yl<n
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We estimate II for the large |x| and small |x| cases. For |x| > 2#,
Il < flxiy‘:n(llp(f)IIqR’q(y))“IP(f, I = yl72dS,
< lo@Ile @I [ Rl = s,
<l k(31 ) = ool R
For |x| < 27,

I < | p(0) [l /‘ ds, < C < cnlx|™) < On.
X =n

=l
Then,
mr=cf el Py
n<lx—yl<zlx
Tl Illlp(t,y)llx—y|’3dy=:A+B.
x—y|>5|x

Estimating A, we have for n € [0, 1),

A< IIP(t)IIZf . lp(t, VIR ]x = y[dy
n<|x—y|<s|x

1

2

3(1=n)

1 i—n —
<clplr(5) [ ET ) ol -y
n<|x—yl<szlx

14

n
2

< Cllo@IR @ [([ sl )

<lx—yl<jl]

3n42
15 5
+(/ |_x_y| 3n+2>
n<lx—yl<1x]

1+n

= C<llp<f>llqR"<x>)"[( / Crar) T ( [ ) d)}
= C(||,0(t)||qR“’(x))"<,1%(1+n)—3 4 ng(3n+2)_3)
(

- n —3(1-n —2(1-n
= Cllp@) Ry (307 4y 207)

BRI ES!

)

_ N
= C([lp(M),R(x)) {ngan)’ n>1.

14a
9a+5°

Sa

For n <1, we may choose n = el

Thus,

and for n > 1, we may choose n =

A= C(lpMl,R(x))"
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Finally, we estimate B and find

B < lp(t, y)||x — y| 7 dy

lx=y|>3 x|

1 Y —a aq—3 p—a
Il (31) [ = Ry

< C(llp(t)[|,R(x))" eyl Lt <kl%ﬂ(t, y) + k309, y)) R (y)dy

I4a

< C(Ilp(t)llqRq(x))a[( [ RS Gay) T+ (f Rgg(y)dy)""s”]

< C(lpMl,R*(x))*"

for —% < —3, which is satisfied since a < 1.

Combining the estimates for I, II, A, and B, the lemma follows.

Proof of Lemma 4. Let T>0 and g€ [0,3) be given with ||p(1)], <C and

[Vo()|l. < C for all 1 €[0,7] and Q,(T) < co. Let t € [0, T] be given. For any

D > 0, taking |x| < D, we find

RUD) _ cpag). 31)

lp(t, )| < POl = P RiG) =

Now, define C® :=max{l,87Q,(T)} and let |x| > C®. Define for every ¢ €
[0, 7] and x € R?,

B(1, x) = E(1, x) + A, ).
From the Vlasov equation,
2 (505, X050, V(9)) = ~(5, X(5)) - V,F(VLS).
and thus
g0, 0) = (0. X(O), V) — [ ¥, X(9) TRV ()

Thus, to estimate p, we must consider [ €(s, X(s)) - V,F(V(s))dv. Assume f is
nonzero along (X(s), V(s)). Then,

] / (s, X(s)).vUF(V(s))dv\ < \ / (s, X(s))-(VUF(V(s))—VUF(v—i- / (e, x)dr))dv‘

n ‘ /(%(s, X(s5)) — E(s, x + (s — H)v))

V. F(u + / " x)df)dv}
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+ ’ [V (R B x4 5 - z)u))du(

+ ’/ F()V, - (€(s, x+ (s — t)v))dv’
=1+ 114+ 1T+ 1V.

Using Lemmas 2 and 3, as well as (III), we find a € [0, 1) and b € [0, %) with

) 18
ag%,bs%,anda-i—b:lsuchthat

[€(2, )| < Clp()l,R(x))"
and
IVE(, )| = C(llp(@)[| ;R (x))“.

By the Mean Value Theorem, for 7 € [s, t] and i = 1, 2, 3, there exist é’i on the
line segment between X(t) and x such that

€1, X(0) — E(r, x) = V,%(r, &) - (X(7) — ).

Hence,
< 2 (s, ) B ' ’
U= [ TG XOIT ALV = (v+ [ e de) o
<C (IIp(s)IIqR—q(X(s)))b‘ /f(;g(f, X(1)) — %(z, x))df’dv
v]=Q,(7) :

<[ (@I R X)) [ sup [V E)IX() - xldedy
[v]|<Q,(T) s i

<C (o), R 1(X ()" TQ(T) ftSup(||P(T)||qR_q(§i))adT dv.
[v]|=Q,(T) s i

Since we know, by (11), forany i =1, 2,3

. 1 1
&1 21X = 1X(@) = x| 2 5]+ - TQ,(D) = {14,

we find

= (oo (3)) w () [ onzar

< R @ (IO [ lelae).
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Similarly, using the above lemmas and the Mean Value Theorem, for any i =
1,2, 3 there exist & between X(t) and x + (s — #)v such that

3
I < CZ/H 0.0 sup [VE(s, &)I[X(s) — (x + (s — D) ||| VF|| dv
i=1 " IVI=C¢ i

1

< CZ (O CRY ] [ %6 x| av

Since we know, using (11), for any i =1,2,3

6] = [X ()| = [X(s) = (x + (s = )v)| = %IXI -

ﬂt(V(r) — v)dr‘

1
x| = 27Q,(T) = ZIXI,

N —

>
it follows that

w=cf (e (3) [ deor o) da

[v[<Q,(T)

< ek W(Ip@I [ oI, de).

