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2.1 Let S be an operator system, B be a C∗-algebra and ϕ : S → B a postive map. Prove that ϕ is
self-sdoint, i.e., that ϕ(x∗) = ϕ(x)∗.

Solution: We first prove the result when x = x∗. We can write x = p1 − p2 with p1 and p2 positive.
Since ϕ is positive ϕ(p1) and ϕ(p2) are positive and so ϕ(x) = ϕ(p1) − ϕ(p2), which is the difference
of two postive elements, is self-adjoint.

Now let x ∈ S and write x = x1 + ix2 with x1 and x2 self-adjoint. Then we have,

ϕ(x∗) = ϕ(x1 − ix2) = ϕ(x1)− iϕ(x2) = ϕ(x1)∗ − iϕ(x2)∗ = (ϕ(x1) + iϕ(x2))∗ = ϕ(x)∗,

which completes the proof.

2.2 Let S be an operator system, B be a C∗-algebra and ϕ : S → B be a positive map. Prove that ϕ
extends to a positive map on the norm closure of S.

Solution: The positivity of ϕ implies that ϕ is bounded and in particular is uniformly continuous. It
follows that ϕ extends in a unique way to a continuous map ϕ̃ on the norm closure of S. It remains,
therefore, to show that ϕ̃ is positive.

Let p be a positive element in S. Then, there is a sequence {xn} in S such that ‖p− xn‖ → 0 as
n→∞. The fact that p is self-adjoint tells us that ‖p− x∗n‖ = ‖p− xn‖ and so,∥∥∥∥p− xn + x∗n

2

∥∥∥∥→ 0 as n→∞.

Set hn = (xn +x∗n)/2 and note that hn is self-adjoint. Let ε > 0. We claim that hn + ε1 is positive for
sufficiently large values of n. We may assume that hn is a sequence of operators on a Hilbert space H.
Let x ∈ H and choose N so large that n ≥ N implies ‖hn − p‖ < ε/2. Then,

〈(hn + ε1)x, x〉 = 〈(hn + ε1− (p+ ε1))x, x〉+ 〈(p+ ε1)x, x〉 . (1)

Since p is positive
〈(p+ ε1)x, x〉 ≥ ε ‖x‖2 , (2)

and the Cauchy-Schwarz inequality gives,

|〈(hn + ε1− (p+ ε1))x, x〉| ≤ ‖hn + ε1− (p+ ε1)‖ ‖x‖2 = ‖hn − p‖ ‖x‖2 <
ε

2
‖x‖2 . (3)

Using (1), (2) and (3) we get,

〈(hn + ε1)x, x〉 ≥ (ε− ε

2
) ‖x‖2 =

ε

2
‖x‖2 ,

which establishes our claim.
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Since hn + ε1 → p+ ε1 we have,

ϕ̃(p+ ε1) = lim
n→∞

ϕ(hn + ε1) ≥ 0.

Thus,
ϕ̃(p) + εϕ̃(1) ≥ 0,

for every positive ε. When we let ε→ 0 we see that ϕ̃(p) ≥ 0, which completes the proof.

2.3 Let S be an operator system and let ϕ : S → C be positive. Prove that ‖ϕ‖ ≤ ϕ(1).

Solution: Let a ∈ S and choose a unimodular λ ∈ C such that |ϕ(a)| = λϕ(a) = ϕ(λa). We have
|ϕ(a)| = ϕ(λa) = ϕ((λa)∗), where the last equality follows from the fact that ϕ is positive. For any
element a of a C∗-algebra Re a ≤ ‖a‖1. Thus,

|ϕ(a)| =
1
2
(ϕ(λa) + ϕ((λa)∗)) = ϕ

(
λa+ (λa)∗

2

)
= ϕ(Re (λa)) ≤ ϕ(‖λa‖1) = ‖a‖ϕ(1).

Therefore, ‖ϕ‖ ≤ ϕ(1).

