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GLOBAL EXISTENCE AND INCREASED SPATIAL DECAY
FOR THE RADIAL VLASOV-POISSON SYSTEM WITH
STEADY SPATIAL ASYMPTOTICS

S. PANKAVICH

Department of Mathematics, Indiana University, Bloomington, USA

A collisionless plasma is modeled by the Viasov-Poisson system in three space
dimensions. A fixed background of positive charge, which is independent of
time and space, is assumed. The situation in which mobile negative ions
balance the positive charge as |x| — oo is considered. Hence the total positive
charge, total negative charge, and total energy are infinite. Smooth solutions
with appropriate asymptotic behavior for large |x|, which were previously
shown to exist locally in time, are continued globally for spherically symmetric
data. This is done by showing that the charge densily decays at least as fast as
x| 7. Finally, an increased decay rate of |x|”° is shown in the general case
without the assumption of spherical symmetry.

1. Introduction

L(?tF : [R?3—>[0, ), fo : R® x R® — [0, ), and A4 : [0, o0) X
R? — [R% be given. We seek a solution, f : [0, o) x
R’ x R® — [0, o) satisfying
of +v-Vif —(E+A)-Vf =0,
p(t?x) = ‘[(F(U) _f(t’x9 v))dv,

E(t.x) = [ plt. y)x_;yylgdy, (1)

|
f(0,x,v) = folx,v).
Here F describes a number density of positive ions that form

a fixed background, and f denotes the density of mobile negative
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ions in phase space. Notice that if f(x, v) = F(v) and A = 0, then
f(t, x, v) = F(v) is a steady solution. Thus, we seek solutions for
which f(t, x, v) > F(v) as [|x] — oo. Precise conditions that
ensure local existence were given by Schaeffer (2003b). It is
important to notice that (1) is a representative problem, and
that problems concerning multiple species of ions can be
treated in a similar manner.

The paper will be divided into two main results. The first will
be devoted to showing the global existence of a smooth solution to
(I) in the case of spherically symmetric data. This serves to
continue the local existence result of Schaeffer (2003b). The
second, then, is devoted to achieving an increased rate of spatial
decay of the charge density without the spherical symmetry
assumption. We will assume throughout that F has compact
velocity support, so that decay in v of the background is not an
issue. Thus, the main difficulty in showing global existence arises
in showing that p decays rapidly enough in |x|. To see this,
consider the following heuristic argument, discussed by
Schaeffer (2003b). Let r = |x|. Then, we typically expect the
electric field, E, to decay like r 2 for large r. If we letg = F — [, then

g +v- Vg — (E+A)-Vog = —(E +A)- V,F. (2)

Viewing (E +A)-V,F as a source term for g, we can only
conclude r~? decay for both g and p. But, if p really decayed
like 2, the integral for E could certainly fail to decay like r 2.
In fact, we cannot show that g decays faster than r~%, but due
to cancellation in the v integral, p must decay faster.

The Vlasov-Poisson system has been studied extensively in the
case when F(v)=0 and solutions decay to 0 as |x| — . Smooth
solutions were shown to exist globally in time by Pfaffelmoser
(1992) and independently by Lions and Pertham (1991).
Important results prior to global existence were given by Batt
(1977), Horst (1981, 1982), Kurth (1952), and Glassey and
Strauss (1986). Also, the method used by Pfaffelmoser (1992) has
been refined by Horst (1993) and Schaeffer (1991). The global
existence of the Vlasov-Poisson system in two dimensions was
established by Okabe and Ukai (1978) and Wollman (1986). A
complete discussion of the literature concerning Vlasov-Poisson
may be found in Glassey (1996). We also mention Batt and Rein
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(1991) since the problem treated in said paper is periodic in space,
and thus the solution does not decay for large |x|. The works cited
above make extensive use of the laws of conservation of charge and
energy. However, in the problem considered here, and those of
Caglioti, et al. (2001), Jabin (2001), and Schaeffer (2003a, b), the
charge and energy are infinite, and it is less clear how to use
the conservation laws. Therefore, the use of conservation laws
will be an important issue, and we will utilize a lemma (stated
here as Lemma 2) from Schaeffer (2003a) to deal with it properly.

2. Preliminaries

We will use notation that follows Schaeffer (2003b). For
q>7++33, let

8
—4_2
b q

and denote
R(x) = R(x]) = (1 + [x[)"/%.
We will use the norms

gl = sup Ig(z)|

2ER?
lpll, = lpR! ()l
liglly = llg(L + I + [oID)]l o )

and

’

gl = ligh, + IVgll, + ngdv
P

but never use I or L for finite p and ¢. We will write, for
example, [|g(?)ll, for the ||-[|, norm of (x, v) — g(t, x, v). Notice
that we may take ¢ arbitrarily large since we take the initial data
to be of compact support.

