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An approach for simulating bionanosystems such as viruses and ribosomes is presented. This
calibration-free approach is based on an all-atom description for bionanosystems, a universal
interatomic force field, and a multiscale perspective. The supramillion-atom nature of these
bionanosystems prohibits the use of a direct molecular dynamics approach for phenomena such as
viral structural transitions or self-assembly that develop over milliseconds or longer. A key element
of these multiscale systems is the cross-talk between, and consequent strong coupling of processes
over many scales in space and time. Thus, overall nanoscale features of these systems control the
relative probability of atomistic fluctuations, while the latter mediate the average forces and
diffusion coefficients that induce the dynamics of these nanoscale features. This feedback loop is
overlooked in typical coarse-grained methods. We elucidate the role of interscale cross-talk and
overcome bionanosystem simulation difficulties with (1) automated construction of order
parameters (OPs) describing suprananometer scale structural features, (2) construction of
OP-dependent ensembles describing the statistical properties of atomistic variables that ultimately
contribute to the entropies driving the dynamics of the OPs, and (3) the derivation of a rigorous
equation for the stochastic dynamics of the OPs. As the OPs capture hydrodynamic modes in the
host medium, “long-time tails” in the correlation functions yielding the generalized diffusion
coefficients do not emerge. Since the atomic-scale features of the system are treated statistically,
several ensembles are constructed that reflect various experimental conditions. Attention is paid to
the proper use of the Gibbs hypothesized equivalence of long-time and ensemble averages to
accommodate the varying experimental conditions. The theory provides a basis for a practical,
quantitative bionanosystem modeling approach that preserves the cross-talk between the atomic and
nanoscale features. A method for integrating information from nanotechnical experimental data in
the derivation of equations of stochastic OP dynamics is also introduced. © 2008 American Institute

of Physics. [DOL: 10.1063/1.2931572]

I. INTRODUCTION

Viruses, ribosomes, and other bionanosystems (BNSs)
are supramillion-atom structures that must be understood in
terms of the interplay of atomistic, highly fluctuating behav-
iors, and more coherent dynamics involving the collective
motion of many atoms simultaneously. The challenge we ad-
dress is to quantify this picture and use it to understand BNS
behaviors such as structural transitions, self-assembly, and
interaction with other features (e.g., membranes) in a cell’s
interior or other biological milieu.

Being supramillion atom in size, a BNS presents a grand
challenge for predictive modeling. For example, the highly
optimized molecular dynamics code NAMD, run on a 1024
processor supercomputer, can simulate approximately 1.1 ns
of evolution for a complete satellite tobacco mosaic virus in
1 day. However, viral structural transitions take a millisec-
ond or longer. Thus, using this approach would take about
2500 years. While some other methods taking advantage of
the symmetry of the BNS (e.g., icosahedral viruses)' can
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proceed much faster, they cannot address the highly nonlin-
ear, local, and dissipative nature of the BNS phenomena of
interest. Phenomenological models (e.g., wherein peptides
and nucleotides are represented as beads, or other major sub-
units of the BNS are lumped into simplified computational
elements) must be recalibrated with each new application,
severely limiting their predictive power. Lumped models can
also lead to difficulties in that the definition of the subunits
may not be invariant over the time course of the phenomena
of interest. Thus, new concepts and computational algo-
rithms are needed for understanding and designing bionano-
systems.

Advances in multiscale theory2_4 imply an algorithm that
enables all-atom dynamical computer simulations of a BNS
over biologically relevant time periods. Here, we present a
rigorous and generalized reformulation of the all-atom mul-
tiscale approach. Multiscale analysis is a way to study sys-
tems that simultaneously involve processes on widely sepa-
rated time and length scales. It has been of interest at least
since the work on Brownian motion by Einstein.”'® In these
studies, Fokker—Planck and Smoluchowski equations are de-
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rived either from the Liouville equation or via phenomeno-
logical arguments for nanoparticles without internal atomic-
scale structure. We extended this work by (1) accounting for
atomic-scale internal structure of the BNS, (2) introducing
general sets of structural order parameters (OPs) characteriz-
ing nanoscale features of the system, (3) inventing a way to
introduce OPs into the analysis without the need for tedious
bookkeeping to ensure that the number of degrees of free-
dom is unchanged, and (4) introducing ensembles con-
strained to fixed values of the OPs to construct average
forces and diffusion coefficients in the coarse-grained equa-
tions of stochastic dynamics.”™* These elements underlying
our BNS modeling approach are strongly interrelated.

A. Order parameters

Major features of a BNS change slowly in time relative
to the 107'* s characteristic time scale of fast atomic colli-
sions and vibrations. Variables describing these nanoscale
features include the center of mass (CM), orientation, and
nanometer-scale BNS substructural units (e.g., capsomers for
a virus). OPs change slowly for several reasons: (1) they
have large inertia as they describe the coherent motion of
many atoms simultaneously, (2) fluctuating atomic forces
tend to cancel as they are averaged over the BNS surface, (3)
frictional forces are large at the nanoscale and thereby re-
press rapid motions, and (4) energy barriers may be large
relative to thermal energies. As a result, although OPs have
some macroscopic character, they represent features which
are small enough that many associated phenomena must be
understood in terms of a stochastic description.

B. Ensembles and interscale cross-talk

While the OPs change slowly, the atomistic variables
explore a broad range of configurations. As one is usually
interested in the dynamics of the OPs, and has little concern
for the detailed atomic configurations at any instant, it is
relevant and practical to treat these atomistic variables by
using a probabilistic framework. To do so, we construct a
probability density that accounts for the instantaneous values
of the OPs at each point along their time course. Like the
total system energy for the canonical ensemble used in Gibb-
sian statistical mechanics of macroscopic systems, values of
the OPs must be used to construct ensembles characterizing
the likelihood that the system resides in each configuration of
the atomistic variables. As for the thermodynamics of mac-
roscopic systems, the construction of the ensembles devel-
oped in Sec. II reflect the available information on system
preparation and the exchange of energy and mass during the
process of interest. Unlike macroscopic systems, however,
one may not always choose the ensemble that is most con-
venient for carrying out the calculations, that is, the finite
size of the system requires greater attention when construct-
ing the ensemble and choosing among several possible en-
sembles, as noted in Sec. II.
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FIG. 1. OPs characterizing nanoscale features affect the relative probability
of the atomistic configurations which, in turn, mediates the forces driving
OP dynamics. This feedback loop is central to a complete multiscale under-
standing of nanosystems and the true nature of their dynamics.