2.4 Let S be an operator system and let ϕ : S → C(X) where C(X) denotes the continuous functions on
a compact Hausdorff space X. Prove that if ϕ is positive, then ‖ϕ‖ ≤ ‖ϕ(1)‖.
Solution: For each x in X let πx : C(X) → C denote the function that maps f to f(x). πx is positive
and so the map πx ◦ ϕ : S → C is positive. From Exercise 2.3 we get,

|ϕ(a)(x)| = |(πx ◦ ϕ)(a)| ≤ ((πx ◦ ϕ)(1)) ‖a‖ = ϕ(1)(x) ‖a‖ ≤ ‖ϕ(1)‖ ‖a‖ . (4)

Thus, ‖ϕ(a)‖ ≤ ‖ϕ(1)‖ ‖a‖ and it follows that ‖ϕ‖ ≤ ‖ϕ(1)‖.

2.5 (Schwarz Inequality) Let A be a C∗-algebra and let ϕ : A → C be a positive linear functional. Prove
that |ϕ(x∗y)|2 ≤ ϕ(x∗x)ϕ(y∗y).

Solution: Let t ∈ R and choose a unimodular complex number λ such that |ϕ(x∗y)| = λϕ(x∗y).
Using the fact that ϕ is positive we get,

0 ≤ ϕ((x+ ty)∗(x+ ty)) (5)
= ϕ(x∗x+ t(x∗y + y∗x) + t2y∗y) (6)
= ϕ(x∗x) + t(ϕ(x∗y) + ϕ(y∗x)) + t2ϕ(y∗y) (7)
= ϕ(x∗x) + t(ϕ(x∗y) + ϕ(x∗y)) + t2ϕ(y∗y) (8)
= ϕ(x∗x) + 2Reϕ(x∗y)t+ ϕ(y∗y)t2 (9)

where (8) follows from the fact that ϕ is positive and therefore self-adjoint. The expression in (9) is
a quadratic in t with real coefficients. Since this quadratic is always non-negative it follows that its
discriminant is never positive. Thus,

(2Reϕ(x∗y))2 ≤ 4ϕ(x∗x)ϕ(y∗y). (10)

By replacing x by λx and dividing out the factor of 4 we get,

|ϕ(x∗y)|2 ≤ ϕ(x∗x)ϕ(y∗y). (11)
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2.6 Let T be an operator on a Hilbert space H, the numerical radius of T is defined by

w(T ) = sup{|〈Tx, x〉| : x ∈ H, ‖x‖ = 1}.

Prove that if ϕ : S → B(H) is positive and ϕ(1) = 1, then w(ϕ(a)) ≤ ‖a‖.
Solution: Let a ∈ S and let x be a unit vector in H. Note that the linear functional ρx that maps an
operator T ∈ B(H) to 〈Tx, x〉 is positive. Therefore ρx ◦ ϕ : S → C is positive. Hence by exercise 2.3,

|〈ϕ(a)x, x〉| = |ρx ◦ ϕ(a)| ≤ (ρx ◦ ϕ(1)) ‖a‖ = ρx(1) ‖a‖ = ‖x‖2 ‖a‖ = ‖a‖ . (12)

From which we see that w(ϕ(a)) ≤ ‖a‖.

2.7 Let T be an operator on a Hilbert space. Prove that w(T ) ≤ 1 if and only if 2 + (λT ) + (λT )∗ ≥ 0 for
all complex numbers λ with |λ| = 1.

Solution: First note that 2+(λT )+ (λT )∗ is positive if and only if 1+Reλ 〈Tx, x〉 ≥ 0 for all x ∈ H.
If w(T ) ≤ 1, then,

−Reλ 〈Tx, x〉 ≤ |λ 〈Tx, x〉| = |〈Tx, x〉| ≤ w(T ) ≤ 1, (13)

which proves that 2 + (λT ) + (λT )∗ ≥ 0.

