COMPLETELY BOUNDED MAPS AND OPERATOR ALGEBRAS
CHAPTER 3: COMPLETELY POSITIVE MAPS
SOLUTIONS TO EXERCISES

JANUARY 24, 2006

3.1 Prove that ||pn|| < ||¢k| for n < k and that if ¢ is positive, then ¢, is positive.
Solution: Note that the map ® : M, (A) — My (A) defined by,

A0]7 (1)

@(A):[o 0

is a one-to-one, *-homomorphism. This allows us to identify M, (A) as a C*-subalgebra of M} (A).
Under this identification ,, is the compression, to M,,(A), of pi. It follows that ¢, is positive whenever
¢y is positive and that [|¢y, || < ||kl

3.2 Let P, @, A be operators on some Hilbert space H with P, () positive.
P A
A* Q@

ii) Prove that [ al*

i) Show that [ } > 0 if and only if |(Ax, y>|2 < (Py,y) (Qy,y) for all z,y in H.

b
P A

A" Q
0<((P+ A"+ A+ Q)z,z) < (V/(Pr,z) + /(Qu,x))*,
and hence ||P+ A+ A* + Q|| < (I|P|I” + Q)Y

iv) Show that if [ P4

. ] is positive in Ms(.A) if and only if a*a < b.

iii) Show that if [ ] > 0 then for any z in H, we have that

4 p ] >0, then A*A < ||P|| P and in particular ||A] < || P].

Solution:

i) Let z,y € H. We recall the fact (Exercise 1.3) that the operator matrix ((7; ;)) is positive if and
only if for any choice of n vectors x1, ..., z, the scalar matrix ((7; jx;,z;)) is positive. Using this

we see that
P A
A*Q

[ &Z’,ﬁ égiiii ] |

A 2 x 2 scalar matrix is positive if and only if it has non-negative trace and determinant. Since
P, @ are positive the matrix in (2) has positive trace. Thus, positivity of (2) is equivalent to the
matrix having non-negative determinant. i.e.,

(Py,y) (Qz,x) > (Az,y) (A*y,z) = (Az,y) (y, Az) = |(Az,y)|*.

is positive if and only if the matrix

(2)



ii) We can assume that A is a C*-subalgebra of B(H) for some Hilbert space H. We know that
1 A
>
e
if and only if |(Az, y)|* < (y,y) (Bz,z). Setting y = Az yields
|(Az, Az)|* < (Az, Az) (Bx, ),

and so (A*Az,x) = (Az, Az) < (Bz,x), which proves that A*A < B.
Conversely if we know that (A*Ax,z) < (Bz,x) then by multliplying both sides by (y,y) and
using the Cauchy-Schwarz inequality we get,

[(Az, y)|* < (Az, Az) (y,y) < (Bz,2) (y,9) .

iii) Notice that,
<(P+A*+A+Q)x,x>:<[f* g} {ﬂ{ibzo

For the other ineqaulity we use the fact that [(Az, x)\Q < (Px,z) (Qz,z). We have,

(P+A"+ A4+ Q)x,x) = (Px,x)+ (A'z,x) + (Az,x) + (Qz, ) (3)
< (Px,:r) + 2\/<Px7$> \/<Q$,£L’> + <Q$,5L‘> (4)
= (V(Px,2) +/(Qu,x))? (5)
< (P ll + QUM =) < (IPIM> + QUM l=)” . (6)

which proves the other inequality. Since P+ A+ A* + Q is self-adjoint the last inequality implies
that [P+ A+ A"+ Q| < (|PI* + [QI*)"/>.

iv) The positivity of
P A
e

((Az, Az)|* < (PAx, Az) (Px,z) < | P|| (Az, Az) (Px,x) .
It follows that (Ax, Ax) < ||P| (Px,x) which implies A*A < ||P|| P and ||A|| < || P||.

gives,

3.3 Prove a non-unital version of proposition 3.2.

Solution: Let S be an operator system, B a C*-algebra and ¢ : § — B a 2-positive map. Let a € S
with ||a|| < 1. Since ¢ is 2-positive we have,

SEREEEAE

a

By 3.2.iii we have |¢(a)|| < [J¢(1)].



