2.1

2.2

COMPLETELY BOUNDED MAPS AND OPERATOR ALGEBRAS
CHAPTER 2: POSITIVE MAPS
SOLUTIONS TO EXERCISES

JANUARY 24, 2006

Let S be an operator system, B be a C*-algebra and ¢ : § — B a postive map. Prove that ¢ is
self-sdoint, i.e., that p(x*) = p(z)*.

Solution: We first prove the result when z = z*. We can write x = p; — p2 with p; and p» positive.
Since ¢ is positive ¢(p1) and p(p2) are positive and so ¢(x) = ¢(p1) — ¢(p2), which is the difference
of two postive elements, is self-adjoint.

Now let € § and write © = x1 + ixe with 1 and x5 self-adjoint. Then we have,

*

p(x") = (o1 —iz2) = p(x1) — ip(x2) = (x1)" —ip(x2)" = (p(21) + ip(22))" = @(x)",
which completes the proof.

Let S be an operator system, B be a C*-algebra and ¢ : S — B be a positive map. Prove that ¢
extends to a positive map on the norm closure of S.

Solution: The positivity of ¢ implies that ¢ is bounded and in particular is uniformly continuous. It
follows that ¢ extends in a unique way to a continuous map ¢ on the norm closure of S. It remains,
therefore, to show that ¢ is positive.

Let p be a positive element in S. Then, there is a sequence {x,} in S such that ||p — z,| — 0 as
n — oo. The fact that p is self-adjoint tells us that ||p — || = ||p — 2| and so,

H —M — 0 asn — oo.
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Set hy, = (x5, +})/2 and note that hy, is self-adjoint. Let € > 0. We claim that h,, + €1 is positive for
sufficiently large values of n. We may assume that h,, is a sequence of operators on a Hilbert space H.
Let € H and choose N so large that n > N implies ||h, — p|| < £/2. Then,

((hp + ez, x) = (hp +e1 — (p+el))x,x) + ((p+el)z, z) . (1)

Since p is positive
((p+el)z, ) > e ||, (2)

and the Cauchy-Schwarz inequality gives,
€
[((hn + €1 = (p+ 1))z, )| < [|hn + 1 = (p+ V)| |2]* = || — pll 2]* < 5 [|2]*. (3)

Using (1), (2) and (3) we get,

9 e
((hn +el)a,z) 2 (e = 3) lz))* = 5 [E2

which establishes our claim.
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Since h,, +c1 — p+ €1 we have,
o(p+el) = lim @(hy, +¢e1) > 0.
n—oo

Thus,
¢(p) +e4(1) =0,

for every positive . When we let € — 0 we see that ¢(p) > 0, which completes the proof.

Let S be an operator system and let ¢ : S — C be positive. Prove that ||| < ¢(1).

Solution: Let a € § and choose a unimodular A € C such that |¢(a)| = Ap(a) = ¢(Aa). We have
lp(a)] = p(Aa) = @((Aa)*), where the last equality follows from the fact that ¢ is positive. For any
element a of a C*-algebra Rea < |ja]| 1. Thus,

p(a)] = ;(%0()\@)+80(()\a)*)):¢(w>
= p(Re(a)) < p(lPall 1) = [lall o(1).

Therefore, [|¢|| < ¢(1).

Let S be an operator system and let ¢ : S — C(X) where C'(X) denotes the continuous functions on
a compact Hausdorff space X. Prove that if ¢ is positive, then [|¢| < [[¢(1)].

Solution: For each z in X let 7, : C(X) — C denote the function that maps f to f(z). m, is positive
and so the map 7, 0 ¢ : § — C is positive. From Exercise 2.3 we get,

[p(a)(z)] = [(me 0 )(a)] < (72 0 ©) (1)) [lall = (1)(z) [la] < [le@)] lal- (4)
Thus, [le(a)l| < lle(1)] [lall and it follows that [[¢|| < [[¢(1)]-
(Schwarz Inequality) Let A be a C*-algebra and let ¢ : A — C be a positive linear functional. Prove
that [p(z*y)|* < p(z"2)e(y*y).