For the converse choose a λ, (depending on x), of modulus 1 such that λ 〈Tx, x〉 = − |〈Tx, x〉|. We
have,

|〈Tx, x〉| = −λ 〈Tx, x〉 = −Reλ 〈Tx, x〉 ≤ 1, (14)

and so w(T ) ≤ 1.

2.8 Prove that w(T ) defines a norm on B(H), with w(T ) ≤ ‖T‖ ≤ 2w(T ). Show that both inequalities
are sharp.

Solution: w(T ) is defined as the supremum of a set of non-negative numbers and is therefore non-
negative. Also w(T ) = 0 if and only if 〈Tx, x〉 = 0 for all x such that ‖x‖ = 1 if and only if T = 0. If
α ∈ C, then

w(αT ) = sup{|〈αTx, x〉| : ‖x‖ = 1} = sup{|α| |〈Tx, x〉| : ‖x‖ = 1} (15)
= |α| sup{|〈Tx, x〉| : ‖x‖ = 1} = |α|w(T ) (16)

If R, T are two operators and ‖x‖ = 1, then

|〈(R+ T )x, x〉| = |〈Rx, x〉+ 〈Tx, x〉| ≤ |〈Rx, x〉|+ |〈Tx, x〉| ≤ w(R) + w(T ) (17)

implies that w(R+ T ) ≤ w(R) + w(T ). This proves that w(T ) defines a norm on B(H).

If ‖x‖ = 1, then an application of the Cauchy-Schwarz shows that,

|〈Tx, x〉| ≤ ‖Tx‖ ‖x‖ ≤ ‖T‖ , (18)

and so w(T ) ≤ ‖T‖. For the other inequality begin by writing T = A + iB where A and B are
self-adjoint. Note that w(T ) = w(T ∗). We use the fact that for a self-adjoint operator A, ‖A‖ =
sup{|〈Ax, x〉| : ‖x‖ = 1} = w(A). We have,

‖T‖ = ‖A+ iB‖ ≤ ‖A‖+ ‖B‖ (19)

= w(A) + w(B) = w

(
T + T ∗

2

)
+ w

(
T − T ∗

2i

)
(20)

≤ w(T ) + w(T ∗) + w(T ) + w(T ∗)
2

= 2w(T ) (21)
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The identity map 1 on any Hilbert space satisfies w(1) = 1 = ‖1‖. To see that the best upper bound

is 2 we consider the operator defined on C2 by T
[
x
y

]
=
[
y
0

]
. We have,

∥∥∥∥T [ xy
]∥∥∥∥2

=
∥∥∥∥[ y0

]∥∥∥∥2

= |y|2 ≤ |x|2 + |y|2 =
∥∥∥∥[ xy

]∥∥∥∥2

, (22)

and so ‖T‖ ≤ 1. By considering T

[
0
1

]
we see that ‖T‖ = 1. Now suppose that

[
x
y

]
has unit

length and consider, ∣∣∣∣〈T [ xy
]
,

[
x
y

]〉∣∣∣∣ = |yx| ≤ |x|2 + |y|2

2
=

1
2
. (23)

Hence,
‖T‖ ≤ 2w(T ) ≤ 1 = ‖T‖ , (24)

which shows that the other inequality is sharp.

2.9 Let S be an operator system, B a C∗-algebra and ϕ : S → B a linear map such that ϕ(1) is positive,
‖ϕ(1)‖ = ‖ϕ‖. Give an example to show that ϕ need not be positive. In similar vein, show that if M
is as in proposition 2.12, ϕ(1) is positive, with ‖ϕ(1)‖ = ‖ϕ‖, then ϕ̃ need not be well-defined.