Following Schaeffer (2003a, b), we assume the following
conditions hold for some C >0 and all >0, x € R®, and
v € R®, unless otherwise stated:
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(I) F(v) = Fg(lv]) is nonnegative and C?, with
Fp(0) < 0. (3)

In addition, there is W € (0, o) such that

(4)

Frw) <0 foru€ (0,W)
Fru)y=0 foru=>MW.

(II) fo 1s C' with compact v-support, nonnegative, and satisfies
the condition of spherical symmetry,

fo(x’v) :fR(|x|,|U|,X'U), (5)
which is equivalent to
Jolx,v) = fo(Ux, Uv)

for every rotation U.
Also, there is N > 0 such that for |[x| > N, we have

folx,v) = F(v).
(II1) A is C' and
AL X)] + 18:A(L )| < CR™(x)
Vi - A(t.x)| < CR™(x).

Furthermore, A satisfies the condition of spherical symmetry,

X

A(t,.X) = a(t’ |x|)W’

(6)

which is equivalent to
A(t,x) = UTA(, Ux)

for every rotation U.
Finally, we assume that there is a continuous functiona : [0,
T1— R such that for |x| > N

alt. Ix]) — ‘ch—"‘l) < R¥ ().




Downloaded By: [Pankavich, S.] At: 20:49 3 June 2008

Global Existence and Increased Spatial Decay 535

It should be noted that the assumptions (5) and (6) imply the
spherical symmetry of{(t, x, v), g(t, x, v), and E(t, x) for all ¢ € [0,
), x € R?, and v € R’. Thus, where necessary we will write g(¢,
x, v) = g(t,|x|, |v], x-v) when using the spherical symmetry of g.
Furthermore, the spherical symmetry of E and f will be instru-
mental in the first results of the paper, while the last theorem
is dedicated to eliminating the symmetry assumptions to
conclude similar decay rates. We wish to prove the following.

Theorem 1. Assuming conditions (1), (11), and (I111) hold, there exists
FEF (0, o) x R® xR that satisfies (1) with ||(F—f)@)]|
bounded on t € [0, T'], for every T > 0. Moreover, [ is unique.

In Schaeffer (2003b), both local existence and a criteria for
continuation of a bounded, unique solution of (1) are shown.
Thus, to prove Theorem 1 we will need to establish the continu-
ation criteria for all 7> 0. Specifically, Theorems 2 and 3 of
Schaeffer (2003b), when combined, state the following.

Theorem 2. Assume g > 7+ /33 and conditions (I), (1I), and (11I)
hold, without (5) and (6). Let [ be a %" solution of (1) on [0,
T]x R x R® with T > 0. If || [ (F = f)(t) dvll, is bounded on [0,
T'], then we may uniquely extend the solution to [0, T + 8] for some
6>0 with ||| (F —f)() ||| bounded on [0, T + 8].

Therefore, to prove Theorem 1, we will find a solution to (1)
on [0, T'] for some T > 0 using the local existence theorem
(again, see Schaeffer (2003b)), which has been uniquely
extended using Theorem 2. Since this may be done as long as
the p-norm stays bounded, we will only need to prove the
following lemma to establish Theorem 1.

Lemma 1. Assume ¢ > 7+ /33 and conditions (1), (II), and (111)
hold. Let f be a " solution of (1) on [0, T'] x R® x R®. Then,

<C

o= v
p

forallt € [0, T, where C is determined by F, A, fo, and T.
Although it is not explicitly stated in Schaeffer (2003b), the
proof presented there shows that 6 in Theorem 2 is bounded
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away from 0 as long as || [ (F —f)(¢) dv||, is bounded. Using this
observation, Theorem 1 follows from Lemma 1.

Once Lemma 1 has been established, we will show increased
decay of the charge density, p, under slightly modified assump-
tions. Instead of (I1I), we will assume the following conditions
for some C >0 and allt > 0, x € R®, and v € R®:

(IV) A is C' with

JA(t, x)| < CR™*(x), (7)
10,A(t, x)] < CR™(x), (8)

and
|V, - A(t, x)| = 0. (9)

Notice that condition (IV) does not involve spherical
symmetry of A, and thus the result that follows requires no
such assumption.