3.4 (Modified Schwarz Inequality for 2-positive maps) Let A and B be C*-algebras, ¢ : A — B 2-positive.
Prove that ¢(a)*¢(a) < [@(1)[|¢(a*a) and that [[¢(a*)|* < [p(a*a)] @(b*b)]

Solution: If
P A
A" Q

(Az, Az)? < (PAxz, Az) (Qu, z) < ||P|| (Az, Az) (Qu, z) ,

is a positive operator matrix then,

from which we get that A*A < ||P||Q and ||A|* < |P| |Ql.

Notice that the matrix,
1 a _ 1 a 1 a >0
a* a*a 00 0o o0| "7

([ da]) =) sy z0

From our observation in the first paragraph ¢(a)*¢(a) < ||p(1)]] ¢(a*a).

a*a a*b a b1 [a b
[b*a b*b]_[O 0] [0 O]ZO'
The 2-positivity of ¢ implies that the matrix,

R N e R

and 5o p(a"b)*p(a"b) < |[p(a”a)||p(b*b) and |lp(a*b)[|* < p(a*a)|| (b*D)].

and since ¢ is 2-positive

Next consider the matrix

3.5 Let A be a C*-algebra with unit. Show that the maps Tr,o : M,(A) — A defined by Tr((a;;)) =
Yoy aig, and o((aij;)) = szzl a;j are completely positive maps. Deduce that if ||(a; ;)| < 1, then

HZZ]‘:I @i,

Solution: We identify A with a C*-subalgebra of B(H). Let E; be the operator in B(H, H(™) defined
by Ej(h) = (0,...,h,...,0) where the h appears in the j-th entry. Let A = (4;;)7';,_; be an element
of M, (B(H)). A calculation done in Exercise 1.2.iii shows that

‘Sn.

and so

Ty (A) = i Am‘ = i E;AE’h
=1 =1

which is completely positive.



Similarly,

o(A) = > E;AE;=> Y E;AE,
©,] =1 j=1
= Q_EDAQ_E) = E)AQ Ey),
=1 7j=1 =1 7j=1

which proves that ¢ is completely positive.

3.6 (Choi) Let A be a C*-algebra, let A be a complex number with |A\| = 1, let Uy be the unitary
element of M, (A) that is diagonal with u;; = A1, and let Diag : M,(A) — M,(A) be defined by
Diag((ai,j)) = (b@j), where biJ = 0, for 7 75 ] and biﬂ' = Q-

(i) Show that U;(CLZ"]‘)U)\ = (/\j_iai,j).
(ii) By considering the non-trivial n-th roots of unity, show that the map ® : M,(A) — M, (A)
defined by ®(A) = nDiag(A) — A is completely positive.

(iii) Show that the map ® : M,, — M,, defined by ®(A) = (n — 1)Diag(A) — A is not positive.
Solution:

(1) Recall that if D = diag(dl, PN ,dn) then, D(am-) = (diai,j) and (aij)D = (ainj). Note that if
Al =1, then A\ = A~!. Thus,

U (aij)Uxn = (NaigN) = (A" Na; ;) = (N a; ).

(ii) Let A = (a;;) and w = €2™/™_ which is an n-th root of unity. Note that w, ...,w" ! are precisely
the non-trivial n-th roots of unity. Note that

n ifl=0
n—1
kl
Zw = 1 _ 2l
k=0 0 if1<i<n-1

1 _ e2nlifn

We claim that EZ;% U AU, = nDiag(A) — A. Noting that U is the identity matrix, we have,

n—1 n—1 n—1
A+ ULAU. = > ULAU =Y (g, )
n—1 o
= (Z wk(J_Z)CLiJ') = diag(am, ey anm),
k=0

which proves our claim. Since any map of the form A — X*AX is completley positive and sums
of completely positive maps are completely positive we see that A — nDiag(A) — A is completely
positive.