Solution: Let

A =
[
a b
c d

]
J =

[
1 1
1 1

]
∈M2 (25)

and define ϕ : M2 →M2 by

ϕ(A) = JA =
[
a+ c b+ d
a+ c b+ d

]
. (26)

Since ϕ is left multiplication by J , we have ‖ϕ‖ = ‖ϕ(1)‖ = 2. Further ϕ(1) = J ≥ 0. To see that ϕ
is not positive consider

ϕ

[
1 0
0 0

]
=
[

1 0
1 0

]
, (27)

which is not self-adjoint.

For the second part let M be the set of 2 × 2 upper triangular matrices and restrict the map ϕ in
the previous paragraph to M. Note that if a ∈ M is self-adjoint but ϕ(a) 6= ϕ(a)∗, then ϕ̃ is not
well-defined. Consider the self-adjoint matrix[

2 0
0 1

]
, (28)

and note that

ϕ

[
2 0
0 1

]
=
[

2 1
2 1

]
, (29)

which is not self-adjoint.

2.10 (Krein) Let S be an operator system contained in the C∗-algebra A, and let ϕ : S → C be positive.
Prove that ϕ can be extended to a positive map on A.
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Solution: The fact that ϕ is positive tells us that ϕ(1) is a non-negative real number. If ϕ(1) = 0
then ‖ϕ‖ ≤ ϕ(1) = 0 and this map extends to the zero functional. Assume that ϕ(1) 6= 0 and let
ψ(a) = ϕ(1)−1ϕ(a) and note that ψ is a positive map on S with ‖ψ‖ = ψ(1) = 1. By the Hahn-Banach
theorem ψ extends to a map ψ̃ on A with ‖ψ̃‖ = 1. ψ̃ is a unital contraction and is therefore a positive
map. The map ϕ̃ defined by ϕ̃(a) = ϕ(1)ψ̃(a) is a positive map which extends ϕ.

2.15 In this exercise we give an alternate proof of von Neumann’s inequality. We assume that the reader
has some familiarity with integration of operator valued functions. Let T ∈ B(H) with ‖T‖ < 1 and,
let p and q denote arbitrary polynomials.

(a) Let P (t, T ) = (1− e−itT )−1 + (1− eitT ∗)−1 − 1, and show that P (t, T ) ≥ 0 for all t.

(b) Show that p(T ) + q(T )∗ =
1
2π
∫ 2π
0 (p(eit) + q(eit))P (t, T ) dt.

(c) Deduce von Neumann’s inequality.

Solution:

(a) We know that if ‖T‖ < 1, then 1− e−itT is invertible. Let R = e−itT and note that the adjoint
of S = (1−R)−1 is S∗ = (1−R∗)−1. Let h ∈ H and set k = Sh. Then,

〈(S + S∗ − 1)h, h〉 = 〈Sh, h〉+ 〈S∗h, h〉 − 〈h, h〉 (30)
=

〈
k, S−1k

〉
+
〈
S−1k, k

〉
−
〈
S−1k, S−1k

〉
(31)

= 〈k, (1−R)k〉+ 〈(1−R)k, k〉 − 〈(1−R)k, (1−R)k〉 (32)
= ‖k‖2 − ‖Rk‖2 ≥ 0, (33)

since R is a contraction.

(b) We know that if ‖T‖ < 1, then the operator 1− e−itT is invertible with inverse given by,

(1− e−itT )−1 =
∞∑

n=0

e−intTn.

Let p(z) = α0 + . . .+ αkz
k. We have,∫ 2π

0
p(eit)P (t, T ) dt =

∫ 2π

0
p(eit)(1− e−itT )−1 dt+

∫ 2π

0
p(eit)(1− eitT ∗)−1 dt−

∫ 2π

0
p(eit)1 dt

(34)
Consider the first term on the right side of (34),∫ 2π

0
p(eit)(1− e−itT )−1 dt =

∫ 2π

0
p(eit)

( ∞∑
n=0

e−intTn

)
dt (35)

=
∞∑

n=0

∫ 2π

0
p(eit)e−intTn dt (36)

=
∞∑

n=0

k∑
m=0

∫ 2π

0
αme

imte−intTn dt (37)