Theorem 3. Assume conditions (I) and (II) hold, without (5), and
condition (IV) holds. Let T>0 and f be the € ! solution to (1) with

NE =HONN < oo
for everyt € [0, T'). Then, we have
le@lls < Cp.

forany t € [0, T), where C,, , depends upon

sup [lp(7)l,.
7€[0,1]

In Section 3 we will prove Lemma 1, and thus Theorem 1.
Then, Section 4 will contain the proof of Theorem 3. We will
denote by C a generic constant that changes from line to line
and may depend upon fy, A4, F, or T, but not on ¢, x, or v.
When it is necessary to refer to a generic constant that
depends upon other variables, we will use variable subscripts
to distinguish them. For example, we will use C,, quite
frequently in Section 4, and it will always denote dependence
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upon |[|p(t)||, and . When it is necessary to refer to a specific
constant, we will use numeric superscripts to distinguish them.
For example, C" will always refer to the same constant.

3. Global Existance in the Radial Case

Define the characteristics X(s, ¢, x, v) and V(s, ¢, x, v) by

oX
5 (s,t,x,v) = V(s, t,x,0)
s

%(S, tyx,v) = —(E(s, X(s,t,x,0)) + A(s, X(s, ¢, x, v))) (10)

X, t,x,v) =x
Vit t, x,v)=mv.

Then, we have

j_sf (s, X(5, £, %,0), V(s,t,%,0)) = &f +V - Vif

—(E+A4)-V,f=0.
Therefore, f is constant along characteristics, and

[t x,v)=/(0,X(0,¢x,v), V(0,t,x,v))

= /0o(X(0,2,x, ), V(0,1, x,v)). (11)

Thus, we find by (II) that f is nonnegative and sup,,
Jf1 = lIfolle < 0. Unless necessary, we will omit writing the
dependence of X(s) and V(s) on ¢, x, and v for the remainder of
the paper.

In order to bound the electric field, and thus the velocity
support, we must use Lemma 3 and Theorem 4 from Schaeffer
(2003a). In particular, we state the following lemma without
proof.
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Lemma 2. Assuming conditions (I) and (I11) hold, without (6), there
exists k = [0, T] x R* — [0, 00) such that

lp(t, )| < Ck(t, x)*"° + k(t, x)'/%)
and

Jk(t, x)dx < C.

Furthermore, notice that, due to the radial symmetry, we
may write

m(, [x]) x
E(If,x) = |x|2 m

(12)

where the enclosed charge is given by

m(t,r) .= J p(z, y)dy.

[yl<r

Lemma 2 will be exactly what is needed to bound the electric
field, E. We have for any x € R

1/2 1/2
J k(t,y)'*dy < J k(t, y)dy J dy
[yI=Ix| [yI=Ix| [yI=Ix|

1/2
S(J k(t,y)dy) (Clx*)"?
[y <lx]

< Gl

and

3/5
J ht.y)"dy < (J k(t,y)dy) (Cle*)*?
[VI=Ix| [y[<Ix|

< Cx|%7°.
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Now, we use the bounds on k to estimate the enclosed
charge:

i, ]| < j 1ol y)ldy

[yI=<Ix|

< CJ k(t,)*° + k(t, y)*)dy
[y[<lx]

< C(Ix|*"* + |x|°/°).

Thus,
\E(t, %) < Clm(t, |x])||x| 2
< Clx|2(|x[°7° + [x]*/?)
< G772 + 773,
So,

[E(t, %) = CG(Ix]),

and, combining this with (II1),
|E@, x) + A(t, %) = CG(Ix])

where

~45 p <

Gg(r) ;= {:_1/2: r> 1.

Next, we use methods from Horst (1982) to estimate the
velocity support. Assume

[t x,v)=f(0,X(0,¢x,0), V(0,t,x,v)) # 0
so that, using the compact support in v of f,, we have

1X(0)] = 1V(0)| < C.
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For any € > 0, define a: =2 +¢,b: =a/a — 1, and

0 1/a
B = (2J g(lxl)”dx) )
1

Letty, ts € [0, T] with ¢; < te, and assume X; > 0 on [t;, lo].

We claim

Xl(tl)

To show (13), let

i <1
G10x) = {0 if x> 1
and
o if x| < 1
G = { e = 1
Then,

Xi(lo) Xi(lo) Xi(lo)
J G(Ix[)dx = J G1(x)dx + J Go(x)dx

X;(tl) Xz(l‘l) X!(tl)

1 Xi(l2)
< J_l G1(x)dx + (J (gg(x))“dx)

Xi(t)

Xi(t1) — Xilta))""

Xi(t2)
J G(xDdx < B(Xi(to) — X;(t1))"" + 10.

(13)

sm+<gf@m03wmamo—&@ww

< 10+ B(Xi(t1) — Xi(ta))'/".
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This establishes (13). Now, using this result and following
Horst (1982), we have

1Xi(t2)® — Xi(t1)?| = '2 r Xi($)Xi(s) ds

41

to A
< cj G(X()DXi(5) ds

31

to .
< cj GUX(5))Xi(5) ds

4]

Xi(t2)
= C(O)J G(|x|) dx
Xl(l])

< COB(Xi(t2) — Xi(t)"" + 10¢©
< COB(( sup 1Xi(D(tz —11)"" + 10C©.