C. Perturbation theory and coarse-grained stochastic
order parameter dynamics

One may identify small parameters (notably mass, time,
length ratios, and force strengths) that can be used to develop
an orderly perturbation solution of the Liouville equation for
the N-atom probability density. The lowest order solution is
constructed via an OP-constrained entropy-maximization
principle and a closely related restatement of the Gibbs hy-
pothesized equivalence of ensemble and long-time averages.
Expansion methods based on the smallness of these ratios
imply equations for the reduced probability density describ-
ing the stochastic evolution of the OPs. Depending on the
character of the system and the physical/biological regime of
interest, the stochastic equation derived is of the Smolu-
chowski or Fokker—Planck type. The frictional and average
force factors appearing in these equations depend sensitively
on the values of the OPs and on the conditions (e.g., isoen-
ergetic or isothermal) to which the system is subjected. Our
multiscale perspective provides insight into the cross-talk
among the atomistic and nanoscale variables. As suggested
in Fig. 1, the OPs set the overall (nanoscale) context that
determines the relative probability of atomistic configura-
tions, which, in turn, mediate the average forces and fric-
tional effects that drive the dynamics of the OPs. Such a
relationship is the basis of the feedback loop expressed in
Fig. 1. This is in sharp contrast to typical coarse-grained
models, which aim to simplify the system by reducing the
number of interacting elements. This is usually done via “de-
coupled” coarse graining wherein atoms are lumped together,
and an effective force on the lumped element is set forth.'" %
In particular, a systematic method to derive the parameters
needed for the effective force field from trajectories and
force data collected from a single molecular dynamics (MD)
simulation was developed.19 This approach was applied to
various systems such as liquids,20 monosaccharides,”’ and
peptides.22 The results were in good agreement with atomis-
tic simulations while computational cost was significantly
reduced. Note, however, that MD simulations can only be
carried over short time and length scales. Thus, one wonders
if the derived parameters would still be applicable over
longer scales. Furthermore, the derived parameters are used
as a basis of the coarse-grained simulation without regard for
the feedback loop of Fig. 1 (i.e., the role of the overall struc-
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FIG. 2. In the fully coupled multiscale
simulator, the stochastic equations of
the Langevin type for the BNS struc-
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ture on the computation of the coarse-grained forces is over-
looked). For example, the ensemble of fluctuations of atoms
deep within a tightly wound globular protein is likely to
differ significantly from that when the protein is uncoiled. A
similar comment is appropriate for the transition state be-
tween two distinct conformations separated by a high energy
barrier. A further difficulty is that this type of coarse graining
provides no self-consistency criterion regarding the number
of atoms to be used in a lumped element. The ensemble of
atomic-scale fluctuations that should be used in a proper
computation of the coarse-grained forces depends on tem-
perature and other conditions, thus the parameters in the
coarse-graining should change with these conditions. Trajec-
tories produced in this manner are only reliable over short
times wherein the overall nanostructure does not change
enough to significantly alter the ensemble of atomistic fluc-
tuations.

The feedback loop of Fig. 1 suggests the need for the
simulation algorithm in Fig. 2. The coarse-grained equations
for stochastic OP dynamics are solved numerically. As the
average forces and diffusion coefficients in these equations
change with the OPs, they must be coevolved with the OPs.
These factors are expressed as statistical averages weighted
with OP-constrained probability densities.

In Sec. II, we construct the probability distribution for
the atomistic variables via an entropy-maximization prin-
ciple and the use of OPs as constraints. In Sec. III, we intro-
duce a procedure for automatically constructing BNS OPs
for viruses, ribosomes, membranes, and other bionanostruc-
tures. In Sec. IV, we show how the construction of appropri-
ate ensembles and multiscaling can be interwoven into a
BNS analysis. Conclusions are drawn in Sec. V.

Il. ENSEMBLES FOR ATOMISTIC FLUCTUATIONS OF
A BNS

A BNS is envisioned to have dual macroscopic/
microscopic characteristics—nanoscale components, each
consisting of many atoms, and atomic-scale, highly fluctuat-
ing features. To characterize the coherent nature of the nano-
scale features, OPs are introduced and expressions relating
them to the all-atom configuration are developed (see Sec. IIT
and Appendix). These OPs transcend particular atomic asso-
ciations; for example, the CM of a nanoparticle is a collec-

change with the OPs via the feedback
loop of Fig. 1.

tive property of thousands of atoms, not of a single atom.
Involving so many atomic notions in a coherent way, OPs in
a BNS typically change slowly in time relative to the time
scale of individual atomic vibrations and collisions (e.g.,
10~'* s). Thus, associated with the coherent nanometer-scale,
stochastic atomic-scale dichotomy, there is a corresponding
time scale separation. The objective of the formulation de-
veloped here is to simultaneously account for these diverse
scales and the cross-talk among them.

A common theme of many statistical mechanical theo-
ries of nanosystems is that the time scale separation suggests
that the atomistic variables explore a representative set of
configurations over a period of time on which the OPs are
relatively constant. The relative residence time in each mem-
ber of this ensemble of configurations is characterized by a
probability density p. By definition, p quantifies the likeli-
hood that the short-scale behaviors visit each configuration
in this ensemble. Given our lack of knowledge of most of the
atomic-scale detail, and that most of it is not directly relevant
to understand BNS behavior, stability, and function, an
entropy-maximization approach is used to construct p. We
develop this approach and integrate it with multiscale analy-
sis in this and subsequent sections. In the statistical mechan-
ics of macroscopic systems, this enables the study of various
experimental conditions (e.g., isothermal versus isoener-
getic). Here, we show that this can be used to introduce
nanotechnical measurement information into the analysis.
Given knowledge of some nanoscale features of the system
derived from nanotechnical measurements, our objective is
to construct the probability distribution for the rapidly fluc-
tuating degrees of freedom.

The statistical state of a BNS for most biologically rel-
evant conditions evolves slowly, i.e., with a characteristic
time much greater than that (1074 s) of atomic vibrations
and collisions. In Sec. IV, we show that this implies that the
probability density p characterizing this statistical state must
depend on the I' (the set of 6N atomic positions and mo-
menta) only via the set ® (={®,, - D, ,}) of M structural
OPs plus the energy (®,,,,). In contrast, if p depends on I" in
other ways, then p evolves on the atomic time scale. Thus,
while the lowest order analysis of the N-atom system implies
that p has the restricted form p(®), it does not provide fur-
ther information on the specific functional form of p. Since
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no information about the detailed atomic-scale state of the
system is usually known, we turn to an information theoretic
method to construct p.

According to Jaynes,23 the entropy S for the classical
system as formulated here for the nanosystem is given in
terms of an integral of p In p. For the restricted state counting
as in Appendix A, this becomes

S=—k3f wdl™A(e—P(I'™))pIn p, (2.1)
where A is a product of M +1 Dirac delta functions, one for
each of the M structural OPs and one for the energy. The
construction of p follows from a consideration of the particu-
lar experiment under investigation. Several distinct cases are
analyzed below.