= 2π(α01 + α1T + . . . αkT
k) = 2πp(T ) (38)
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A similar calculation shows that,∫ 2π

0
p(eit)(1− eitT ∗)−1 dt =

∫ 2π

0
p(eit)

( ∞∑
n=0

eintT ∗n

)
dt =

∞∑
n=0

∫ 2π

0
p(eit)eintT ∗n dt (39)

=
∞∑

n=0

k∑
m=0

∫ 2π

0
αme

imteintT ∗n dt = 2πα01 (40)

and ∫ 2π

0
p(eit)1 dt =

∫ 2π

0

k∑
m=0

αke
it1 dt = 2πα01. (41)

Therefore,
1
2π

∫ 2π

0
p(eit)P (t, T ) dt = p(T ). (42)

The same argument can be used to show that

q(T )∗ =
1
2π

∫ 2π

0
q(eit)P (t, T ) dt. (43)

(c) Suppose that p+ q is positive, then the integral

1
2π

∫ 2π

0

(
p(eit) + q(eit)

)
P (t, T ) dt,

is positive, being a limit of Riemann sums, each of which is a positive operator. This last
statement follows from the fact that P (t, T ) and p+ q are positive. This proves Theorem 2.6 and
von Neumann’s inequality follows for operators T with ‖T‖ < 1. We now prove the case ‖T‖ = 1.
Let 0 < r < 1 and note that ‖rT‖ < 1. Thus for any polynomial p, ‖p(rT )‖ ≤ ‖p‖∞. Therefore,

‖p(T )‖ = lim
r→1−

‖p(rT )‖ ≤ ‖p‖∞ . (44)

2.16 (Wermer) In this exercise we give an alternate proof of von Neumann’s inequality which is only
valid for matrices. We assume that the reader is familiar with the singular value decomposition of a
matrix. Let T ∈ Mn with ‖T‖ ≤ 1 and write T = USV with U, V unitary and S = diag(s1, . . . , sn)
a positive diagonal matrix, 0 ≤ si ≤ 1, i = 1, . . . , n. Define an analytic matrix-valued function
T (z1, . . . , zn) = UZV where Z = diag(z1, . . . , zn), |zi| ≤ 1, i = 1, . . . , n. Fix a polynomial p.

i) Let x, y ∈ Cn and let f(z1, . . . , zn) = 〈p(T (z1, . . . , zn))x, y〉. Deduce that f achieves its maximum
modulus at a point where |z1| = . . . = |zn| = 1. Note that at such a point T (z1, . . . , zn) is unitary.

ii) Deduce that sup|zi|≤1 ‖p(T (z1, . . . , zn))‖ is attained at a point where T (z1, . . . , zn) is unitary.

iii) Deduce that ‖p(T )‖ ≤ sup ‖p(W )‖ over W ∈Mn, unitary.

iv) Show that for W unitary ‖p(W )‖ ≤ ‖p‖∞.

v) Deduce von Neumann’s inequality for T ∈Mn.

Solution:

6



i) Note that f is an analytic function. We have

sup
|zi|≤1

|f(z1, . . . , zn)| = sup
|zi|≤1,i6=1

sup
|z1|≤1

|f(z1, . . . , zn)| (45)

= sup
|zi|≤1,i6=1

|f(w1, z2, . . . , zn)| , (46)

where w1 is a complex number of modulus 1, by the maximum modulus principle. Repeating
this argument we see that f achieves its maximum modulus at a point where |zi| = 1 for all
i = 1, . . . , n. In this case the matrix Z is diagonal matrix with diagonal entries of absolute value
1, thus Z, and consequently T (z1, . . . , zn) = UZV is unitary.

ii) We have,

sup
|zi|≤1

‖p(T (z1, . . . , zn))‖ = sup
|zi|≤1

sup
x,y∈Cn

|〈p(T (z1, . . . , zn))x, y〉|

= sup
x,y∈Cn

sup
|zi|≤1

|f(z1, . . . , zn)| ,

from which it follows by i) that the supremum occurs at a point where T (z1, . . . , zn) is unitary.