TE[t1,l0]
Define
W := sup 1Xi(s)].
S€[0,7]
Then,
IXi(t)? — Xi(11)*| < COB(Wig)'"" 4+ 10C©, (14)

Note that this holds if X; <0 on [ty, ts], as well. Let us
consider ¢t € [0, T] and X;(t) > 0. Define

{:=inf{r>0:X,(s) > 0, Vs € [1,{]}.
If £ =0, then by (14)

X} < X (0) + COBWH + 10¢©

< X (0) + COBWT)'" 4 10C0.
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If7 > 0, then X;({) = 0, and by (14), we have
XAy < XX@) + COBWH + 10O
= COBwD)'"" +10c®
< 1X3(0)] + COBWT) + 10,

We may repeat this process for X;(t) < 0, so summing over i
yields

X2 < 1X(0))2 + 3COBWT)" +30C©.

Since the right-hand side is independent of ¢, we take the
supremum and find

w? < 3COBTV' W 4 M
where M : = [X(0)]? + 30C. If 3¢ BTY*W'/* < M, then
W < 2M =: C((T).
If M < 3COBTY*W', then
W < (6COB)YH T = Co(T).
So, combining the inequalities,
W < max{Ci(T), Co(T)}.

Thus, all characteristics V(s, ¢, x, v), along which fis nonzero,
are bounded for any s € [0, T'], including V(t, ¢, x, v) = v. Define

Q; :==supfly| : I € R®, 7€ [0, ]such thatf (7,x,v) # 0}.

Notice that Q is an increasing function of time, so that we
may write for every s € [0, T']

Vs, 1%, 0)] < Q < Qr-
Since the momentum is bounded, bounds on position
follow. Note that

1X(5) — ] < } V(Ddr

< QTT
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So, for |x| > 20,7,
1
IXO =z = QrT = 5 1| (15)
and
3
X6 < Ix] +QrT = o Il (16)

Hence, we have control on X characteristics.
Now, to bound the charge, we must first estimate the corre-
sponding density. We use (2) to find

d
75 @0 X(). V(5))) = —(E(s, X)) + A(s, X())) - Vo F(V(5))-

Thus,
"

a(t.x.0) = g(0. X(0), V(0)) — JO(E(T, X(2) +A(r. X(7)

-V, F(V(7))dT, (17)
and by (I1I), (12), and (15),

|g(tv X, U)| = |g0(X(0’ I, X, U), V(Ov l,x, U))|
+J (JE(7, X(7, t,x,0)| + |A(7, X(7, 1, x,0))])
0
IV F(V (7, t,x,0))|dT

A
< CIX(0, 4, x,0)| % + cJ X(7 1%, 0)| 72 || VoF|odr (18)
0
t C
+ CJ m(r, X(r, 1,3, 0)] 1X(7, 1, %, 0)] 2|V F o7
0
. {
< C|x|-2(1 +J m(r, X(7. 1., v))|d~r>
0

for |x| > 20,T.
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To show that g decays like r~2, we must bound the enclosed
charge m. For |x| < 20,7,

m(t, |xD)| < J 1ot )y
V=<20QrT

< 20,7 Jl Vol

<C.

Now, letr = |x| and define .#(t) : = sup,|m(t,r)|. We know by
(2), (18), and the divergence theorem that

(e, D) < m(0,7)| + J Jl | jl PRCERITE
yl<r Jol<Qr

0

!
= |m(0,7)| + J J J v - V,g(s,y, v)dudyds
0 Jyl=r Jivl=Qr

¢

<t + [ | ol gt bl ol - olduds s
Jo Jyl=r JvI<Qr

¢ 1+ [ M(D)d
§M(O)+CJ J J |v|<+f0—2(7)7>dvdsyds
0 Jyl=r Jpi<qs Iyl

=MO)+C J; Q1 + J; M(7)d7)ds

‘
< C—i—CJ M(7ydr
0

forr > 2Q;T. Then, since m(t,r) < C forr < 20,1, we find, for all r,

[
m(t,r) < C—+ CJ M(7)d,
0

and consequently

M@ <C+ CJt M(n)drT.
0
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By Gronwall’s inequality,

M(t) < (M(0) + CT)(1 + Ctexp(Ct))

< (M(0)+CT)(1 + CTexp(CT)) < C. (19)
Notice, then, that this bound and (18) imply

C
|g(t’ X, 'U)| 5 _2
|x|

for |x| > 20,T.
Proceeding in the standard way, we next estimate the
gradient of the electric field.

