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1.1 Let (Ti,j) be in Mn(B(H)). Verify that the linear transformation it determines on H(n) is bounded

and that, in fact, ‖(Ti,j)‖ ≤
(
∑n

i,j=1 ‖Ti,j‖
2
)1/2

.

Solution: Let






h1
...
hn




 ∈ H(n) be of unit length. We compute

∥
∥
∥
∥
∥
∥
∥

(Ti,j)






h1
...
hn






∥
∥
∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥
∥
∥






∑n
j=1 T1,jhj

...
∑n

j=1 Tn,jhj






∥
∥
∥
∥
∥
∥
∥

2

=

n∑

i=1

∥
∥
∥
∥
∥
∥

n∑

j=1

Ti,jhj

∥
∥
∥
∥
∥
∥

2

(1)

≤

n∑

i=1





n∑

j=1

‖Ti,jhj‖





2

triangle inequality (2)

≤

n∑

i=1





n∑

j=1

‖Ti,j‖ ‖hj‖





2

(3)

≤
n∑

i=1









n∑

j=1

‖Ti,j‖
2









n∑

j=1

‖hj‖
2







 (4)

=

n∑

i,j=1

‖Ti,j‖
2 (5)

Taking square roots now yields the result.

1.2 Let π : Mn(B(H)) → B(H(n)) be the identification given in the text.

i) Verify that π is a one-to-one, ∗-homomorphism.

ii) Let Ej : H → H(n) be the map defined by Ej(h) equal to the vector that has h for its j-th entry
and is 0 elsewhere. Show that E∗

j : H(n) → H is the map which sends a vector in H(n) to its j-th
component.

iii) Given T ∈ B(H(n)) set Tij = E∗
i TEj. Show that π((Tij)) = T and that consequently π is onto.

Solution: Note that,

n∑

k=1

Ekhk =






h1
...
hn




 . (6)
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i) Let (Si,j) and (Ti,j) be in Mn(B(H)), let h =






h1
...
hn




 , f =






f1
...
fn




 ∈ H(n) and α ∈ C. We have,

π(α(Si,j) + (Ti,j))h = π((αSi,j + Ti,j))h =






∑n
j=1(αS1,jhj + T1,jhj)

...
∑n

j=1(αSn,jhj + Tn,jhj)




 (7)

= α






∑n
j=1 S1,jhj

...
∑n

j=1 Sn,jhj




+






∑n
j=1 S1,jhj

...
∑n

j=1 Sn,jhj




 (8)

= (απ((Si,j)) + π((Ti,j)))h. (9)

Thus π is linear.

Let (Rij) = (Si,j)(Ti,j).

π((Ri,j))h =






∑n
j=1R1,jhj

...
∑n

j=1Rn,jhj






=






∑n
j,k=1 S1,kTk,jhj

...
∑n

j,k=1 Sn,kTk,jhj




 (10)

On the other hand,

[π((Si,j))π((Ti,j))]h = π((Si,j))






∑n
j=1 T1,jhj

...
∑n

j=1 Tn,jhj






=








∑n
k=1 S1,k

(
∑n

j=1 Tk,jhj

)

...
∑n

k=1 Sn,k

(
∑n

j=1 Tk,jhj

)








=






∑n
j,k=1 S1,kTk,jhj

...
∑n

j,k=1 Sn,kTk,jhj




 (11)

Comparison of (10) and (11) shows that π is a homomorphism.
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We now compute the adjoint of π((Ti,j)).

〈

π((Ti,j))






h1
...
hn




 ,






f1
...
fn






〉

=

〈





∑n
j=1 T1,jhj

...
∑n

j=1 Tn,jhj




 ,






f1
...
fn






〉

(12)

=
n∑

i,j=1

〈Ti,jhj , fi〉 =
n∑

i,j=1

〈
hj, T

∗
i,jfi

〉
(13)

=

〈





h1
...
hn




 ,






∑n
i=1 T

∗
i,1fi

...
∑n

i=1 T
∗
i,nfi






〉

(14)

=

〈





h1
...
hn




 , π((T ∗

j,i))






f1
...
fn






〉

. (15)

This shows that π((Ti,j))
∗ = π((T ∗

j,i)) = π((Ti,j)
∗) and so π is a ∗-homomorphism.