Solution: Let ¢t € R and choose a unimodular complex number A such that |p(z*y)| = Ap(z*y).
Using the fact that ¢ is positive we get,

0 < o((z+ty)*(z+ty)) (5)
= p(a*z+ 'y +y'r) + y'y) (6)
= o(z*z) + t(e(z*y) + o(y*z)) + o(y*y) (7)
= p(z*z) + te(z*y) + o(z*y)) + t*o(y*y) (8)
= o(z*z) + 2Re p(x*y)t + o (y*y)t* (9)

where (8) follows from the fact that ¢ is positive and therefore self-adjoint. The expression in (9) is
a quadratic in ¢ with real coefficients. Since this quadratic is always non-negative it follows that its
discriminant is never positive. Thus,

(2Re p(2*y))” < dp(z*2)0(y"y). (10)

By replacing « by Az and dividing out the factor of 4 we get,

lo(z*y)* < p(z*2)e(y™y). (11)
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Let T be an operator on a Hilbert space H, the numerical radius of T is defined by
w(T) = sup{|(Ta,a)| : @ € H, o = 1}.
Prove that if ¢ : S — B(H) is positive and ¢(1) = 1, then w(p(a)) < ||al|.

Solution: Let a € § and let x be a unit vector in H. Note that the linear functional p, that maps an
operator T' € B(H) to (T'z, x) is positive. Therefore p, o ¢ : S — C is positive. Hence by exercise 2.3,

[{p(a)a,z)| = |pz 0 p(a)] < (pz 0 p(1)) lla]l = p(1) [|la]| = [|=]* lall = [lall- (12)
From which we see that w(p(a)) < ||al|.

Let T be an operator on a Hilbert space. Prove that w(7T) <1 if and only if 2+ (AT) + (AT)* > 0 for
all complex numbers A\ with [A| = 1.

Solution: First note that 24 (AT) 4 (AT)* is positive if and only if 1+ Re A (Txz,z) > 0 for all z € H.
If w(T) <1, then,

—Re A (Tz,z) < | AN (Tz,z)| = |(Tz,z)] <w(T) <1, (13)
which proves that 2 + (AT") + (AT")* > 0.
For the converse choose a A, (depending on ), of modulus 1 such that A (Tx,z) = — |(Tx,z)|. We
have,
[(Tz,x)| = —AN{Tz,x) = —Re A\ (Tz,x) <1, (14)

and so w(T) < 1.

Prove that w(7T") defines a norm on B(H), with w(T") < ||| < 2w(T). Show that both inequalities
are sharp.

Solution: w(T) is defined as the supremum of a set of non-negative numbers and is therefore non-
negative. Also w(T) = 0 if and only if (T'z,z) = 0 for all x such that ||z|| =1 if and only if "= 0. If
a € C, then

w(aT) = sup{[{aTz,z)|: |[z]| =1} = sup{la| (Tz,z)| : =[] =1} (15)
= lalsup{[(Tz,2)| : [z =1} = |afw(T) (16)

If R,T are two operators and ||z|| = 1, then
((R+T)z,z)| = (Ra,x) + (Tz,2)| < |[(Rz, )| + [(Tz,2)] < w(R) + w(T) (17)

implies that w(R +T) < w(R) + w(T"). This proves that w(T") defines a norm on B(H).
If ||z|| = 1, then an application of the Cauchy-Schwarz shows that,

(T, )| < ([T [l < [T, (18)

and so w(T) < ||T||. For the other inequality begin by writing T = A + ¢B where A and B are
self-adjoint. Note that w(T) = w(T™). We use the fact that for a self-adjoint operator A, ||A| =
sup{|(Az,z)| : ||z|]| =1} = w(A). We have,

IT| = [[A+iB|| <[|A] + B (19)

_ w(A)+w(B):w<T+2T )+w(T;Z,T> (20)

w(T) +w(T*) + w(T) + w(T™)
2

< = 2w(T) (21)

3
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1||. To see that the best upper bound

The identity map 1 on any Hilbert space satisfies w(1) = |
]. We have,

1
is 2 we consider the operator defined on C? by T [ z ] = [

HIEH

and so ||T|| < 1. By considering T [ (1)

e[ L) = e < B _ L (23)
Yy Yy 2 2

1T} < 2w(T) <1 =T, (24)

- ?< (22)

] we see that ||T'|| = 1. Now suppose that [ z ] has unit
length and consider,
Hence,

which shows that the other inequality is sharp.