0 ka
Wby =\ —3 p(, y)dy
o; (IXI?’ <kl

_.a<%9mmmn+fﬁjﬂMLM”

AT x| i
Then,

0 (Xk) . 31'k 3xz-xk C

o \IxP S| (el e [T

and, letting r = x|,

m(t.1)(*)] = Clott. .

d
‘a—&m(t, 7’)

Thus,

C  Clp(t, )| r?
] < ) G+ LT

C
< 4 Clp(t, 7).
-

Since the best we can do a priori is [p(Z, 1)| < Cr~2, we can
only conclude

18, Ex| < Clx| 2. (20)
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We begin to estimate the spatial decay of p by first estimating
the large |x| behavior of the field integral obtained by integrating
(17) in v. Assume |x| > 8QT and f{¢, x, v) is nonzero. Define

Elt,x) = E(t,x) + A(L, x).

Then,
J E(s, X(s)) - V,F(V(s))dv
[v]<Qr

< [ EGs, X(5)) - (VL F(V(s)) — Vo F(v)dv
[0]<Qr

+ (EGs, X(5)) — E(s,x + (s — ) - Vo F(v)dv
Jv|=Qr

+ Vo - (F(v) EGs, %+ (s — tv))do

[v]<Qr

+ F)V, - (EG,x + (s — ty))dv
Jv|<Qr

=: () + (I1) + (I1I) + (IV).

By the mean value theorem, (12), (15), and (19),

0 < Jl ) 166X IV2Fl 1V = oldo

t
= L|§QT(C'X(S)'_2”V3F“°° | LE@, XMy (o1

< CQIxI2(t —5)lx| 2
< Clx|~*.

To estimate (II), we again use the mean value theorem and
(20), so that there is & between X(s) and x + (s — ¢)v with

1Ei(5, X(5)) — Eils, x + (s — )| = |Vu&ils, &) - (X(s) —x — (s — t)o)]
< CI&I2IX(s) — x + (L — 5)v].
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Thus, we find

a=C| IO et 600 19l

)

< CJ |§X|Q(J |V(T)—v|df)dv
[v|<Qr s
< CT*Q3Ix|%1&173,

and, by (15),
1€l = 1X($)] — [X(s) — (x + (s — D))
> vl - J:(V(r) —o)dr
1

> 5 Ix| — 2707

> lIXI

Z 7 lxl.
Therefore,

(N < Clx| ™. (22)

By the divergence theorem, we find
(IIT) = 0. (23)

Then, evaluating 1V yields

av) < J VFllo Vs - €652 + (s — 1) Is — tIdo
[v]|<Qr

< CTJ lp(s,x 4+ (s —)v) + Vi - A(s, x + (s — Hv)|dv
[v|<Qr

< CJ Ip(s, % + (s — Dyv)|dv + CR™*(x + (s — L)v).
[v|=<0Or
Since

1
bt (s = ol = ¥l = TQr = 5 lxl,
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we have

vy < le o Ip(s, x + (s — tyv)|dv + Clx|~*. (24)

Finally, collecting (21), (22), (23), and (24), we have for
x| > 8Q;T,

J £(5, X(6)) - VoF(V(s)do| < Clel ™
[v|=<Qr (25)
+CJ lp(s, x + (s — tyv)|dv.
[v|<Qr

Now, we can bound || p(?)||4. Using the bound on the velocity
support, we have

o)l = sup

X

J (F) — f (t.x, 0))do
[v|<Or

4ar
< ?Q% I1F = folleo

<C.

Thus, for |x| < 8QT, we have

4
lp(t, %) < llp0)l <8‘O‘T—T> < Clx| ™.

||
Now, recall (17):

i

g(t,x,v) = g(0,X(0,¢x,v), V(0,t,x,0)) — J E(s, X(s,t,x,0))
0

-V F(V (s, t,x,v))ds.
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We use this equation and (25) so that for |x| > 80;7,

lp(t, x)| =

J g(t, x, v)dv
[v|=Qr

J o

Jt E(s, X(5)) - Vo F(V(s))ds
0

goCX(O),VTO)ﬂ

+

)dv

L
SCQ%M4+¢;QXﬁWF4+CJ QIM&X
[v]<Qr

+ (s — t)v)ldv)ds

<Clx|™ + CJ

J lp(s, x 4+ (s — tyv)|dv ds.
0 Jv|<0r

So,

!

wmmmnsc+CL

Define
P(t) := sup(lx|*|p(t, x)))-

Then, for all x € R®,

y
Pty <C+C J J P(s)ds dv
[v|<Qr JO

t
<C+ CJ P(s)ds,
0

and using the Gronwall inequality, we find

Pt) < C,

[ x|t p(s, x + (s — tyo)|dv ds.
[v|<Qr

549

and thus |p(, x)| < Clx|”* for all x € R®. Finally, we may apply
Theorem 2 with any ¢>7++/33, and since |[p(t)|le Iis
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bounded, we conclude that |p(t, x)| < CR™*(x). Since this estimate
is independent of 7, we find

sup [lp@l, = C.
1€[0,7]

This remains true for any 7" > 0, so the proof of Lemma 1, and
thus Theorem 1, is complete.

