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Solutions to Exercises

January 24, 2006

3.1 Prove that ‖ϕn‖ ≤ ‖ϕk‖ for n ≤ k and that if ϕk is positive, then ϕn is positive.

Solution: Note that the map Φ : Mn(A) → Mk(A) defined by,

Φ(A) =
[

A 0
0 0

]
, (1)

is a one-to-one, ∗-homomorphism. This allows us to identify Mn(A) as a C∗-subalgebra of Mk(A).
Under this identification ϕn is the compression, to Mn(A), of ϕk. It follows that ϕn is positive whenever
ϕk is positive and that ‖ϕn‖ ≤ ‖ϕk‖.

3.2 Let P,Q,A be operators on some Hilbert space H with P,Q positive.

i) Show that
[

P A
A∗ Q

]
≥ 0 if and only if |〈Ax, y〉|2 ≤ 〈Py, y〉 〈Qy, y〉 for all x, y in H.

ii) Prove that
[

1 a
a∗ b

]
is positive in M2(A) if and only if a∗a ≤ b.

iii) Show that if
[

P A
A∗ Q

]
≥ 0 then for any x in H, we have that

0 ≤ 〈(P + A∗ + A + Q)x, x〉 ≤ (
√
〈Px, x〉+

√
〈Qx, x〉)2,

and hence ‖P + A + A∗ + Q‖ ≤ (‖P‖2 + ‖Q‖2)1/2.

iv) Show that if
[

P A
A∗ P

]
≥ 0, then A∗A ≤ ‖P‖P and in particular ‖A‖ ≤ ‖P‖.

Solution:

i) Let x, y ∈ H. We recall the fact (Exercise 1.3) that the operator matrix ((Ti,j)) is positive if and
only if for any choice of n vectors x1, . . . , xn the scalar matrix (〈Ti,jxj , xi〉) is positive. Using this
we see that [

P A
A∗ Q

]
is positive if and only if the matrix [

〈Py, y〉 〈Ax, y〉
〈A∗y, x〉 〈Qx, x〉

]
. (2)

A 2× 2 scalar matrix is positive if and only if it has non-negative trace and determinant. Since
P,Q are positive the matrix in (2) has positive trace. Thus, positivity of (2) is equivalent to the
matrix having non-negative determinant. i.e.,

〈Py, y〉 〈Qx, x〉 ≥ 〈Ax, y〉 〈A∗y, x〉 = 〈Ax, y〉 〈y, Ax〉 = |〈Ax, y〉|2 .
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ii) We can assume that A is a C∗-subalgebra of B(H) for some Hilbert space H. We know that[
1 A
A∗ B

]
≥ 0

if and only if |〈Ax, y〉|2 ≤ 〈y, y〉 〈Bx, x〉. Setting y = Ax yields

|〈Ax,Ax〉|2 ≤ 〈Ax,Ax〉 〈Bx, x〉 ,

and so 〈A∗Ax, x〉 = 〈Ax,Ax〉 ≤ 〈Bx, x〉, which proves that A∗A ≤ B.
Conversely if we know that 〈A∗Ax, x〉 ≤ 〈Bx, x〉 then by multliplying both sides by 〈y, y〉 and
using the Cauchy-Schwarz inequality we get,

|〈Ax, y〉|2 ≤ 〈Ax, Ax〉 〈y, y〉 ≤ 〈Bx, x〉 〈y, y〉 .

iii) Notice that,

〈(P + A∗ + A + Q)x, x〉 =
〈[

P A
A∗ Q

] [
x
x

]
,

[
x
x

]〉
≥ 0.

For the other ineqaulity we use the fact that |〈Ax, x〉|2 ≤ 〈Px, x〉 〈Qx, x〉. We have,

〈(P + A∗ + A + Q)x, x〉 = 〈Px, x〉+ 〈A∗x, x〉+ 〈Ax, x〉+ 〈Qx, x〉 (3)
≤ 〈Px, x〉+ 2

√
〈Px, x〉

√
〈Qx, x〉+ 〈Qx, x〉 (4)

= (
√
〈Px, x〉+

√
〈Qx, x〉)2 (5)

≤ (‖P‖1/2 ‖x‖+ ‖Q‖1/2 ‖x‖)2 ≤ (‖P‖1/2 + ‖Q‖1/2)2 ‖x‖2 . (6)

which proves the other inequality. Since P +A+A∗+Q is self-adjoint the last inequality implies
that ‖P + A + A∗ + Q‖ ≤ (‖P‖2 + ‖Q‖2)1/2.

iv) The positivity of [
P A
A∗ P

]
gives,

|〈Ax,Ax〉|2 ≤ 〈PAx, Ax〉 〈Px, x〉 ≤ ‖P‖ 〈Ax,Ax〉 〈Px, x〉 .