A. Isoenergetic closed systems

Consider an isolated system in which the energy is held
constant at a value E. To construct p, we maximize S subject
to normalization

f odl™*A(e—-P([I™)p=1. (2.2)
Since energy is automatically fixed to ¢, (=E) via the
delta-function mediated state counting, no further constraints
on § maximization are required here. By using the Lagrange
multiplier approach, one obtains the probability density de-
noted in the present case by p,, in the form

FA’@= 1/Z(¢p), (2.3)

Z(¢) =f wdl™A(e - O(I')). (2.4)
By using Egs. (2.1) and (2.2), one finds that Z=¢%*5. Since
gradients of Z with respect to the OPs will be shown in Sec.
IV to derive coherent OP dynamics, one concludes that in
this iso-OP ensemble, evolution is driven by entropy differ-
ences. This is an expression of the second law for an isolated
nanosystem.

We consider p,, to be a conditioned probability density.
If W,d"*'¢ is the probability that the system is in a state
where the M+1 OPs are in a small element @"*'¢ about the
particular value ¢ (i.e., [d"*'@W,=1), then the correspond-
ing probability density p,, is ﬁ(pW_(P. Here and in the follow-
ing, we drop the @*!¢ for simplicity as all the equations for
p (as in Sec. IV) are linear so that such factors are found to
cancel in the equations. With the above, the overall probabil-
ity p,, for this case is given by

Pe=pW, 2.5)
a general form that, with modification of the p and W factors,
holds for all cases considered in this study.

A superficial examination of Eq. (2.4) suggests that Z is
not bounded. However, integration over the 3N atomic posi-
tions is bounded by the volume of the vessel containing the
system.

J. Chem. Phys. 128, 234908 (2008)

Furthermore, the delta function on energy restricts the
momentum integrations because the total energy is a con-
stant, the potential energy is bounded from below (i.e., the
potential energy can never approach —o as the core atom-
atom potential becomes +% as two atoms overlap), and the
energy is a monotonically increasing function of all the
atomic momenta.

B. Isothermal closed systems

Consider an ensemble of systems in contact with a ther-
mal bath so that the energy H(I") is only known by its aver-
age (H),

(H) =f wdlA(e - D(I™)H(T™)p, (2.6)
where @ is the set of M structural OPs, ¢ is a particular set
of their values, and w=wy{," -, (see Appendix A). With
this average energy constraint and that of normalization, en-
tropy maximization implies

ey

Pep= oy Wen = PepWop 2.7
#0(e.p TN

0(¢.8) = J wdT*A(p — D(I'*))ePHT, (2.8)

The isothermal partition function Q is related to the free
energy F,z=(H),3—S,p/kpB via Q=e P es. This result was
obtained in an earlier study9 in a more circuitous manner.

C. Mixed energy systems

In two-stage experimental protocol, the system is ini-
tially equilibrated with a thermal bath, and allowed to evolve
in an energy-conserving vessel. For example, a nanoparticle
first traverses a thermalizing gas and is then redirected to a
vaccine chamber for isoenergetic evolution. The statistical
analysis for such an experiment proceeds in two related
stages. First, one solves the problem isoenergetically arriving
at p,p for particular energy value E. Taking the energy ref-
erence state such that H=0, the statistical average of any
quantity A(I'*) in this mixed ensemble takes the form

<A>mixed = Bf dEe_BEf dMgoJ wdl™*A
0

X(@=D(I")SE - H(I'™))p oW opA (™),
(2.9)

i.e., the problem is solved for each particular energy E and
the result is then averaged via the canonical weight Be PF
and W,

D. Nanotechnical experiments

The ensembles constructed via the entropy-
maximization procedure as above are designed to experimen-
tally integrate derived information with the theory. For ex-
ample, the classic canonical ensemble imposes the
temperature to construct the ensemble of atomistic configu-
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rations while the microcanonical ensemble imposes the en-
ergy to arrive at the ensemble. In a similar manner, we treat
experimental approaches wherein the apparatus is designed
to constrain the system so that the uncertainty in the spec-
trum of atomistic fluctuations is decreased. As the allowed
spectrum of atomistic configurations and fluctuations deter-
mines the average forces and diffusion coefficients determin-
ing the stochastic OP dynamics, this experimental informa-
tion can greatly improve our capability to predict BNS
dynamics.

1. Fluorescence tagged ensembles

Fluorescence or mass labeling can be used to identify
parts of a BNS which reside near its surface during the pro-
cess of interest.”* The label is presented via the microenvi-
ronment and only penetrates within a short distance below
the BNS surface. The notion of a molecular surface has pre-
viously been quantitatively defined.”® This definition pro-
vides an algorithm for constructing a surface denoted here
3.(T",7) such that if the atomic configuration is I, then points
7 for which X <0 lie within the structure and those for which
3 >0 are in the microenvironment. In our tagged ensemble
approach, we first construct the average depth below the 3,
=0 surface where the atoms in the labeled parts of the BNS
reside. For arbitrary I", d will be on the order of magnitude of
the size of the BNS. By experimental design, it is known that
d is small for configurations during the process of interest.
Thus, to eliminate irrelevant configurations, we limit the
count of states by adding a factor 6(d.—d) to all integrals
over ['*, where d. is a depth to which the labeling compound
penetrates below the BNS surface. The tagging of near-
surface components of a BNS yields information about the
system; thus, we expect to have a related decrease in entropy
S,

S=—k; J wdT*A(p - D(T))8(d, — d(T*))p In p.

(2.10)

The additional information has the effect of decreasing the
entropy and thereby altering the driving force for OP dynam-
ics. By construction, S is an increasing function of d,. Thus,
if the tagging is only very close to the surface and these
tagged BNS subunits are always near the surface, then any
configuration I' with these subunits far below the BNS sur-
face would have a low probability and thereby be avoided by
the stochastic OP dynamics we derive (see Sec. IV). Al-
though the BNS remains with the tagged subunits near the
surface in one experiment, they may not remain so in an-
other. Thus, a simulation that showed a divergence of the
tagged entropy descending to large negative values because
of energetic driving forces would indicate a structural inver-
sion (i.e., inside-out) transition.

2. The TOF ensemble

Time-of-flight (TOF) experiments measure the cross sec-
tion for collision between the background gas molecules and
the BNS. Efficient algorithms exist for computing o(I"), the
cross section for the specific microconfiguration I" of the

J. Chem. Phys. 128, 234908 (2008)

BNS.26% Thus, if o, is the observed value, then to the count-
ing factor we add D(o—0,,{,_;), which is unity when o is
within *{._ of o, and zero otherwise. For example, when
the OPs cause D to approach zero, the TOF entropy ap-
proaches —. As the average force on the OPs is the gradient
of the TOF entropy with respect to the OPs, this implies that
the dynamics of the TOF ensemble member systems be
driven to evolve away from such states. As shown in Sec. IV,
the Langevin equations we develop will guarantee that if the
OPs are initially consistent with |o—0o,| <{,_,, they will re-
main so for the simulated time course.