Let S be an operator system, B a C*-algebra and ¢ : S — B a linear map such that ¢(1) is positive,

le(1)]] = ||l Give an example to show that ¢ need not be positive. In similar vein, show that if M
is as in proposition 2.12, ¢(1) is positive, with [|¢(1)|| = [|¢||, then ¢ need not be well-defined.
Solution: Let
a b 11
A—[Cd] J—|:11:|€M2 (25)
and define ¢ : My — My by
_ _lat+c b+d

Since ¢ is left multiplication by J, we have || = ||¢(1)|| = 2. Further ¢(1) = J > 0. To see that ¢

is not positive consider
10 10

For the second part let M be the set of 2 x 2 upper triangular matrices and restrict the map ¢ in
the previous paragraph to M. Note that if a € M is self-adjoint but ¢(a) # ¢(a)*, then ¢ is not
well-defined. Consider the self-adjoint matrix

which is not self-adjoint.

and note that

which is not self-adjoint.

(Krein) Let S be an operator system contained in the C*-algebra A, and let ¢ : S — C be positive.
Prove that ¢ can be extended to a positive map on A.
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Solution: The fact that ¢ is positive tells us that ¢(1) is a non-negative real number. If (1) =0
then ||¢]| < ¢(1) = 0 and this map extends to the zero functional. Assume that ¢(1) # 0 and let
¥(a) = ¢(1)"tp(a) and note that ¢ is a positive map on S with |4 = (1) = 1. By the Hahn-Banach
theorem ¢ extends to a map 1 on A with ||¢)|| = 1. ¢ is a unital contraction and is therefore a positive
map. The map ¢ defined by @(a) = (1) (a) is a positive map which extends ¢.

In this exercise we give an alternate proof of von Neumann’s inequality. We assume that the reader
has some familiarity with integration of operator valued functions. Let T € B(H) with ||T]| < 1 and,
let p and ¢ denote arbitrary polynomials.

(a) Let P(t,T) = (1 — e *T)~1 + (1 — e®T*)~! — 1, and show that P(t,T) > 0 for all .

(b) Show that p(T) + q(T)* — % 2 (p(e) + q(@) P(t, T) dt.

(¢) Deduce von Neumann’s inequality.

Solution:

(a) We know that if |T|| < 1, then 1 — e~ T is invertible. Let R = e *T and note that the adjoint
of $=(1-R)"lis §* = (1 - R*)"!. Let h € H and set k = Sh. Then,
(845" =1)h,h) = (Sh,h)+(5"h,h) = (h,h) (30)
= (k,S7'k) + (S 'k, k) — (S7'k,S7k) (31)
= (k, (1= R)k)+ (1 - R)k,k) — (1 = R)k, (1 — R)k) (32)
= ||kI* — | RK|* > 0, (33)
since R is a contraction.
(b) We know that if ||T|| < 1, then the operator 1 — e~“T is invertible with inverse given by,

)
(1 o e—itT)—l _ Z€_intTn.
n=0

Let p(2) = ag + ... + agz®. We have,

27 ) 27 ) ) 2 ) ) 2 )
/ p(e")P(t,T)dt = / p(e™(1 —e )Lt + / p(e™)(1 —eT*) "L dt — / p(e™)1 dt
0 0 0 0