4. Increased Spatial Decay

As in Section 3, we will show that the charge density decays at a
faster rate than previously known. In the work that follows, we
will use the framework of the previous sections and assume con-
ditions (I) and (II) from Section 3, without the spherical
symmetry of f,. However, we will not take condition (III) as an
assumption, and instead, assume condition (IV) holds for some
C>0andall >0, x €R% and v € R®. Since we have made a
change in the assumptions, we may not use results from the
previous sections, unless otherwise stated. Thus, this section
can be viewed independently from the others, as we will rely
more on results shown previously by Schaeffer (2003b). Recall
from the introduction that we will use C,; to denote a generic
constant that depends upon ||p(t)[|, and .

To begin, we apply Theorems 1 and 2 of Schaeffer (2003b),
finding a unique f € C'([0, T] x R® x R®) that satisfies (1), and
assume

I =N < o0 (26)

forall¢ € [0, T'). To first bound the velocity support, we write, as
before,

g(t,x,v) :=F(v)—f(tx,v)

and

£, x) := E(1, x) + A(, x).
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Using Lemma 1 of Schaeffer (2003b), we find for allx € R® and
te[0,T),

t
J E(r.0)ld7 < C sup ()],

0 7€[0,1]

Then, for any s € [0, t),

[V(s)—V(0)] < J; |E(T, X(7,t,x,0))|dT

= Cp,x-

Assuming f # 0, we know f{(t, x, v) = fo(X(0), V(0)), and by
(IT) it must follow that

1V(0,¢,x,v)| < C.

Thus, [V(s)| < C),  foranys € [0, ). Following previous notation,
let us write

Q; :=supfly| : I € R®, r € [0, ¢) such that f (7, x,v) # 0}
so that for all s € [0, 1),

V)| < Q. (27)

This bound on the velocity establishes some of the relations
shown in previous sections. Most importantly, (15) and (16)
must hold for |x| > 20/t

Next, we denote the v-derivatives of characteristics by

0X;
Ajj = ——(s,1,x,v)

and

av;
B := %(S, L, x,0).

J
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Then, using the characteristic equations of (28),
A
3—(3) = B(s),
s

P9 = V& X6)A6),

A|s:1,‘ = O’
B|S=t = I]'
Thus,
¢
46 < [ IBr
and

L

BGs)| <1 +J IV, E(r, X(DAMd,

which leads to

AG) + [BE)| < 1+ [ (IB(D)| + |VoE(r, XA

Again, using Lemma 1 from Schaeffer (2003b), we find
IVE(r, X(M)] < € R (X(7).
So, define

H(s) = sup  (JAG, L, x,v)| + |B(s, £, x, v)]).
{(x,0):|x|>20,1}

Then, for |x| > 20y, we use (15) to find
R™(X(1) < R7(Qu),
and thus, from (29),

t

H(s) < 1 +J max({1, C, R (Q)}H(7d.

Using the Gronwall inequality, we find

H(s) < Cpu

(28)

(29)

(30)

G

(32)
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for s €[0, t], and v-derivatives of both characteristics are
bounded for |x| > 20t
Summarizing (28), we may write

92A A

“50) = VEC XA Al =00 =l =1

So,

As) = (s — ) + Jl r VE, X(A)AN)IAD T

T

= (s =1+ (5, L, x,0).

Again using (28),

%(s) — V,E(s, X(5)A(s)

= V&G, X$))((s — Ol + v, (s, ¢, x,v))
=: (s — )VLE(s, X(5)) + vols, t,x, v).
Thus,
B(s) =14 ys(s,t,x,0)

where

!
Yo(s, L, x,0) = — J‘((T — )V E(T, X(7)) + vo(7, L, x,v))dT.