3. The nanopore ensemble

Confined BNS evolution in a nanopore is being studied
for several reasons:*® (1) the BNS is fixed in space so that it
can be subjected to electrical, dielectric, or other fields and
mechanical disturbances, and (2) the size of the pore can be
chosen to only allow the entry of nanoparticles in a given
size range. Furthermore, once the BNS is totally fitted into a
nanopore, zero electric forces can be induced in the pore
material and forces thereby applied to induce structural tran-
sitions. The presence of the nanopore is already accounted
for in our formulation as it is reflected in the limits on the
positions of the atoms—i.e., they remain in the system which
is within the nanopore.

A goal of multiscale analysis is to construct the coarse-

grained probability density VT/‘P. For an experiment repre-
sented by p,W,, one obtains

This states that W is the reduced probability density for ¢ the
N-atom distribution as constructed here. However, as the
multiscale analysis develops, we find that the pW form does
not capture corrections due to the slow evolution of the OPs
described in the Liouville equation.

In our earlier treatment,3 we also constructed p, but in
two steps. We present that the approach in Appendix B to
contrast that presentation to the present one.

To proceed with the multiscale analysis, we develop OPs
suited for a spectrum of BNS (Sec. III) and then use them
with a multiscale analysis of the Liouville equation to deter-
mine the time dependence of the statistical state of these
systems (Sec. IV). The properties of the ensembles con-
structed affect the character of the stochastic OP dynamics.
One such property is the average (p;) of the momentum of a
single atom (i here). The probability density in all the above
cases depends on p; via a p?/2m; term in the kinetic energy.
This term is symmetric (even) in p; while p; itself is asym-
metric (odd). Thus, {p,) involves the integral over a symmet-
ric range in each component of p; (i.e., [* dp;. for the x
conrlpo_nent of p;) with a=% for the isothermal case and a
=V2m;E for an isolated system at energy E. This implies
(p)=0.

Thus, the average of any linear combination of the p; is
zero, a conclusion shown in Sec. IV to affect the form of the
stochastic equation for OP dynamics.
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lll. OPs FOR BIONANOSYSTEMS

A key element of multiscale analysis of a BNS is the
identification of OPs that describe its nanoscale features. The
multiscale analysis requires that these parameters must have
several characteristics. They should be flexible, meaning, ap-
plicable to a system of multiple nanoscale components such
as viruses, functionalized nanoparticles, or cell membranes.
They must capture the hydrodynamic modes of the host fluid
to avoid long-time tail difficulties in the construction of dif-
fusion coefficients'” that arise in the theory of Brownian mo-
tion. The set of OPs must be “complete,” i.e., they do not
couple to other slowly evolving variables omitted from the
set. For practical reasons, OPs should also be implementable
in an automated computational procedure. In contrast, one
might divide the system into “structural units” (e.g., protein
complexes or viral capsomers). Unfortunately, such struc-
tural units are often artificial, i.e., are more geometric than a
natural consequence of the interatomic forces and the level
of thermal agitation. Finally, a central characteristic of an OP
is that it evolves slowly relative to the time scale of atomic
vibrations and collision. In a sense, these parameters define
the multiscale character of the N-atom system. In Sec. IV, we
show that failure to base a multiscale analysis on such OPs is
at the heart of the weakness of other coarse-grained ap-
proaches.

The first studies to observe such behaviors were con-
ducted by both Rahman® and by Alder and Wainwrightm’3I
by using molecular dynamics. Rahman determined the veloc-
ity autocorrelation function in liquid argon, while Alder and
Wainwright showed that the velocity autocorrelation function
of a Brownian particle in a hard-disk and hard-sphere fluid
decays as %2, where d is the dimensionality. Long-time tails
were explained by a hydrodynamic model wherein the move-
ment of the Brownian particle creates a vortex in the host
fluid which, in turn, affects the behavior of the Brownian
particle. This constitutes an additional delayed effective in-
teraction between the particle and its host medium. Hence,
hydrodynamic modes in the host medium create memory ef-
fects and long-time tails in the correlation function which
can cause anomalies in the diffusion coefficients.

Since the work of Alder and Wainright, there have been
several attempts to derive the asymptotic time behavior of
the velocity autocorrelation function.”** This was also
shown experimentally using light-scattering,3 336 diffusive
wave spectroscopy,”_39 and neutron scattering.32’4o For his-
torical record, however, it is important to mention that the
first hydrodynamic theory of translational Brownian motion
was provided by Vladimirsky and Terletzky41 in 1945. These
authors derived an equation that is equivalent to that used
later for the mean square displacement of the Brownian
particle.42

To start our multiscale analysis and to include OPs that
capture hydrodynamics and other slow modes, we set forth a
methodology based on a deformation of space43 that our re-
cent studies suggest is ideally suited even for complex BNS
phenomena.44 A central property of these or other OPs is that
they evolve slowly. Slow OP dynamics emerge in several
ways including

J. Chem. Phys. 128, 234908 (2008)

* by inertia associated with the coherent dynamics of
many atoms evolving simultaneously;

* in the case of migration over long distances;
e via stochastic forces that tend to cancel; and

* in species population levels as in chemical kinetics or
self-assembly which involve many units, only a few of
which change in an interval of time relative to the col-
lision time.

These factors are realized for a number of variables:

e structural parameters characterizing objects such as vi-
ral capsids or ribosomes that stay intact during a tran-
sition;

e orientational angles for a nanostructure;

* densitylike variables characterizing the hydrodynamic
modes or composition;

* scaled positional variables describing the motion of dis-
connected molecules across a nanostructure such as an
oil droplet; and

e curvilinear/twist parameters describing the conforma-
tion of RNA, DNA, and proteins.45

While the OPs and factors that make them evolve slowly
require approaches differing in technical details, the methods
presented here can be extended to them all.

To illustrate our methodology, we focus on intact nano-
structures. OPs for this case are introduced by embedding the
system in a volume V. Basis functions U,(5) for a triplet of
labeling indices k are introduced which are orthonormalized.
If computations are carried out using periodic boundary con-
ditions to simulate a large system (e.g., to minimize bound-
ary effects and to handle Coulomb forces), periodic basis
functions can be used. Here, the nanosystem deforms in
three-dimensional (3D) space. Points 5 in this space are con-
sidered to be a displacement of original points 5. As pre-

sented in our earlier study,36 a set of vector OPs (I_J,_( are
constructed using orthonormal polynomials in atomic coor-
dinates via the procedure of Appendix C:

N
By =2 mU,(S))Uy(s)),

i=1

N
2 Bql_cq_sl_c = 2 szq(*;?)i,
k - i=1 -

(3.1)

where m; is the mass of atom i (i=1,2,...N) and the integral
orthogonality of the basis functions implies that the matrix
By is nearly diagonal.

" With these OPs, a multiscale MD/order parameter ex-
trapolation (OPX) approach has been developed to simulate
large BNS.*® In the approach, a short MD run estimates the
rate of change in the OPs, which is then used to extrapolate
the system over times that are much longer than the 107'% s
time scale of fast atomic vibrations and collisions. It has
been shown that the OPs satisfy all criteria for a multiscale
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computational approach and the simulator has provided one
to two orders of magnitude computational speedup over di-
rect MD.