Suppose π((Ti,j)) = 0. Then for every k ∈ {1, . . . , n} and h ∈ H we have






0
...
0




 = π((Tij))Ek(h) =






T1,kh
...

Tn,kh




 . (16)

Hence Ti,jh = 0 for all h ∈ H and for all i, j ∈ {1, . . . , n}. It follows that (Ti,j) = 0 and π is
one-to-one.

ii) Let h ∈ H and






h1
...
hn




 ∈ H(n). The definition of the adjoint gives us

〈

E∗
j






h1
...
hn




 , h

〉

=

〈





h1
...
hn




 , Ejh

〉

= 〈hj , h〉 (17)

Therefore, E∗
j is the map that sends






h1
...
hn




 to hj .
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iii) We have,

〈

π((Ti,j))






h1
...
hn




 ,






f1
...
fn






〉

=

〈





∑n
j=1 T1,jhj

...
∑n

j=1 Tn,jhj




 ,






f1
...
fn






〉

(18)

=
n∑

i,j=1

〈Ti,jhj , fi〉 =
n∑

i,j=1

〈E∗
i TEjhj , fi〉 (19)

=

n∑

i,j=1

〈TEjhj , Eifi〉 =

〈
n∑

j=1

TEjhj ,

n∑

i=1

Eifi

〉

(20)

=

〈

T (
n∑

j=1

Ejhj),
n∑

i=1

Eifi

〉

= 〈Th, f〉 . (21)

Thus π((Ti,j)) = T and π is onto.

1.3 Let (Ti,j) be in Mn(B(H)). Prove that (Ti,j) is a contraction if and only if for every choice of 2n unit
vectors x1, . . . , xn, y1, . . . , yn in H, the scalar matrix (〈Ti,jxj , yi〉) is a contraction.

Solution: We use the fact that if T is a bounded operator on a Hilbert space H, then T is a contraction
if and only if |〈Th, k〉| ≤ 1 for all h, k ∈ H of unit length.

Suppose first that (Ti,j) is a contraction and that






λ1
...
λn




 ,






µ1
...
µn




 are vectors of unit length in C

n.

A short calculation: ∥
∥
∥
∥
∥
∥
∥






λ1x1
...

λnxn






∥
∥
∥
∥
∥
∥
∥

2

=

n∑

k=1

‖λkxk‖
2 =

n∑

k=1

|λk|
2 ‖xk‖

2 = 1, (22)

shows that






λ1x1
...

λnxn




 and






µ1y1
...

µnyn




 are of unit length in H(n). It follows that,

∣
∣
∣
∣
∣
∣
∣

〈

(〈Ti,jxj, yi〉)






λ1
...
λn




 ,






µ1
...
µn






〉
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

n∑

i,j=1

〈Ti,jxj, yi〉λjµi

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

n∑

i,j=1

〈Ti,j(λjxj), µiyi〉

∣
∣
∣
∣
∣
∣

(23)

=

∣
∣
∣
∣
∣
∣
∣

〈

(Ti,j)






λ1x1
...

λnxn




 ,






µ1y1
...

µnyn






〉
∣
∣
∣
∣
∣
∣
∣

≤ 1 (24)

and hence (〈Ti,jxj , yi〉) is a contraction in Mn.
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Conversely, let






h1
...
hn




 and






f1
...
fn




 be unit vectors in H(n). Choose unit vectors x1, . . . , xn, y1, . . . , yn

in H and scalars λ1, . . . , λn, µ1, . . . , µn such that λjxj = hj and µiyi = fi. We have,

1 =

∥
∥
∥
∥
∥
∥
∥






h1
...
hn






∥
∥
∥
∥
∥
∥
∥

2

=

n∑

k=1

‖λkxk‖
2 =

n∑

k=1

|λk|
2 ‖xk‖

2 =

n∑

k=1

|λk|
2 . (25)

Which proves that the vectors






λ1
...
λn




 ,






µ1
...
µn




 are of unit length in C

n. A calculation similar to the

one in (24) proves that (Ti,j) is a contraction.