iii) Since the singular values of T satisfy 0 ≤ si ≤ 1, we have,

‖p(T )‖ = ‖p(T (s1, . . . , sn))‖ ≤ sup
|zi|≤1

‖p(T (z1, . . . , zn))‖ ≤ sup ‖p(W )‖ .

where the last inequality follows from part ii).

iv) If W is unitary, then p(W ) is normal and so ‖p(W )‖ = r(p(W )) where r denotes the spectral
radius. Let λ ∈ σ(W ). Since the eigenvalues of W have modulus 1, |p(λ)| ≤ sup|z|=1 |p(z)| =
‖p‖∞ , and so

‖p(W )‖ = sup{|p(λ)| : λ ∈W} ≤ ‖p‖∞ .

v) By combining the results from parts iii) and iv) we get

‖p(T )‖ ≤ sup ‖p(W )‖ ≤ ‖p‖∞ .

2.20 (Korovkin) Let f ∈ C([0, 1]) and let gx(t) = (t− x)2.

i) Given ε > 0, show that there exists a constant c > 0 depending only on ε and f such that

|f(t)− f(x)| ≤ ε+ cgx(t) for all 0 ≤ x, t ≤ 1.

ii) Let ϕ : C([0, 1]) → C([0, 1]) be a positive map with ϕ(1) = 1. Show that

−ε− cϕ(gx)(x) ≤ ϕ(f)(x)− f(x) ≤ ε+ cϕ(gx)(x),

and deduce that ‖ϕ(f)− f‖ ≤ ε+ c supx |ϕ(gx)(x)|.
iii) Let ϕn : C([0, 1]) → C([0, 1]) be a sequence of positive maps. Prove that if ‖ϕn(fi)− fi‖ → 0 as

n→∞ for fi(t) = ti, i = 0, 1, 2, then ‖ϕn(f)− f‖ → 0 as n→∞ for all f ∈ C([0, 1]).

Solution:
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i) Since f is uniformly continuous we may choose δ > 0 such that |f(t)− f(x)| < ε for |t− x| < δ
with t ∈ [0, 1]. Let M = sup{|f(t)| : t ∈ [0, 1]}. For |t− x| < δ we have |f(t)− f(x)| ≤ ε and for
|t− x| ≥ δ we have,

|f(t)− f(x)| ≤ 2M ≤ 2M
δ2

gx(t) = cgx(t).

Combining these inequalities we get,

|f(t)− f(x)| ≤ ε+ cgx(t). (47)

ii) From (47),
−ε1− cgx ≤ f − f(x) ≤ ε1 + cgx. (48)

Applying ϕ to both sides of (48) and noting that ϕ is unital yields

−ε− cϕ(gx)(x) ≤ ϕ(f)(x)− f(x) ≤ ε+ cϕ(gx)(x).

Hence,
|ϕ(f)(x)− f(x)| ≤ ε+ c |ϕ(gx)(x)| ,

and taking the supremum over x ∈ [0, 1] yields,

‖ϕ(f)− f‖ ≤ ε+ c sup
x
|ϕ(gx)(x)| .

iii) Note that,
ϕn(gx)− gx = ϕn(f2)− f2 − 2x(ϕn(f1)− f1) + x2(ϕn(f0)− f0).

Therefore,
‖ϕn(gx)− gx‖ ≤ 6 max

i=0,1,2
‖ϕn(fi)− fi‖ ≤ ε

for sufficiently large values of n. Note that gx(x) = 0 and so

|ϕn(gx)(x)| = |ϕn(gx)(x)− gx(x)| ≤ ε.

Thus
‖ϕn(f)− f‖ ≤ ε+ c sup

x
|ϕn(gx)(x)| ≤ (1 + c)ε,

which shows ϕn(f) → f uniformly.