Consider the first term on the right side of (34),

o —itrpy—1 iy [N it
/U p(e)(1—e "T) " dt = /0 p(e)(rge T)dt (35)

e 2T

= Z/ p(e)e ™M™ dt (36)
n=0"0
o k o

= Z Z / e ™eT T dt (37)
n=0m=0"0

= 21(apl + uT + ... TF) = 27p(T) (38)



A similar calculation shows that,

27 27 > e 2
/ p(eit)(l - eitT*)—l dt = / p(eit) (Z eintT*n> dt = Z/ p(eit)eintT*n dt (39)
0 0 n—=0 n=0"0

oo k ot ‘ '
= Z Z/ ame™e™ T dt = 21agl (40)
n=0m=0"0
and
2m ) 2 k )
/ ple)1dt = / Zake’tl dt = 2mapl. (41)
0 0 m=0
Therefore,
1 s )
[ pe)P(,T) dt = p(D). (42)
2T 0
The same argument can be used to show that
I
oty =5 [ a@ P ) (43)
2 0
Suppose that p + q is positive, then the integral
L (27—
| (p(e") +ale®) Pt T) dt,
2 0
is positive, being a limit of Riemann sums, each of which is a positive operator. This last

statement follows from the fact that P(¢,T") and p+ @ are positive. This proves Theorem 2.6 and
von Neumann’s inequality follows for operators 7" with ||T'|| < 1. We now prove the case ||T'|| = 1.
Let 0 < r < 1 and note that ||7T|| < 1. Thus for any polynomial p, ||[p(rT)|| < ||p||- Therefore,

Ip(D)ll = tim ip(rT)]| < [lpllo -

(44)

2.16 (Wermer) In this exercise we give an alternate proof of von Neumann’s inequality which is only
valid for matrices. We assume that the reader is familiar with the singular value decomposition of a
matrix. Let T' € M,, with ||T'|| < 1 and write 7' = USV with U,V unitary and S = diag(si,..., sn)
a positive diagonal matrix, 0 < s; < 1, ¢ = 1,...,n. Define an analytic matrix-valued function

T(Zl, ves

yz2n) = UZV where Z = diag(z1,...,2n), |zi| < 1,7 =1,...,n. Fix a polynomial p.

Let z,y € C" and let f(z1,...,2n) = (P(T(21,...,2n))2,y). Deduce that f achieves its maximum
modulus at a point where |z1| = ... =|z,| = 1. Note that at such a point T'(z1, ..., z,) is unitary.

Deduce that sup|., <1 [|[p(T'(21, - - ., 2,))|| is attained at a point where T'(z1, ..., 2y,) is unitary.

Deduce that ||p(T)| < sup ||p(W)|| over W € M, unitary.
Show that for W unitary |[p(W)|| < ||p|| -

Deduce von Neumann’s inequality for 7" € M,,.

Solution:



i) Note that f is an analytic function. We have

sup |f(z1,...,20)|] = sup  sup |f(z1,...,2n)] (45)
|z:|<1 2| <1,i7#1 |z1|<1
= sup |f(w1,z2,...,zn)|, (46)
|zi| <1,i#1

where w; is a complex number of modulus 1, by the maximum modulus principle. Repeating

this argument we see that f achieves its maximum modulus at a point where |z;| = 1 for all
1 =1,...,n. In this case the matrix Z is diagonal matrix with diagonal entries of absolute value
1, thus Z, and consequently T'(z1,...,2,) = UZV is unitary.
ii) We have,
sup [|p(T'(z1,...,20))ll = sup sup [(p(T(z1,...,2n))7,y)|
|z:]<1 |zi| <1 z,yeCn
= sup sup |f(z1,---,2n)|,
z,yeC™ |2]<1

from which it follows by i) that the supremum occurs at a point where T'(z1,. .., 2z,) is unitary.

iii) Since the singular values of T satisfy 0 < s; < 1, we have,

(D) = [Ip(T(s1, - -, 80)I| < e Ip(T' (21, - - zn)) || < sup [p(W)] -

where the last inequality follows from part ii).