(iii) Consider the matrix A which has 1 in every entry. Note that A is positive and that,
n—2 -1 - -1

1 n-2 - -1
(n —1)Diag(A) — A =

Now,
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1 -1 - n-2]]1
which shows that (n — 1)Diag(A) — A is not positive, and hence is not completely positive.
3.7 Let A and B be C*-algebras with unit and let 1,2 : A — B be bounded linear maps with ¢1 & @9

completely positive. Prove that ||¢2l, < [¢1(1)]

Solution: Define o1 = 1 +p2 and p_ = @1 — 2. Note that ¢; = %(c,mr +¢_) and so ¢ is completely
positive. Let A € M,,(A) with ||A|| < and note (by Lemma 3.1.i) that

1oa] [ 1 -4
A1 | MY a1 |

are positive. Since ¢ and ¢_ are completely positive we have,

octeom([ 1 2])von[ b ] G 8

Applying the result of exercise 3.2.iv we get ||(p2)n(A)] < |[(¢1)n(1)]] = ||¢1(1)|| since ¢; is completely
positive. Therefore ||¢2]|, < [l¢1(1)]|

3.8 Let A be a C*-algebra with unit. Define 71,75 : M, (A) — M,(A) by T1((ai;)) = (bi;), where
bii = > g, bij =0, for i # j and T»((ai;)) = (¢ij) where ¢;; = aj;. Fix k and [, k # [, and
define Ukil to be 1 in the (k,!)-entry, 1 in the (I, k)-entry and 0 elsewhere.

(i) Show that
1 g
Ti(A) = Ta(A) = 5 > UL AU,
kL
(ii) Show that
1 . .
Ti(A) +To(4) = 5 > Ul AUY, + Diag(A).
k#l
(iii) Deduce that T} 4= T5 are completely positive and that |75, < n.
(iv) By considering, A = C, show that [|T3||, = n.

Solution:



(i) Consider first the case k = 1 and note that

al,l e _al71 e O
Ul—’l*AUl—’l — _a/l,l P _al,l “ .. 0 s
T 0 SN

where a;; is in the (1, 1)-entry, and aq; is in the (I, 1)-entry. Therefore,

a2+ ...+apy —aG21 -+ —Gnp]1
I —ay2 a1 e 0
> Ui AU, = : S S
121 : : . :
—a1, 0 S ang
In general we have,
ak,k DY 76”{;,1 DY O
T g
Z Ui AUy = | =@k -+ gl - —angk
I#k : : :
L 0 PR _ak7n PEY a/k7k i

Note that for i # j the element —a;; appears twice in the (7, j)-th place, once when [ = j and
k =1 and once when [ =% and k = j. In the k-th diagonal entry we get 2 Z#k ar ;. Thus,

2 Zl;ﬁl ar| —20,271 cee —2an71
n - - —2a12 2 217&2 ap; - —2ap,2
> D UiAU; = : : .. :
k=1 1£k : : : :
—2(117“ —2(12771 st 2 Zl;ﬁn al7l

= 2(Ti(4) = Tx(4))

(ii) Using similar ideas to the those used in the previous part we have that,

2 Zlfl CLU 2@271 e 2(Ln71
n 2a172 2 Zl au cee 2a 2
S S U Avs, = | T )
k=1 Ik : : : :
20,17” 2a27n cee 2 Zl?én al,l

= 2(T1(A) 4 T>(A) — Diag(A))

(iii) Using the fact that maps of the type A — X*AX and A — Diag(A) are completely positive and
that sums of completely positive maps are completely positive we see that T7 + 15 are completely



positive. From exercise 3.7 we get that

nl 0 --- 0

0 n1 --- 0
Ils <Imi=|| . . . |[=n

O 0 .-+ nl

(iv) Let A = (E;;)}';—1 € Mn(M,), where Ej; are the matrix units in M,,. We proved in exercise
1.7 that A was unitary and that %(Eid)?,jzl = 1(T%),(A) was a rank one projection. Thus,
|(T2)n]] > ||(T2)n(A)|| = n which proves that ||T3||, > n. Combining this with the estimate from

the previous part of this exercise we get ||T3||,, = n.

3.9 Let A be a C*-algebra and let AP denote the set A with the same norm and *-operation, but with a
multiplication defined by a o b = ba.

(i) Prove that A° is a C*-algebra.

(i) Prove that M and M3” are x-isomorphic via the transpose map.