2.21 The Bernstein maps ϕn : C([0, 1]) → C([0, 1]) are defined by

ϕn(f)(t) =
n∑

k=0

(
n

k

)
f

(
k

n

)
tk(1− t)n−k.

i) Verify that the Bernstein maps are positive maps with ϕn(1) = 1, ϕn(t) = t, ϕn(t2) = t2 +
t− t2

n
.

ii) Deduce that ‖ϕn(f)− f‖ → 0 for all f ∈ C([0, 1]).

iii) Deduce the Weierstrass theorem, i.e., prove that the polynomials are dense in C([0, 1]).

Solution:

8



i) Note that the quantity tk(1− t)n−k is non-negative on [0, 1]. Thus if f ≥ 0, then,(
n

k

)
f

(
k

n

)
tk(1− t)n−k,

is non-negative. This implies that ϕn(f) ≥ 0.
Denote by fi the functions fi(t) = ti. We have by the binomial theorem that,

ϕn(1)(t) =
n∑

k=0

(
n

k

)
tk(1− t)n−k = (t+ (1− t))n = 1.

Now,

ϕn(f1)(t) =
n∑

k=0

(
n

k

)
f1

(
k

n

)
tk(1− t)n−k (49)

=
n∑

k=0

(
n

k

)
k

n
tk(1− t)n−k (50)

=
n∑

k=1

(
n

k

)
k

n
tk(1− t)n−k (51)

=
n∑

k=1

(
n− 1
k − 1

)
tk(1− t)n−k (52)

=
n−1∑
k=0

(
n− 1
k

)
tk+1(1− t)n−1−k (53)

= t
n−1∑
k=0

tk(1− t)n−1−k (54)

= t(t+ (1− t))n−1 = t. (55)

A similar calculation,
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ϕn(f2)(t) =
n∑

k=0

(
n

k

)
k2

n2
tk(1− t)n−k (56)

=
n∑

k=1

(
n− 1
k − 1

)
k

n
tk(1− t)n−k (57)

= t

n∑
k=1

(
n− 1
k − 1

)
k

n
tk−1(1− t)n−k (58)

= t

n−1∑
k=0

(
n− 1
k

)
k + 1
n

tk(1− t)n−1−k (59)

= t
n−1∑
k=0

(
n− 1
k

)
k

n
tk(1− t)n−1−k + t

n−1∑
k=0

1
n
tk(1− t)n−1−k (60)

=
n− 1
n

t

n−1∑
k=0

(
n− 1
k

)
k

n− 1
tk(1− t)n−1−k +

t

n

n−1∑
k=0

tk(1− t)n−1−k (61)

=
n− 1
n

t2 +
1
n
t = t2 +

t− t2

n
. (62)

ii) We will make use of the results from exercise 20. Note that ‖ϕn(f0)− f0‖ = ‖ϕn(f1)− f1‖ = 0

and ‖ϕn(f2)− f2‖ =
∥∥∥∥f1 − f2

n

∥∥∥∥ ≤ 2
n
→ 0 as n→∞. By the result in Exercise 20.iii this implies

that ‖ϕn(f)− f‖ → 0 for all f ∈ C([0, 1]).

iii) From the part ii) of this exercise we know that the collection {ϕn(f) : f ∈ C([0, 1])} is dense
in C([0, 1]). This collection is contained in the set of polynomials and hence the polynomials are
dense in C([0, 1]).