1.4 Let(Ti,j) be in Mn(H(n)). Prove that (Ti,j) is positive if and only if for every choice of n vectors
x1, . . . , xn in H, the scalar matrix (〈Ti,jxj, xi〉) is positive.

Solution: If






λ1
...
λn




 ∈ C

n and x1, . . . , xn are vectors in H, then

〈

(〈Ti,jxj, xi〉)






λ1
...
λn




 ,






λ1
...
λn






〉

=

〈

(Ti,j)






λ1x1
...

λnxn




 ,






λ1x1
...

λnxn






〉

(26)

If (Ti,j) is positive, (26) shows that (〈Ti,jxj, xi〉) is positive. If






x1
...
xn




 ∈ H(n) and (〈Ti,jxj, xi〉) is

positive then set λk = 1 for all k ∈ {1, . . . , n} in (26) to prove (Ti,j) is positive.

1.5 Let A and B be unital C∗-algebras, and let π : A → B be a ∗-homomorphism with π(1) = 1. Show
that π is completely positive and completely bounded and that ‖π‖ = ‖πn‖ = ‖π‖cb = 1.

Solution: If π is a ∗-homomorphism with π(1) = 1, then π maps invertible elements in A to invertible
elements in B. Therefore σ(π(a)) ⊆ σ(a) for any a ∈ A. It follows that,

‖π(a)‖2 = ‖π(a)∗π(a)‖ (27)

= ‖π(a∗a)‖ = r(π(a∗a)) (28)

≤ r(a∗a) = ‖a∗a‖ = ‖a‖2 . (29)

where r(x) denotes the spectral radius of x. Thus, ‖π‖ ≤ 1. Since ‖π(1)‖ = ‖1‖ = 1, we have ‖π‖ = 1.

If a is positive, then there exists an x ∈ A such that a = x∗x. Therefore,

π(a) = π(x∗x) = π(x)∗π(x) ≥ 0. (30)

This shows that π is positive.
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We have proved that a ∗-homomorphism that maps the identity to the identity is a norm 1, positive
map. The definitions of addition and multiplication in Mn(A) and the definition of πn imply that πn

is indeed a unital, ∗-homomorphism. Hence π is completely positive and

‖π‖cb = sup{‖πn‖ : n ≥ 1} = 1 = ‖π‖ , (31)

shows that π is completely bounded.

1.6 Let A, B and C be C∗-algebras, and let ϕ : A → B and ψ : B → C be (completely) positive maps.
Show that ψ ◦ ϕ is (completely) positive.

Solution: We first prove that ψ ◦ϕ is positive. Let a ∈ A be positive. Since ϕ is a positive map ϕ(a)
is positive in B. The fact that ψ is a positive map shows that (ψ ◦ ϕ)(a) = ψ(ϕ(a)) ≥ 0, proving our
claim.

It is straightforward to check that (ψ◦ϕ)n = ψn ◦ϕn. This fact and a similar argument to the one used
in the preceeding paragraph shows us that ψ ◦ ϕ is completely positive when ϕ and ψ are completely
positive.

1.7 Let {Ei,j}
n
i,j=1 be matrix units for Mn, let A = (Ej,i)

n
i,j=1 and let B = (Ei,j)

n
i,j=1 be in Mn(Mn). Show

that A is unitary and that
1

n
B is a rank one projection.

Solution: We begin by noting the following facts: E∗
i,j = Ej,i,

∑n
k=1Ek,k = 1n, the n × n identity

matrix, and

Ei,jEp,q =

{
0 if j 6= p

Ei,q if j = p
. (32)

We have A∗ = (Ej,i)
∗ = (E∗

i,j) = (Ej,i) = A, and so A is self-adjoint. Thus AA∗ = A2 = A∗A. When

we compute the (i, j)-th entry of A2 we get,

n∑

k=1

Ek,iEj,k =

{
0 if i 6= j

∑n
k=1Ekk = 1n if i = j

(33)

From which it follows that A2 = 1 and A is unitary.