Now,

9 B“ B]Q Blg B11 Bl? BIS
&(det B) = det BQI BQQ ng -+ det BQI B‘ZQ B23
Bs; Bsz Bss Bs; Bse Bss

By B Bis
+ det Bgl BQQ BQ?,
Bs; Bse Bss

—: () + (1) + (ITI).
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Estimating the first term yields

(s—t %4_(72)11 (s—t %+(V2)12 (S_t)%‘i‘(')@)li%
(I) =det (v3)21 L+ (v3)99 (7323
(v3)31 (¥3)39 L+ (v3)33

&
=6 =05+ (V)i +01(5,4%,0).
X1

Similarly,
3
(D) =1 (5 = )5 =+ (a2 + 03065, 4,3,0)
X2
and
AE
(D) =2 (5 = )5+ ()35 + 035, 1., 0).
X3
So, we find

9 3
o (detB) = (s = )Vy - €6, 0)lvx) + ;«w + 7).

and since B|,—, =1,

{ t 3
detB=1-— 47TJ (t—t)p(r, X(7)dT — J Z((’YQ)]‘]’ + gy)d.
s s =1

Let

t )
&(s, t,x,v) 1= 47TJ (t—t)p(r, X(D)dT + J D (%) + .

s =1

Then, for |e] < 1,
1
detB 1-—¢

=l+e+) & (33)
n=2

!

=1+ 47TJ (tr—t)p(t, X(7)dT+ (s, t,x, v).
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Now that the determinant has been written in a nicer form,
we estimate the remaining terms. Let [x| > 20t. Using (15), (26),
(30), (31), and (32), we find the following bounds on the error
terms for any i, j =1, 2, 3:

[(v1)l < CpuT*R™(x) sup |AGs, £, x, )|
SE[0,7]

< Cp R @),

(v2)l < CpuR™ (%),
and

1(v3);] < Cp,tTQng(x) + Cp,tR76(x)
< Cp R ().

Then, using the estimates of the vy terms, for any k =1, 2, 3,

|0l < CUVAEI+ 11 )21 ys] + 2175 17) + 201 Vel + 172 D 5] + 21 ¥51%)
<[Cp TR (x)+ Cp R O@)2C )R (x) +2C, RO (x)]
+2[C) TR (x) + C ) R ONC, R (x) +2C, RO ()]
<CpRO%).

Now, we may bound &:
gl < 47T sup |lp(l,R(x) + 3T sup (Iyo(n)] + [o(7)])
7€[0,t] TE€[s,1]
< Cp,tpr(x) + Cp,tRfﬁ(x)
=< Cp,zR_p(x)
=: CYR(x)
1

< =
2

for [x| > (2P, Thus Y 52 0&" converges and 7 is well defined
for large enough values of |x|. Finally, we have, for x| > max{20Qy,
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2CMh)lry,

t 3 00
| >y opars Y
s j=1 n=2

< 3C, TR () + (CVY*R™(x) + (CVYR™(x) +...)
= Cp,tR_ﬁ(x)-

Inl =

(34)

Using (27), we find for ¢ € [0, T'),

J(F(v) — [, x,v))dv

o)l = sup

4 .
<5 QIF = folle
< Cy,.
Thus, if |x| < D for some D > 0, we have

1p(t, )| < [p()llR(D)R™°(x)

, (35)
< Cp,[Rib(X).

Now, denote C? := max{20Qyt, (2C(1>)1/p, 2N}, and let |x| > C®.
Then, by (15) we have

XO. 63,0 2 g bl > N,
Using (IT), (11), (33), and (34) to estimate p(t, x) yields

Jf (¢, x,v)dv = | fo(X(0,¢,x,0), V(0,t,x,v))dv
= | F(V(0,t,x,v)dv

dv

= | FIO.t.x 0)(det BO) gogss

i

= | F(V(0, ¢, x,0))(1 + 47TJ (t—0p(7, X(7,t,x,v))dT
0

00,3, D) (det 50,1, %, )
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= | Fard+ [ Fr. 3,090, 13.0)

(det% (0, t,x,v))dv + 47TJF(V(O, 1,x,v))

Jt (r—0)p(7, X(7,t,x,v))dr(det % (0,t,x,v))dv.
0

Since p(t, x) = [ (F(v) — f(t, x, v)) dv, we have
¢

p(t,x) = 4’7TJF(V(0, 1,x,0)) Jo(t — np(r, X(1,t,x,v))dT

(det% 0,t,x,v))dv — JF(V(O, t,x,0))m(0, ¢, x,v)

(det%(o, t,x,v))dv. (36)

Now, let
V(1) := |p0)lls = sup(|p(t, x)|R°(x)).