iv) If W is unitary, then p(W) is normal and so ||p(W)| = r(p(W)) where r denotes the spectral
radius. Let A € o(W). Since the eigenvalues of W have modulus 1, [p(A)| < sup,— [p(2)| =
1Pllo » and so

lp (W)l = sup{[p(M)] : A € W} < [|pl| -

v) By combining the results from parts iii) and iv) we get
Ip(T)|| < sup [[p(W)]| < [|pll o -
2.20 (Korovkin) Let f € C(]0,1]) and let g, (t) = (t — x)2.
i) Given € > 0, show that there exists a constant ¢ > 0 depending only on € and f such that
lf(t) — f(z)] < e+ cgep(t) for all 0 < z,t < 1.
ii) Let ¢ : C(]0,1]) — C(][0,1]) be a positive map with ¢(1) = 1. Show that
—& = cp(ge)(x) < () (@) = f(z) <&+ cp(ge) (),

and deduce that ||o(f) — f|| < e+ csup, |o(g9z)(2)].

iii) Let on : C([0,1]) — C([0,1]) be a sequence of positive maps. Prove that if |l¢,(fi) — fil| — 0 as
n — oo for fi(t) =t', i =0,1,2, then ||pn(f) — fll — 0 as n — oo for all f € C([0,1]).

Solution:



i) Since f is uniformly continuous we may choose § > 0 such that |f(t) — f(z)| < e for |t —x| < 0
with ¢t € [0,1]. Let M = sup{|f(t)| : t € [0,1]}. For |t — 2| < 6 we have |f(t) — f(x)| < e and for

|t — x| > § we have,
2M
7)) <20 < 5L 6,0) = equl).
Combining these inequalities we get,
|f(t) = f(2)] < &+ cga(?).

ii) From (47),
—el—cg, < f— f(z) <el+cg,.

Applying ¢ to both sides of (48) and noting that ¢ is unital yields
—& — cp(ga)(x) < o(f)(2) — f(z) < &+ cp(ge) ().

Hence,

[o(f)(@) — f(@)] < e+ cle(ge) ()],

and taking the supremum over x € [0, 1] yields,

le(f) = fll <e+ csup l(gz) ()] -

iii) Note that,

en(9z) — 9o = on(f2) — fo = 22(en(f1) — f1) + 2*(on(fo) — fo)-

Therefore,
Ipn(ge) = 9ol <6 max [lgn(fi) — fill <<

for sufficiently large values of n. Note that g,(z) = 0 and so

<e.

o (92) ()] = ln(92)(2) = gz()

Thus
lon(f) = fll e+ csup lon(g2)(7)] < (1 + c)e,

which shows ¢, (f) — f uniformly.

2.21 The Bernstein maps ¢, : C([0,1]) — C(]0,1]) are defined by

enn0 =3 (1)1 (5) e -y

k=0

i) Verify that the Bernstein maps are positive maps with ¢, (1) = 1, ,(t) = t, pn(t?) = t>+

ii) Deduce that ||@,(f) — f]| — 0 for all f € C([0,1]).

iii) Deduce the Weierstrass theorem, i.e., prove that the polynomials are dense in C([0, 1]).

Solution:

t—t2




i) Note that the quantity t*(1 —¢)"~* is non-negative on [0, 1]. Thus if f > 0, then,

RUOREES

is non-negative. This implies that ¢, (f) > 0.
Denote by f; the functions f;(t) = t'. We have by the binomial theorem that,

e =3 (1)t -0t = a0 =1,
Now,

en(f1)(t) =

il
o

|
M:

|
()=
/"\/\@/‘\/‘\

B
Il
o

e
Il
—

M:

T
— =

A similar calculation,

(50)

(51)