IV. MULTISCALE THEORY OF BNS KINETICS

An equation of stochastic OP dynamics is now obtained
via a multiscale analysis for a classical N-atom system that
preserves the feedback between the atomistic and nanoscale
variables of Fig. 1. The rapidly fluctuating degrees of free-
dom are hypothesized to explore a representative sample of
configurations during a fraction of one characteristic time for
the dynamics of the OPs. By using the Gibbs hypothesis, an
average over such a time interval is equated to an average
over the representative sample of configurations of the rap-
idly fluctuating variables. In Sec. II, such an ensemble is
constructed to be consistent with given values of the slowly
changing OPs. Thus, such ensembles are a key element of
our multiscale BNS theory. In this section, we use these con-
cepts and the Liouville equation to derive equations for the
slow stochastic dynamics of a BNS.

The analysis starts by writing the Liouville equation for
the N-atom probability density p, i.e., dp/dt=Lp for Liou-
ville operator £. Many authors (see Refs. 19 and 20
for reviews) have recast this equation in the form dp/dr
=(Ly+eL))p for small parameter & (e.g., a mass ratio as in
Sec. IIT). This recast equation is solved perturbatively via a
Taylor expansion in &.

Re:cently,“’s"‘s’46 we have argued that the above multi-
scale form of the Liouville equation arises by making the
ansatz that p depends on the N-atom state I" both directly and
indirectly via a set of OPs ®. In adopting this perspective, ®
is not a set of additional independent dynamical variables,
rather its appearance in p is a placeholder for a special de-
pendence of p on I that underlie the slow temporal dynamics
of p. This perspective avoids the need for tedious bookkeep-
ing wherein a number of atomistic variables are removed to
preserve the total number (6N) of degrees of freedom. The
dual dependence of p on I' can be ensured if ¢ is sufficiently
small. In turn, this is assured if ® is slowly varying in time
relative to the time scale (107'* s) of atomistic fluctuations.

Because many BNS processes depend sensitively on
their internal atomistic structure, and earlier studies on nano-
particles via the Liouville equation ignored this internal
structure, we develop an approach that is symmetric with
respect to all atoms in the system (e.g., those in a virus, cell
membrane, and aqueous medium). In the following, we de-
rive an equation for the OP probability distribution in two
cases: (1) an isolated system of given energy and (2) an
isothermal system. The mixed and other cases of Sec. II are
addressed briefly.

A. The isolated system at energy E

The coarse-grained probability density ﬁ/q,E for a system
of energy E with structural OPs ¢ is defined via

J. Chem. Phys. 128, 234908 (2008)

v’f/(fE= f wdl*A(e - ®(I'*)) S(E - H(T™))p. (4.1

The operators £, and £; noted above arise out of the ansatz
on the dual dependence of p on I' (i.e., p(I',®,7)) and the
chain rule. Thus, £, involves partial derivatives with respect
to I' at constant ® [when operating on p in the multiscale
form p(I",®,7)], and conversely for £,. Again, this does not
imply that the @ are dynamical independent variables.
Rather, this is a reflection of the dual dependence of
p(=p(I',®,1)). However, as the system is isolated, £, has no
derivative with respect to ®,,,,=H. This occurs as the walls
of the vessel are perfectly reflecting, that is, conserving of
kinetic energy and redirecting velocity.

As shown in the analysis of the OPs (Sec. III), the pa-
rameter £(<<1) naturally emerges from Newton’s equations,
i.e., when computing d®,/dt=—LP, = ell; for momentum-
like variable IT,(I"). Here, we use it to organize the construc-
tion of p. In Sec. III, & was found to be the ratio of small-
to-large characteristic masses (e.g., the mass of a typical
atom to that of the major nanoscale components of a BNS).
For simplicity of notation, we label the OPs such that k
=1,2, M are the structural OPs of Sec. III and k=M +1
indicates the energy H.

As with other multiscale approaches reviewed in Sec. I,
it is postulated that p depends on the sequence of times
to,t1,t, " =ty,t where t,=¢,t. The times ¢, for n>0 are
introduced to account for the slower behaviors in p, while 7,
accounts for processes on the fast time scale (i.e., ¢, changes
by one unit when 107 s elapse).

With the above framework, the Liouville operators £
and £, take the form

9 9
Ly=—-3 2. Sy (4.2)
i=1 M 0r; pi
J
Lo=—1. -2 43
= e (4.3)

where @ is the set of all OPs except energy H. There is no
d/ 9H term in L, since the conjugate momentum I1,,,; for H
is zero due to the isoenergetic nature of the walls continuing

the system. Note, m;, p;, r;, and F ; are the mass, momentum,
position, and net force for atom i. Since neither £, nor £,
involves a derivative with respect to H, p only depends on
energy parenthetically. If E is the fixed value of H over the
evolution in the isoenergetic ensemble of interest here, then,
the probability density is denoted pgp (I',D,1,1). The strat-
egy we now pursue is to construct py via an asymptotic
expansion in & and use it to construct an equation for the
evolution of VT/M.

The Gibbs hypothesized equivalence of long-time and
ensemble averages plays a key role in our multiscale analysis
of the Liouville equation. The lowest order Liouville opera-
tor L, has a corresponding propagator e “00 that evolves
dynamical variables (notably any function of I') in time, yet
leaves @ unchanged. Thus, the Gibbs hypothesis takes the
form
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1(° ,
lim — f dr' e 50" A = (A) . (4.4)
_t -

1—®

Here <"'>¢E indicates an average of any variable over all
configurations selected by the factor A((_p—CP*) and weighted
by the conditional probability 1/Z(¢) for ¢=¢,E, i.e.,

(Adgr= f wdl*Alp - B(I))

X SE—-H(I™*)A('™)/Z(@,E). (4.5)

This provides key elements needed to carry out a multiscale
analysis for isoenergetic systems.

We seek a perturbative solution of the Liouville equation
in the form p=X’_ e"p, with quasiequilibrium character to
lowest order, i.e., py is independent of #, and arises form
entropy maximization. To lowest order in &, we find

Lopy=0 (4.6)

Recalling results from Sec. II for the isoenergetic case and
that any function of @ is in the null space of L, one obtains

pozﬁz_pEW‘_pE (47)

for pyr=1/Z(¢,E) and factor W to be determined.
To O(g), the multiscale Liouville equation implies

(3= (z-c)
it 0/P1= o, 1/Po-

Taking p; to be A; at 7,=0, this equation has the solution
IW o

= eFol0A | — 1
P1 1 op(y1

0 Wor )
_ d =Ly ' o' T1 - (
f toe™" I oD\ Z(D,E)

—1g

(4.8)

(4.9)

Since the system is bounded in space by the walls of the
vessel, and as the potential energy approaches +% when any
two atoms overlap, e “00A, for any function A; of I' and ®
fluctuates but remains finite for all 7,. With this, there is no
term to balance the divergent ¢, contribution to p; and hence
IW o/ dt; must vanish.