By the Divergence Theorem,

I =0,
and finally,
IV < IF ||V, - €(s, x + (s — £)v)| |s — t]dv
o <0, (7)
<C lo(s, x + (s — H)v)|dv.
[v|=0,(T)

Collecting the estimates for I-IV, we have
‘ / (s, X(s)) - VUF(V(s))dv’
t t
= (R @ (le@l; [ o) + R @ (o)l [ lolide)
+/ (s, x + (5 — t)v)|dv). (33)
ol <0,(T)
Since a + b = 1, we proceed from (32) and using (33), (IV), and (28), we find
Ip(t, 0] = | [ 82, x, v)dv]

< 12(0, X(0), V(0))|dv + ( / t / E(s, X(s)) - V,F(V(s))dv ds
[v]<Q,(T) 0 Ju[<0,(T)
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=cre ¢ [ (R (1O [ o)
+ R0 (I [ 9@ )
+ /Iv\ﬁQg(D lp(s, x 4+ (s — t)v)|dv)ds

< cr (14 [ 1oL [ lo@ilazas+ [ 1ol [ o deds)

t
+C f lp(s, x + (s — H)v)|ds dv
b =0,(1) Y0

< cr o1+ ([ leolzas) ([ 1e@lae)
([ wonas) ([ o@na) +c [ [Mloe = nw)ldsa.

Then, applying Holder’s inequality twice,
o001 = R (1+272( [ o)l as) ™
wref ] PR+ (s — u)ds dv)
< ek (14 [ Iolds + 1) &G [ Inolas)
< R @(1+ [ 1ol ds).

Combining this with (31) (with D = C®) and multiplying by R?(x), we have for all x,

R 9] = C(1+ [ o) ds).

Since the right side of the inequality is independent of x, we take the supremum
over all x to find,

le@ll, = c(l + /0 ||p(s)||qu>

and by Gronwall’s Inequality,

le@Il, = C.

Thus, [p(1)|, is bounded for all ¢ € [0, T]. Notice, too, that the choice of

a+ b =1 forces g < f—;‘, and the proof of the lemma is complete.
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Appendix A

In this appendix, we will explore the argument used in Section 4.2.6 of Glassey
(1996) to bound derivatives of f and E.
Let D be any x derivative. Then, using the Vlasov equation,

3,(Df) +v-V.(Df) — E-V,(Df) = DE - V,f

so that

Dfs, X(5), V(5)) = DE - ¥,£(s, X(5), V(s).
Hence,

DSt % V)] = D0, X(0), VOD| + [ 1DE 5,05, X(5), V(s)lds:

Define

|f()], = sup |0, (s, x, v)| + Sup [0, f(1, x, V)]
and

|E(s)]; = sup |0,E(s, x)|.

Then,

DS %, 0| = C+ [ TEGLIS),ds.
We see that 0,f satisfies an inequality of similar type because
0,(0,/) +v-V(0,/) —E-V,(0,f) = =0,v- V. [.
It follows that
Ol = C+ [ A +IEGIA s
However, from (18), we can conclude (with d = ||V,p||.,) that
[E(s)l, = C(1 +1n” |f(s)],)

where

N s 0<s<l1
In*s =
l1+Ins s> 1.

Therefore, for t < T,

sl = c(1+ [ A+ OOl ds).
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It now follows by an application of Gronwall’s Iequality that
lfh =€

and
E@), =C

on t < T. This concludes the argument to bound field derivatives and derivatives of
the density, and thus ends Appendix A.

Appendix B
The bound on Q(¢) is obtained as follows. From (8) and (27), we have

-~~~ -~~~ t —~~
V) = V= 8)]+ [ 1EG R(s)lds = 0t — &) + CAQB ().
t—A
Since the above constant is independent of the particular characteristic, we find

0(1) < Q(t — A) + CAQF (1)

for
1

b 3o

A:mln{ I,W

0740+ 08 )] =min 1. 72z 0H 0 .

Since Q is nondecreasing, there exists 7 such that

t t<T,
= 1 4
@ o) =T,

Take ¢, in the interval of existence. Without loss of generality, 7, > T,. Let

_ 4l
h=t— 7o @ 7).
I a )
Ly =1t — 4C<2>Q w(t) (i=1,2,...)
as long as t; > T;. Then
| ] _a
=t = 105 Q (1) 2 775079 (1)

which is a uniform lower bound on the length of each subinterval. So, there is a first
i, say i = k, such that r, < T,. Thus, 7, > 0 and therefore

(to— 1)+ (6, —t) + -+ (e — 1) = k 0 % (1),

L 4CO)

which implies that

Q9 (1,) - k < 4CV1,.
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Now we have

k=1 k—1
0(1y) = O(1,) + Y [0(1) — O(1,,)] < Q) + C Y A- QF (1)
i=0 i=0

k=l 41 13
< Q(T)) + CZ Q (1)) - OB (1)

i=0 4C(2)
< O(T)) + C-kQ (1) - QF (1) < C1,0F (1)

Therefore, Q(¢,) is bounded, and the proof is complete. This ends Appendix B.
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