In order to make the change of variables w = 1(0, ¢, x, v) in the v-
integral, we must first show that the mapping v — V(0, ¢, x, v) is
bijective. For the moment, we will take this for granted, and
continue with the estimate of p, delaying the proof of this fact
until the very end. By (34), (36), and the work of Section 5, we
have for |x| > C®,

i

|p(t, x)| < 47TJF(V(O, t,x, v))(J (t— T)‘If(T)R_G(X(T, t,x,0))dT)
0
(det%(o, t,x,v))dv + Cp,R™°(x) JF(w)dw
< CR %) JF(V(O, L, x, v))(det% (0, ¢, x,v))dv

Jt (t — W(DdT+ C )R O(x)
0

<R %)(C Jl (t — DU(DAT+ C ). (87)
0
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So, applying (85) with D = C® and combining with (37), we have
for all x,

lp(t, 9)|[R°(x) < Cps 4+ C J;(t — DW(ndr

and since the right side is independent of |x],

V(@) <Cpi+C Jt t — DY (ndr.
0

By the Gronwall inequality,
V() < Cpy.
Therefore, for every ¢t € [0, T),

le®lle < Cp.

and the proof is complete.

5. Change of Variables

In order to justify the change of variables used in (37), we must
first demonstrate that the mapping v — V(0, ¢, x, v) is bijective.
This is done below.

From (30), we know there is Cj(ft)>0 such that

al 3 —_
IVER )| < C)Jx|

for every x € R ¢t e [0, T']. Also, using (32), we know Lthere 1S
C;,f? >0 such that for all s, t€[0, T], x, v€&€ R® with
x| > 27Q(T),

oX .
‘%(s, Lx,v)| < C(;Z.

Finally, using Lemma 1 of Schaeffer (2003b), we know there is
Cif’t)>0 such that for allx € R* and ¢ € [0, T'],

[
J IE(T, x)|dT < C;‘L”;
o ,
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For any D > 0, define Cp, := max{8 (D + C§)T), 2TQ(T), 4 (6C}Y
CT)'?), and B(0, D) := {v € R?: Ju| < D}. Injectivity on B(0, D)
can now be shown in the following lemma.

Lemma 3. For any D > 0, |x| > Cp, and t € [0, T'], the mapping
v — V(0, t, x, v) is injective on B(0, D).

Proof

Let D>0, |x| >Cp and ¢t € [0, T] be given. Then, let vy,
v9 € B(0, D) be given with

V(0,t,x,v1) = V(0,t,x,v9).
We have
1) 1)
U1 + J E(r, X(7,t,x,v1))dT =09 + [ E(r, X(7,t,x,v9))dT.
0 0
So, using the mean value theorem, for any : = 1, 2, 3 there is 6;

between X(7, ¢, x, v1) and X(r, £, x, v9) and &, between v; and v
such that

Ei(r, X(7, t,x,v1)) — E(7, X(7, 1, %, v2))
= V&7, &) - (X(7,1,x,v1) — X(7, 1, %, v9))

and
Xi(7, t,x,01) — X7, 1, %, 09) = V, Xi(1,1,%, &) - (v —v1).
Then, since

1E] = 1X(7,t,x,01)| — |X(7,1,%,01) — X(7,1,%, 09)|

{
zém—}ﬂvwamvo—vumxmgmu
1 [
EEIXI—J(IV(L,t,x,vl)—leIvl—v2|+|V(L,t,x,v2)—v2|)db
1 [ (L
2§|x| — (Im — Vg +2J J IEA)|lood A dL)
7J0
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and
4
IXi(7, £,%,01) = Xi(7, 1., 09)| < C)lvs — 1],
forany:=1, 2, 3, we find

1Ei(T, X(7,t,x,v1)) — Ei(7, X(7,t,x,09))| < |V Ei(T, §§C)| IX(7,t,%,v1)
—X(7,t,x,09)|

= (supcilier)
(\/gC?’“UI —Ugl)
pew(l
=V3CH)cy) (Z |x|)
[ —val.

Therefore, we have

i

v —ve| < J IE(T, X(7,t,x,v1)) — E(7, X(7,t,x,v9))|dT
0
4 o (1 "
< SCP,Zlvl —UQIC(MJ (Z IXI) dr.
0

1 _3
< (30(;}0(;%(1 |x|) >|v1 — 0o

< glvr —wvel.
2

Thus, [v; — ve] = 0, which implies v; = v, and injectivity follows.
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Now, let ¢ € [0, T] and x € R® be given. Define
S :={w: Fw) # 0}
and
V=YS) := {v: FV(0,1,x,v)) # 0}.
Using the compact support of F, we conclude that v € V~(S)
implies
¢

o] < W+J IE@lldr < C .
0

Therefore, there isa D > 0, such that ¥~ '(S) C B(0, D). Thus, for
|x| > Cp,and t € [0, T], the mapping v — V(0, ¢, x, v) is injective
on I/ '(S) and bijective from V™ (S) to S. Finally,

JF(V(O, t,x,v))det (%)dv = FWV(0,t,x,v)) det(%)dv

V=1(S)

= | Fw)dw
s

= | F(w)dw.

Thus, the change of variables is valid and the justification is
complete.
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