2.22 A sequence {an}∞n=0 of complex numbers is called a Hausdorff moment sequence if there exists a positive
(finite) Borel measure µ on [0, 1] such that an =

∫ 1
0 t

n dµ(t) for all n. Set bn,m =
∑n

k=0

(
n
k

)
(−1)kak+m

for all n,m ≥ 0.

i) Assuming the existence of such a measure µ, show that bn,m =
∫ 1
0 t

m(1 − t)n dµ(t) and deduce
that necessarily bn,m ≥ 0 for all n,m ≥ 0.

ii) Let P ⊆ C([0, 1]) denote the set of polynomials and define ϕ : P → C by setting ϕ(tn) = an.
Show that if bn,m ≥ 0 for all n,m ≥ 0 then ϕ is a positive map.

iii) Prove that {an}∞n=0 is a Hausdorff moment sequence if and only if bn,m ≥ 0 for all m,n ≥ 0.

Solution:
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i) We have,

bn,m =
n∑

k=0

(
n

k

)
(−1)kak+m

=
n∑

k=0

(
n

k

)
(−1)k

∫ 1

0
tk+m dµ(t) (63)

=
∫ 1

0
tm

n∑
k=0

(
n

k

)
(−1)ktk dµ(t) (64)

=
∫ 1

0
tm(1− t)n dµ(t) ≥ 0. (65)

Since µ is positive and the function f(t) = tm(1− t)n is non-negative on [0, 1].

ii) Let Pj denote the set of polynomials of degree at most j and let fj ∈ Pj be defined by fj(t) = tj .
We begin by proving that each of the Bernstein maps ϕn : Pj → Pj . It is clear that ϕn(1) = 1 and
so the claim is true for j = 0. We proceed by induction. Assuming the result for all polynomials
of degree j− 1 or less we prove it for polynomials of degree j. Since ϕn is linear for all n we need
only check that ϕn(fj) ∈ Pj . We have,

ϕn(fj)(t) =
n∑

k=0

(
n

k

)
fj

(
k

n

)
tk(1− t)n−k (66)

=
n∑

k=0

(
n

k

)
kj

nj
tk(1− t)n−k (67)

=
n∑

k=1

(
n− 1
k − 1

)
kj−1

nj−1
tk(1− t)n−k (68)

= t
n∑

k=1

(
n− 1
k − 1

)
kj−1

nj−1
tk−1(1− t)n−k (69)

= t
n−1∑
k=0

(
n− 1
k

)
(k + 1)j−1

nj−1
tk(1− t)n−1−k (70)

= tϕn−1(gn,j)(t) (71)

where gn,j(t) =
(
t+

1
n

)j−1

∈ Pj−1. By the induction hypothesis ϕn−1(g) ∈ Pj−1 and so

ϕn(fj) = f1ϕn−1(gn,j) ∈ Pj .
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We also have,

0 ≤ bn,m =
n∑

k=0

(
n

k

)
(−1)kak+m (72)

=
n∑

k=0

(
n

k

)
(−1)kϕ(tk+m) (73)

= ϕ

(
tm

n∑
k=0

(
n

k

)
(−1)ktk

)
(74)

= ϕ (tm(1− t)n) (75)

This shows that if f ≥ 0 then,

(ϕ ◦ ϕn(f))(t) =
n∑

k=0

(
n

k

)
f

(
k

n

)
ϕ(tk(1− t)n−k) =

n∑
k=0

(
n

k

)
f

(
k

n

)
bk,n−k ≥ 0.

Now assume that f ∈ P and suppose that f has degree j. We have seen that ϕn(f) ∈ Pj for all n.
The map ϕ|Pj being a linear map on a finite dimensional space must be continuous. Therefore,

ϕ(f) = ϕ( lim
n→∞

ϕn(f)) = lim
n→∞

ϕ(ϕn(f)) ≥ 0.

iii) We have seen in part i) that if {an}∞n=0 is a Hausdorff moment sequence, then bn,m is non-negative.
For the converse assume that bn,m is positive for all n,m ≥ 0 and note this implies that the linear
functional ϕ : P → C is positive. By Exercise 2.2, ϕ has a positive extension to the closure of P,
which is C([0, 1]). The Riesz representation theorem implies that there is a positive (finite) Borel
measure such that

an = ϕ(tn) =
∫ 1

0
tn dµ(t).
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