“A general equation for the coarse-grained probability
density W for any of the ensembles of Sec. II can be obtained
by using the Liouville equation. By definition, VTQDE is related
to the N-atom probability density p via Eq. (4.1). The Liou-
ville equation implies

IW i j
£ - | wdra(e-
o wdl"Alg

for N-atom density p. Properties of the delta function A,
LH=0, and integration by parts imply

O(I™)Lp (4.10)

IW g
ot

——.9i . j wdl'™A(e — O(I'*))1p. (4.11)
dg -

Developing p in a series in g, one can construct the (n
+1)st correction to the rate of change in W¢E from the nth

J. Chem. Phys. 128, 234908 (2008)

order correction to p. For the OPs of Sec. III and the triple
index k labeling used there, one obtains

k= _2 Uk( ))Pz (4.12)

As noted in Sec. II, the ensemble average of any of the
individual atomic momenta is zero, therefore, so is the isoen-
ergetic ensemble average of II. The factor W,z in py, the
lowest order solution for p, is seen to be the lowest order
contribution to anE in &. With the above, we see that the

O(e) contribution to ‘9W¢E/ dt is zero, and hence, &W¢E/ ot
must be O(&?).

Using the expression for p; and the definition of VT/(p , it

is found that the only O(e) contribution to VT’M is from
e£00A . Notice that A;, the initial (£,=0) data for p,, is arbi-
trary, i.e., depends on the experiment of interest. Thus, for
some initial data, it is seen that the O(g) contribution to VT/(PE
can have short time scale dependence (e.g., due to a shock
wave). However, for most BNS phenomena, we do not ex-
pect such phenomena to be part of the experimental design.
This implies that for the BNS phenomena of interest, A is in
the null space of L, i.e., depends on I" only through ®. The
result is that in order for Eq. (4.11) to be closed in anE to
O(e?), A; must be a function of W¢E only. For the special
case A;=0, W¢E=W¢E up to O(e?), and this is the special
case studied henceforth, i.e., we assume the system is ini-
tially in the p W, quasiequilibrium state.

Collecting the above results for the special case A;=0
with isoenergetic conditions implies a Smoluchowski equa-
tion for W¢E’

IW g
22 T k:EE’

4.13
at Pl (4.13)

M

JoE =~ EDkl<pE|: <fl><pE:| oy k=1,2,-M

(4.14)

1 0 - =
Dkl(_pE: %J dt,<Hk€_£0t Hl><_pE' (415)

—00

As pop=1/Z(¢,E) and Z=¢"*8 (see Sec. II), it is seen that

kB(};,):&S’/ de, for the closed isoenergetic system. Hence,
OP dynamics is entropy driven. This is a natural result for an
isolated system.

The above analysis can be extended to higher order in €.
If all initial data appearing in higher order corrections to p
(i.e., the A,A5,--) are zero, closure of the equation for VT/M
is ensured. This does not create difficulties in resolving secu-
lar behavior in the higher order analysis as discussed in de-
tail elsewhere.*”**

Corresponding to the Smoluchowski equation derived
above, there is an equivalent set of friction-dominant (i.e.,
noninertial) Langevin equations for the stochastic dynamics
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of ®. These equations provide a convenient way to simulate
a BNS via an algorithm as in Fig. 2. As (fi),r and Dy,x
depend on ¢ they must be computed at each time step.

Thereby, the feedback in Fig. 1 is accounted for.

B. Isothermal systems

The development for a system at temperature 1/kpS
closely follows that of Sec. IV A except that the lowest order
solution py is given by

e P

po=mw@ﬁ. (4.16)

It must be recognized that this is a heuristic treatment. For
example, a system in contact with a thermal bath experiences
continuous exchange of energy through the bounding walls
so that in a more rigorous treatment, the Liouville equation
must be solved with stochastic boundary conditions.

Again, the objective is to derive an equation for the
probability density, which for this case is given by

W‘Eﬁzf wdl™A(e - P(I'))pg, (4.17)
for isothermal N-atom probability density pg. One proceeds
in a similar manner as above but with subtle differences. By

using the expression for p,g, we find O?k>¢ﬁ=_(9ﬁ o/ Iy for
free energy F o> S€€ Sec. II B. As before, we find a Smolu-

chowski equation for W‘pﬁ up to O(e?):

aw,
JE:‘SZE_'!@B, (4.18)

at k=1 9P

M
g - |~
Jrep=— > Dklgﬁ[£ - (fz)w] Wep, k=12,---M,
=1 I

(4.19)

0

1 .-
thgﬁ%f di' (e ) yp kil=1,2,+ M.

(4.20)

This result is similar to that for the isoenergetic case except
that the diffusion coefficients and average forces are modi-
fied to reflect the ensemble of atomistic fluctuations for the
¢ versus the ¢p ensemble. Unlike for the thermodynamic
limit N — o, these factors could be quite different for the two
ensembles.

C. Initial isothermal, isoenergetic evolution cases

Consider the two stage experiment wherein the system is
first equilibrated with a thermal bath and subsequently al-
lowed to evolve isoenergetically. Since the Liouville equa-
tion is linear, a superposition of solutions also satisfies the
equation. Thus, the solution corresponding to a linear com-
bination of states with different initial probability densities,
each of which is thereafter isoenergetic, can be summed with
a weighting by the probability that the system had a given

J. Chem. Phys. 128, 234908 (2008)
energy initially. As noted in Sec. II, the probability density
for the energy of systems equilibrated with a bath at tempera-

ture (kgB)~! is Be PE (for the energy conversion E=0).
Therefore,

Womix(@,1) = ,Bjx dEe_BEf wdl™A(e - ®(I'*))
- 0
X 8(E - H(I'™))p(I'*, 1)

= ﬂfo dEe_BEWfE,

(4.21)

where subscript mix indicates the two stage experiment. This
result shows that ngix and VT/?E are related via Laplace
transformation. However, the average forces and diffusion
coefficients for the isoenergetic case cannot simply be aver-
aged via the Be™PF weight and used in a Smoluchowski

equation for Wmix. Rather, these factors must be used in the
Smoluchowski equation for szE and the solution trans-

formed to obtain Wg,mix.

D. Nanotechnical experiments

Ensembles were considered in Sec. II D for various
nanoscale experiments. They were (1) chemical labeling to
distinguish subunits of a nanostructure on its outer surface,
(2) confinement of a BNS in a nanopore, and (3) selecting
nanoparticles of a given cross-sectional area throughout the
process of interest. Each case has a distinct partition function

and thereby average force (}?k) and diffusion coefficients Dy,
that mediate the evolution of the OPs. The Langevin equa-
tions for the three cases can be used to study structural tran-
sitions of a BNS under the given conditions. Ensembles of
the various types could reveal particular aspects of the sys-
tem. For example, a labeling experiment could reveal results
on swelling transitions in a viral capsid since the penetration
depth of the labeling reflects the diffusibility of the label
molecule in the swollen versus normal state.