)

)
(iii) Show that the identity map from A to A is always positive.
(iv) Prove that the identity map from My to My? is not 2-positive.
)

(v) (Walter) Let U,V, and X be elements of A with U,V unitary. Prove that

1 U X
U I V| >0 (8)
X Vo1

if and only if X =UV.

vi) Prove that the identity map from 0 is completely positive if and only i is commutative.
i) P that the identit f A to AP i letel itive if and only if A i tati
Solution:

i) It is straightforward to check that A is a *-algebra. The C*-identity follows from
* * *\% % *2 2
la® 0 all = flaa®|| = [[(a®)"a™|| = [la™[|" = lla[".

ii) It is clear that 7w : My — My” defined by m(A) = AT is a linear map that preserves the *-operation.
We check that this map is a homorphism:

m(AB) = (AB)T = BT AT = AT o BT = n(A) o n(B).

iii) Suppose that A is positive in A, then A = B*B for some B. Thus, A = Bo B* = (B*)* o B*
which shows that A is positive in AP, and so the identity map is positive.

iv) Note that the map 7 : My¥ — My is a #-isomorphism and is therefore completely positive. If the

identity map id : My — M3 were 2-positive, then id o 7 : My — My would be 2-positive. Note

that the matrix
Ev1 Eip ]
A — ) )
[ Esq1 FEap



is positive in My (M), but that

. Evq Ea; ]
idow(A) = ’ ’
(4) [ Eio Ezo |’
is not positive. This contradiction shows that id is not 2-positive.
We present 2 proofs of this result.

Proof 1. Note that an element a of a C*-algebra A is positive if and only if x*ax is positive for
all z € A Using this fact we get,

1 U X u* 0 0 1 U X U 0 0
vr 1 V | >0 < 0O 1 0 v 1 V 01 0f>0
X* Ve 1 | 0 0 1 X* Ve 1 0 0 1
1 1 U*X
<— 1 1 \% >0
XU v 1
1 1 0 1 1 U*X 1 1 0
<~ 1 -1 0 1 1 Vv 1 -1 0 >0
0O 0 1 XU Vv* 1 0 0 1
[ 41 0 U'X+V
<— 0 0 U*X-V | >0
XU+ V* XU -V~ 1

It follows that the lower-left 2 x 2 corner of this matrix must also be positive, and so

0 UX-V
[X*U—V 1 ]20’

which implies by exercise 3.2.i that U*X —V =0 or X = UV, since U is invertible.

Proof 2. Cholesky lemma: Suppose that P € B(H), B € B(K) and A € B(K,H) where H
and IC are Hilbert spaces. If P is positive and invertible, then the operator matriz

5 4]

is positive if and only if B — A*P~YA is positive.
Proof of the lemma: Assume that B is invertible .The matrix in (9) is positive if and only if

[PW 0 } { P A] {Pl/Q 0 } _ { 1 pP12AB=1/2
B

0 B2 A* B 0 B2 =

—1/2A*P—1/2 1 -
(10)
which by Lemma 3.1.i happens if and only if
B—1/2A*P—1/2P—1/2AB—1/2 < 17

which is equivalent to
A*P'A< B.



(vi)

In the case where B is not invertible we consider the invertible operator B 4 €1, with € > 0, and

note that the matrix
P A
A* B+el

is positive if and only if B +e1 — A*P~'A > 0. We now have our result by letting ¢ — 0.

If we apply this result to the matrix in (8) Witthl,B:[‘}* Y]A:[U X]We get,
1V U*
0 < _V*J—[X*MU X |

[ 1-UU vV-UX

T | Vv-XxU 1-X'X
0 V-U'X

VP XU 1-X*X |

Once again by exercise 3.2.i we have V —U*X =0or X =UV.
Note that if A is commutative then A% = A and the identity map from a C*-algebra to itself is
completely positive.

For the converse we use the fact that the unitary elements span a C*-algebra. Let U,V be two
unitary elements in A. If the identity map is completely positive then

1 v UV
Ur 1V
vur v 1

is positive in A°? and so UV = U oV = VU, by exercise 3.9.v. Thus, any two unitaries in A
commute and so A is commutative.