Since B∗ = (Ei,j)
∗ = (E∗

j,i) = (Ei,j) = B, 1
nB is self-adjoint. The (i, j)-th entry of B2 is

n∑

k=1

Ei,kEk,j =

n∑

k=1

Ei,j = nEi,j. (34)

Therefore the (i, j)-th entry of 1
n2B

2 is 1
nEi,j and so

(
1
nB
)2

= 1
nB. Thus 1

nB is a projection. It remains
to be shown that B has rank one. The identification of Mn(Mn) with Mn2 allows us to treat B as
an operator on C

n2

= C
n ⊕ . . . ⊕ C

n
︸ ︷︷ ︸

n copies

. We compute the trace of B and note for a projection P that

rankP = traceP . Note that the diagonal entries of B are 0 except the ((k − 1)n + k, (k − 1)n + k)
entries for k = 1, . . . , n and so traceB = n which shows that trace 1

nB = 1. We now compute the
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range of B. Let hk =






λk,1
...

λk,n




 ∈ C

n. Now,

B(h1 ⊕ . . . ⊕ hn) =





n∑

j=1

E1,jhj



⊕ . . .⊕





n∑

j=1

En,jhj



 = (λ1,1 + . . . + λn,n)(e1 ⊕ . . . ⊕ en). (35)

Which shows that B, and hence 1
nB, is the projection onto the span of the n2-tuple whose entries are

equal to 1 in the 1st, (n+ 1)-th, . . . ,((n− 1)n + 1)-th place and is 0 otherwise.

1.8 Let {Ei,j}
n
i,j=1 be a system of matrix units for B(H), let A = (Ej,i)

n
i,j=1 and let B = (Ei,j)

n
i,j=1 be

in Mn(B(H)). Show that A is a partial isometry and that
1

n
B is a rank one projection. Show that

ϕn(A) = B and ‖ϕn(A)‖ = n.

Solution: ϕ is the transpose map. We begin by noting the following facts: E∗
i,j = Ej,i,

Ei,jEl,m =

{
0 if j 6= l

Ei,m if j = l
. (36)

and
n∑

k=1

Ek,k =

[
1n 0
0 0

]

= Pn, (37)

where 1n denotes the n× n identity matrix.

A calculation similar to that in excercise 1.7 shows that A is self-adjoint and that

AA∗ = A2 =








Pn 0 · · · 0
0 Pn · · · 0
...

...
. . .

...
0 0 · · · Pn








(38)

which is the projection of H(n) onto the subspace spanned by vectors of the form






h1
...
hn




 where all

except possibly the first n entries of each hk are 0. Therefore A is a partial isometry.

A similar argument to the one for Exercise 1.7 shows that 1
nB is a non-zero projection. We have,

ϕn(A) = ϕn((Ej,i)) = (Et
j,i) = (Ei,j) = B, (39)

and

‖ϕn(A)‖ = ‖B‖ = n

∥
∥
∥
∥

1

n
B

∥
∥
∥
∥

= n. (40)

1.9 Let A be in Mn and let At denote the transpose of A. Prove that A is positive if and only if At is
positive and that ‖A‖ =

∥
∥At

∥
∥. Prove that these same results hold for operators on separable, infinite

dimensional Hilbert space, when we fix an orthonormal basis, regard operators as infinite matrices and
use this to define the transpose.
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Solution: We prove the second part of the exercise which concerns Hilbert space, the first part being
a special case of the second. To see that At is positive we write A = B∗B for some B ∈ B(H). Thus,

At = (B∗B)t = Bt(B∗)t = Bt(Bt)∗ ≥ 0. (41)

By interchanging the roles of A and At we see that A is positive whenever At is positive.

Since H is a separable, infinite-dimensional Hilbert space we can assume that H = ℓ2 with the or-
thonormal basis {en}n≥1, where en is the sequence whose n-th entry is 1 and whose other entries are 0.
Let (αi,j) be the matrix of A with respect to this orthonormal basis and let (x1, x2, . . .) be an element
of H. Denote by A and x the matrix (αi,j) and the sequence (x1, x2, . . .). Note that ‖x‖ = ‖x‖. It
follows from the definition of the inner-product that

〈x, y〉 = 〈x, y〉. (42)

It is also straightforward to show that Ax = Ax.