Inclusion of step function factors in the state counting of
Sec. II allows for a situation wherein there is a range of ¢
values for which the partition function is zero. This implies

that as this region of ¢ space is approached (fk> will diverge,
driving the system away from this region. This is how the
step function condition in the expression for the partition
function guides the Langevin evolution away from configu-
rations prohibited by the experimental design (e.g., a virus
cannot swell beyond the volume of a nanopore in which it is
trapped).

V. CONCLUSIONS

A methodology to obtain the Smoluchowski equations
for the stochastic dynamics of OPs characterizing key nano-
scale features of a BNS is presented. Unlike decoupled
coarse-graining methods, the key feedback of Fig. 1 account-
ing for the modification of the average forces on the instan-
taneous values of OPs is accounted for in our fully coupled
multiscaling strategy. Our development begins with the au-
tomated construction of OPs & that are demonstrated via
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Newton’s equations to evolve on time scales long relative to
that of atomistic fluctuations. Probability densities are devel-
oped to characterize the statistics of rapidly fluctuating ato-
mistic degrees of freedom. The densities explore a represen-
tative set of configurations during a fraction of the
characteristic time on which the OPs evolve. The atomistic
degrees of freedom and the OPs are captured by the depen-
dence of the aforementioned probability density on the OPs
and, conversely, the contribution of the rapidly fluctuating to
the entropy and the determination of OP dynamics by aver-
aged energy. In this sense, our methodology can be termed
fully coupled multiscaling. This is in contrast to decoupled
coarse graining where the effect of the evolving OPs on the
computation of the forces on lumped elements is ignored.

In our approach, the Liouville equation is solved pertur-
batively upon identification of a smallness parameter &, that
is a ratio of characteristic masses, lengths, times, or energies.
The result is a Smoluchowski equation for the stochastic
dynamics of the OPs. The average force and diffusion coef-
ficients that appear in this equation depend on the OPs. Con-
trastingly, in a decoupled method, coarse-grained forces are
computed without regard to the OP-dependent averaging that
is always changing as, for example, a viral structural transi-
tion unfolds. A reconsideration of ensembles of atomistic
fluctuations (Sec. II) allows one to tailor the Gibbs hypoth-
esis to a variety of special cases that introduce modern nano-
technical experimental approaches. These include fluorescent
or mass labeling, TOF selected nanosystems, and nanopore
confined experiments. Our use of the Gibbs hypothesis,
rather than integration over atomistic degrees of freedom as
in other multiscale approaches, enables full theory/
experiment integration.

As the systems of interest are nanometer in scale, the
usual equivalence of results of different ensembles (e.g., the
microcanonical and canonical) may not hold; rather, these
differences may reflect distinct experimental protocols, and
alter the resulting average forces and diffusion coefficients
that appear in the Smoluchowski equation.

Our multiscale analysis suggests that such a Smolu-
chowski equation can only be derived when the perturbation
parameter is sufficiently small. Thus, coarse graining is not
meaningful unless the lumped variables for which forces are
computed evolve significantly slower than the atomistic
ones. Thus, coarse-grained potentials for amino acids or
nucleotides may not provide a viable starting point as they
are still rapidly fluctuating variables. Conversely, models
where, for example, a whole pentamer or hexamer is consid-
ered to be a lumped element, may not be viable either (i.e.,
the internal dynamics of these entities may be a key element

f wdl™A(e - P(I'™)) =

J. Chem. Phys. 128, 234908 (2008)

of self-assembly as they deform during assembly). Further-
more, these internal degrees of freedom provide a sink for
friction-associated energy transfer.

The Smoluchowski equations we obtain are correct to
O(g?) even though the Liouville equation need only be
solved to O(g). Thus, our procedure is ideal for deriving
higher order (augmented) Smoluchowski equations even for
complex systems involving multiple OPs. This feature of our
workflow follows from the use of the general equation for
the reduced probability density W that follows directly from
the Liouville equation.

These results enable the algorithm for BNS simulations
suggested in Fig. 2. The Smoluchowski equation is solved in
a Monte Carlo fashion via the equivalent Langevin equation
with diffusion coefficients and averaged forces evolving with
the OPs. While the MD time step must be shorter than the
107 s time scale of fast atomic vibrations and collisions,
those for the present algorithm are limited by the character-
istic time scale of the phenomena of interest (e.g., 107 s for
viral structural transitions). The resulting algorithm can
therefore be many orders of magnitude faster than MD, de-
spite the overhead from the computation of average forces
and diffusion coefficients.

The computation of diffusion coefficients must be car-
ried out by constructing a time correlation function with evo-
lution generated by the operator £, and not by Newton’s
equations directly. Thus, one may not use available MD
codes to construct them. However, as the OPs are slowly
varying, standard MD codes can be used to compute the
diffusion coefficients approximately as long as the MD code
is only run for a time short compared to the characteristic
time of OP evolution, i.e., the constancy of the OPs must be

checked during the construction of the diffusions
coefficients.
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APPENDIX A: STATE COUNTING

The first step in ensemble construction as in Sec. II is to
develop a way to estimate the number of distinct quantum
states in the 6N dimensional volume element of atomic
position/momentum space. For example, there is one state in
a volume N7V for N identical atoms. If A(o—®(T'*)) is a
product of M+ 1 Dirac delta functions (M for the structural
OPs and one for the system energy), then the aforementioned
state count is given by

number of quantum states available to the system

(A.1)

with @ in a fixed, narrow range about ¢,
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where I'*={p,,7,,**Pn,Tx} specifies the state of the N-atom
system over which integration is taken. The state density
factor w is constructed as follows. Let 6(x) be the unit step
function: =1 for x>0 and 6=0 for x<0. Then, D(x,s)
=0(x+s/2)—0(x—s/2) is 1 for —s/2<x<s/2 and zero oth-
erwise. If s is small, then, O(x+s/2)= 0(x)+(d6/dx)s/2.
However, dO(x)/dx=45(x) for Dirac delta function &(x).
With  this, 6(x+s/2)—60(x—s/2)=~c8(x). The factor
D(@1=®1,51) " D(@pr1 = Pprar,Sp1) 18 zero except in a
small zone of ® values around ¢ of volume s;---s,,,, for
width s; in each of the OPs, k=1,2,---M+1. Let 1/w, be
the product of the N!%3N state counting factors for each of
the types of atoms in the system. Then, the number of quan-
tum states in the zone for which the product of D factors
is one, is given by wadF*D(gEI—(f)l,sl)---D(J:MH
—CISMH ,Sy+1)- Comparing this result with Eq. (A.1) for small
s, implies that w=wys; - *sys41- The s, are all small constant
quantities. Thus, w is a constant, i.e., independent of I'*.
With this counting of states for the iso-OP systems, in Sec.
I, we make information theoretic arguments to construct p
for a range of distinct experimental conditions relevant for
the study of BNS as follows.