(52)



el = 3 () bt —or (56)

k=0
i n—1 kk‘ —k
= Sk —m
(,H)n( ) (57)
k=1
~(n =1\ k g n—k
pu— t —
Z(k—l)nt (1—1t) (58)
k=1
n—1
=t 1 "
> (") (59)
k=0
n—1
n—1\k nlk k nlk
— ¢ Dk —
< . )nt (1 +tz —tk( (60)
k=0
n—1
_ n—1 n—1\ _k 4 pyn-ik 4 k() gLk
= — tz< . )n—lt (1— Zt (61)
k=0
n—1

t—t2

- 1
- 2+ -t =12+ (62)
mn mn

ii) We will make use of the results from exercise 20. Note that |¢on(fo) — foll = ||en(f1) — fill =0

and | on(f2) — foll = Hf /2 \

that ||on(f) — fll — 0 for all f € C([0,1]).

iii) From the part ii) of this exercise we know that the collection {w,(f) : f € C([0,1])} is dense
) p @

in C([0,1]). This collection is contained in the set of polynomials and hence the polynomials are
dense in C([0, 1]).

— — 0 as n — oco. By the result in Exercise 20.iii this implies

2.22 A sequence {a, }22 , of complex numbers is called a Hausdorff moment sequence if there exists a positive
(finite) Borel measure p on [0, 1] such that a, = fo " du(t) for all n. Set bym = > 5o (1) (=1)*aksm
for all n,m > 0.

i) Assuming the existence of such a measure p, show that b, , = fol t"™(1 —t)"du(t) and deduce
that necessarily by, ,, > 0 for all n,m > 0.

ii) Let P C C([0,1]) denote the set of polynomials and define ¢ : P — C by setting ¢(t") = ay.
Show that if b, ,, > 0 for all n,m > 0 then ¢ is a positive map.

iii) Prove that {a,}2, is a Hausdorff moment sequence if and only if by, ,, > 0 for all m,n > 0.

Solution:
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i) We have,

Since p is positive and the function f(t) = ¢™(1 —¢)" is non-negative on [0, 1].

I
S— T

= g:_o <Z> ak+m
_ En: (Z) tk+m dpu(t)

= o

tmki_o (Z) (1% du(t)

_ /1 (1 — )™ du(t) > 0.
0

ii) Let P; denote the set of polynomials of degree at most j and let f; € P; be defined by f;(t) = tJ.
We begin by proving that each of the Bernstein maps ¢, : P; — P;. It is clear that ¢, (1) = 1 and
so the claim is true for j = 0. We proceed by induction. Assuming the result for all polynomials

of degree j — 1 or less we prove it for polynomials of degree j. Since ¢, is linear for all n we need
only check that ¢, (f;) € P;. We have,

enlf)® = 3 (1) (5)ra-or (66)
k=0
() K k n—k
> (k> St -1 (67)
k=0
" fn—1\ k! e
k=1
=K n—k
tz(k—l)njlt (1—1) (69)
k=1
n—1
n—1\ (k+ 1)1 "
t ( N >( nj_)l th(1 —¢)n1-k (70)
k=0
ten—1(gn,;)(t) (71)
where gy ;(t) = < + ) € P;j_1. By the induction hypothesis ¢,—1(g) € Pj—1 and so

Spn(fj) fl‘Pn 1(9n, ) €

11



We also have,

0<bpm = §<k>(—1) Aot (72)
S S T (73)
> (1) v
- so(th(’,;‘)< 1)’“tk> (74)
k=0
— o1 -t)") (75)

This shows that if f > 0 then,

woen =3 (1)1 (%) eta - = ; (1)1 (£) b 20

k=0

Now assume that f € P and suppose that f has degree j. We have seen that ¢, (f) € P; for all n.
The map ap\pj being a linear map on a finite dimensional space must be continuous. Therefore,

p(f) = ¢(lim on(f)) = lim o(en(f)) = 0.

n—oo

iii) We have seen in part i) that if {a, }22 is a Hausdorff moment sequence, then by, ,, is non-negative.

For the converse assume that by, ,,, is positive for all n,m > 0 and note this implies that the linear
functional ¢ : P — C is positive. By Exercise 2.2, ¢ has a positive extension to the closure of P,
which is C([0, 1]). The Riesz representation theorem implies that there is a positive (finite) Borel
measure such that

1
an, = p(t") = /0 t" du(t).
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