Let ‖x‖ ≤ 1 and consider,

∥
∥Ax

∥
∥

2
=
〈
Ax,Ax

〉
= 〈Ax,Ax〉 = ‖Ax‖2 ≤ ‖A‖2 . (43)

Therefore
∥
∥A
∥
∥ ≤ ‖A‖. By interchanging the roles of A and A we see that ‖A‖ = ‖A‖ ≤

∥
∥A
∥
∥.

Therefore ‖A‖ =
∥
∥A
∥
∥. Since At = A∗ we get,

∥
∥At

∥
∥ = ‖At‖ = ‖A∗‖ = ‖A‖ . (44)

The idea in the last two paragraphs gives an alternate proof of the positivity result. A short calculation,

〈Ax, x〉 = 〈x,A∗x〉 =
〈

x,Atx
〉

=
〈

x,Atx
〉

= 〈x,Atx〉, (45)

shows that A is positive if and only if At is positive.

1.10 Prove that the map π : Mn(A) → A ⊗ Mn defined by π((ai,j)) =
∑n

i,j=1 ai,j ⊗ Ei,j is an algebra
isomorphism.

Solution: Let α be a scalar. The addition and scalar multiplication of tensors satisfies (a⊗A)+ (a⊗
B) = a⊗(A+B) and α(a⊗A) = (αa)⊗A = a⊗(αA) and therefore π is linear. Let (ci,j) = (ai,j)(bi,j).
We have,

π((ci,j)) =

n∑

i,j=1

ci,j ⊗ Ei,j =

n∑

i,j,k=1

ai,kbk,j ⊗ Ei,j . (46)

Now,

π((ai,j))π((bi,j)) =





n∑

i,j=1

ai,j ⊗ Ei,j









n∑

k,l=1

ak,l ⊗ Ek,l



 (47)

=
n∑

i,j,k,l=1

ai,jbk,l ⊗ Ei,jEk,l =
n∑

i,l=1

n∑

j,k=1

ai,jbk,l ⊗ Ei,jEk,l (48)

=
∑

i,l=1

∑

j=1

ai,jbj,l ⊗ Ei,l by using (33), (49)

8



which (after relabeling the indices) is equal to (46). Thus π is a homomorphism. The involution in
A⊗Mn is defined by (a⊗A)∗ = a∗ ⊗A∗ which proves that π is ∗-homomophism. We have,

π(1) = π















1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1















=
∑

i=1

1⊗ Ei,i = 1⊗
∑

i=1

Ei,i = 1 ⊗ 1, (50)

which shows that π is unital.

It remains to show π is bijective. Suppose that π((ai,j)) = 0, we want to show that ak,l = 0 for all
k, l ∈ {1, . . . , n}. We compute,

(1 ⊗ Ek,k)π((ai,j))(1 ⊗ El,l) = (1 ⊗ Ek,k)





n∑

i,j=1

ai,j ⊗ Ei,j



 (1 ⊗El,l) (51)

= (1 ⊗ Ek,k)

(
n∑

i=1

ai,l ⊗ Ei,l

)

(52)

=
n∑

i=1

ai,l ⊗ Ek,kEi,l = ak,l ⊗ Ek,l (53)

If we now use the fact that ‖ak,l ⊗ Ek,l‖ = ‖ak,l‖ ‖Ek,l‖ and ‖Ek,l‖ = 1 we see that ‖ak,l‖ = 0 and so
ak,l = 0. Now suppose that a⊗A is an elementary tensor in A⊗Mn. If A = (αi,j), then we can write

a⊗A =

n∑

i,j=1

a⊗ (αi,jEi,j) =

n∑

i,j=1

(αi,ja) ⊗ Ei,j = π((αi,ja)). (54)

Thus, since π is linear, the range of π contains the span of the elementary tensors. The fact that π is
a one-to-one, ∗-homomorpism implies that it is an isometry and has closed range. This together with
the fact that the set of elementary tensors is dense in A⊗Mn proves range π = A⊗Mn and so π is
onto.
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