APPENDIX B: FOURIER TRANSFORM METHOD

In our earlier study,3 S was first maximized with respect
to p, constrained by normalization and the ensemble average
values of a set of OPs ®. In the present notation, this
becomes

fwdl"*q)(f‘*)p fixed. (B.1)
Introduce Lagrange multipliers K;,K,,- K, associated
with the M+1 constraints (B.1) for the M+1 OPs con-
strained entropy maximization. One obtains the conditional
probability px given by

e—K-lD

- 2(K)’

E= f wdle KT, (B.2)
For the second level, we develop a more general solution in
the form of a linear combination of the px with unit-
normalized weight W(K); in analogy with our earlier study,’
we find that the more general distribution, denoted Pgs takes
the form

QO
pe= @, (B.3)
N(g) = J dI'*A(e— (') (B.4)

for (M+1)-fold delta function A and partition function
Q satisfying [@M*'®Q=1. The distribution (B.3) is microca-
nonical in character for the detailed atomic configurations
consisting of all states with fixed value ¢ of the OPs; thus, it
has an equi-a priori principle character, i.e., all states with a

J. Chem. Phys. 128, 234908 (2008)

given ¢ are equally likely in the absence of additional infor-
mation.

The result (B.3) is derived from Eq. (B.2) by using prop-
erties of the Fourier transform. Consider a function f(x) of a

set x of L variables. The transform f(k) for the set of L “wave
vectors” k is defined via

flk) = f d xe"f(x). (B.5)
The inverse relation reads
1 o
flx) = P f d ke f(ik), (B.6)

-
where i=+—1. For functions f(x) and f,(x) one has

1 e A o
Wf d" ke ™F (ik) fo(ik) = J dx'fi(x = x")fo(x").

-0

(B.7)
The result (B.7) follows from the inversion formula which
yields
V(K) 1

L 0id)
M+1 lK(ﬁ
J e i)

Thus, W/E is related to the integration of /N over all
imaginary OP values.

As WV is arbitrary, further assumptions related to the na-
ture of () that stem from the problem of interest must be
introduced, e.g., the initial data. Finally, the thermal case
with pg g=eP#/Q(P, B) corresponds to keeping the energy
(P, 1=H) fixed only by its average so that K,,,,;=—p8.

E(K)  (2mM] (B-8)

APPENDIX C: CONSTRUCTING ORDER PARAMETERS
FROM ORTHONORMAL POLYNOMIALS

Consider a nanostructure embedded in a volume V. Ba-
sis functions Uk(f) for a triplet of labeling indices k are in-
troduced which are orthonormalized. In this method, the
nanosystem deforms in 3D space, which is considered to be
a displacement of an original point s°. Deformation of space
taking any s° to s is continuous and is used to introduce OPs

®, via

k

(C.1)

As the <f>,_( change, s space is deformed, and so does the
nanosystem embedded in it. The objective is to ensure that

the dynamics of the CI_D,S reflects the physics of the BNS and
that the deformation reflects key aspects of the atomic-scale

details of the structure. In this way, the (I_),_( constitute a set of
vector OPs that serve as the starting point of our multiscale
approach.

In our approach, atom i(i=1,2,---N) is moved from its
original position 5? via the above deformation by evolving
the (f)k and correcting for atomic-scale details as follows.
Given a finite truncation of the k sum in Eq. (C.1), there will
be some residual displacement for individual atoms. Denot-
ing this residual for atom i as &,
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(%) + G, (C.2)

The size of &; can be minimized by the choice of basis func-
tions and the number of terms in the k£ sum. Conversely,
imposing a permissible size threshold for the residuals al-
lows one to determine the number of terms to include in the
sum.

To start the multiscale analysis, the q;k must be ex-
pressed in terms of the fundamental variables 5, Let m; be
the mass of atom i. Multiplying Eq. (C.2) by mqu(f?) and
summing over the N atoms in the system, one obtains

N

N
> B, @, = > mqu(b:?)S:‘, By = > mqu(E?)U,S(E? .
k- i=1 - <=l -
(C.3)

The integral orthogonality of the basis functions implies that
the matrix By is nearly diagonal. Thus, the OPs can easily be
computed in terms of the atomic positions by solving Eq.
(C.3) numerically. More specifically, when most of the sys-
tem is occupied with atoms, the i sum is essentially a Monte
Carlo integration. The orthonormality of the basis functions
implies that B~ 9, and Eq. (C.3) can be approximated as

N
.V . R
B, ~ =3 Py ()5 (C.4)
Niom

The &, contribution is neglected in arriving at this definition
of CI;k as ¢, fluctuates in direction and magnitude with i,
while the basis functions that capture overall characteristics
of the nanosystem (e.g., position, orientation, nanoscale
structure, and hydrodynamic modes) vary smoothly by de-
sign. Thus, Eq. (C.3) is not an approximation; rather, the
above is a way to argue for the definition of OPs that express
coherent behaviors of the nanosystem. With this definition of

the CI;,_C, Eq. (C.3) is an exact relationship, since the &; correct
errors in the displaced atomic positions over-and-above the
coherent contribution from the (ka sum.

Our approach has several cohceptual and technical ad-
vantages. In the above, we include all atoms in the system,
e.g., those in the nanostructure and its microenvironment.
This captures the boundary layer of water that tends to ac-
company a nanoparticle due to the viscous nature of water at
the nanoscale and the interaction forces. Thus, the method
captures hydrodynamic modes in the host fluid and layers of
water bound to the nanoparticles and other structures.

Inclusion of m; in the above expressions gives (f)k the
character of generalized, CM variables. For example, if U,_( is
a constant for a specific k, the corresponding value of dgk is
proportional to the CM of the system. As ds;/dt=p;/m; for
momentum p; of atom i, one has

dd, T,

dt  Nm’

J. Chem. Phys. 128, 234908 (2008)
N
=V, > UG5, (C.5)

While <I>,_< has a sum of N atoms, many of which have similar
directions due to the smooth variation of U, with respect to
5? , the momenta have fluctuating direction and tend to cancel

near equilibrium. Hence, the thermal average of H,S is small,
<I>,_C tend to evolve slowly, and the ratio of the characteristic

time of ®, to that of atomic vibrations and collisions should
be on the order of the number of atoms in the system, i.e.,

O(N). This suggests that the <f>,_€ are slowly varying, and
therefore satisfies a key criterion to be an order parameter
and serve as the starting point of our multiscale analysis. As
N is large, it is convenient to define the smallness parameter
e=m/m=1/N (where 7 is the mass of the nanosystem and m
is the mass of a typical atomic mass) around which the mul-
tiscale perturbation expansions is based (Sec. IV).
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