It follows that 〈Ax, Ax〉 ≤ ‖P‖ 〈Px, x〉 which implies A∗A ≤ ‖P‖P and ‖A‖ ≤ ‖P‖.

3.3 Prove a non-unital version of proposition 3.2.

Solution: Let S be an operator system, B a C∗-algebra and ϕ : S → B a 2-positive map. Let a ∈ S
with ‖a‖ ≤ 1. Since ϕ is 2-positive we have,

ϕ2

[
1 a
a∗ 1

]
=

[
ϕ(1) ϕ(a)
ϕ(a)∗ ϕ(1)

]
≥ 0. (7)

By 3.2.iii we have ‖ϕ(a)‖ ≤ ‖ϕ(1)‖.

2



3.4 (Modified Schwarz Inequality for 2-positive maps) Let A and B be C∗-algebras, ϕ : A → B 2-positive.
Prove that ϕ(a)∗ϕ(a) ≤ ‖ϕ(1)‖ϕ(a∗a) and that ‖ϕ(a∗b)‖2 ≤ ‖ϕ(a∗a)‖ ‖ϕ(b∗b)‖.
Solution: If [

P A
A∗ Q

]
is a positive operator matrix then,

〈Ax,Ax〉2 ≤ 〈PAx, Ax〉 〈Qx, x〉 ≤ ‖P‖ 〈Ax,Ax〉 〈Qx, x〉 ,

from which we get that A∗A ≤ ‖P‖Q and ‖A‖2 ≤ ‖P‖ ‖Q‖.
Notice that the matrix, [

1 a
a∗ a∗a

]
=

[
1 a
0 0

]∗ [
1 a
0 0

]
≥ 0,

and since ϕ is 2-positive

ϕ

([
1 a
a∗ a∗a

])
=

[
ϕ(1) ϕ(a)
ϕ(a)∗ ϕ(a∗a)

]
≥ 0.

From our observation in the first paragraph ϕ(a)∗ϕ(a) ≤ ‖ϕ(1)‖ϕ(a∗a).

Next consider the matrix [
a∗a a∗b
b∗a b∗b

]
=

[
a b
0 0

]∗ [
a b
0 0

]
≥ 0.

The 2-positivity of ϕ implies that the matrix,[
ϕ(a∗a) ϕ(a∗b)
ϕ(b∗a) ϕ(b∗b)

]
=

[
ϕ(a∗a) ϕ(a∗b)
ϕ(a∗b)∗ ϕ(b∗b)

]
≥ 0,

and so ϕ(a∗b)∗ϕ(a∗b) ≤ ‖ϕ(a∗a)‖ϕ(b∗b) and ‖ϕ(a∗b)‖2 ≤ ‖ϕ(a∗a)‖ ‖ϕ(b∗b)‖.

3.5 Let A be a C∗-algebra with unit. Show that the maps Tr , σ : Mn(A) → A defined by Tr ((ai,j)) =∑n
i=1 ai,i, and σ((ai,j)) =

∑n
i,j=1 ai,j are completely positive maps. Deduce that if ‖(ai,j)‖ ≤ 1, then∥∥∥∑n

i,j=1 ai,j

∥∥∥ ≤ n.

Solution: We identify A with a C∗-subalgebra of B(H). Let Ej be the operator in B(H,H(n)) defined
by Ej(h) = (0, . . . , h, . . . , 0) where the h appears in the j-th entry. Let A = (Ai,j)n

i,j=1 be an element
of Mn(B(H)). A calculation done in Exercise 1.2.iii shows that

E∗
i AEj = Ai,j

and so

Tr (A) =
n∑

i=1

Ai,i =
n∑

i=1

E∗
i AEi,

which is completely positive.
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Similarly,

σ(A) =
n∑
i,j

E∗
i AEj =

n∑
i=1

n∑
j=1

E∗
i AEj

= (
n∑

i=1

E∗
i )A(

n∑
j=1

Ej) = (
n∑

i=1

Ei)∗A(
n∑

j=1

Ej),

which proves that σ is completely positive.

3.6 (Choi) Let A be a C∗-algebra, let λ be a complex number with |λ| = 1, let Uλ be the unitary
element of Mn(A) that is diagonal with ui,i = λi1, and let Diag : Mn(A) → Mn(A) be defined by
Diag((ai,j)) = (bi,j), where bi,j = 0, for i 6= j and bi,i = ai,i.

(i) Show that U∗
λ(ai,j)Uλ = (λj−iai,j).

(ii) By considering the non-trivial n-th roots of unity, show that the map Φ : Mn(A) → Mn(A)
defined by Φ(A) = nDiag(A)−A is completely positive.

(iii) Show that the map Φ : Mn → Mn defined by Φ(A) = (n− 1)Diag(A)−A is not positive.

Solution:

(i) Recall that if D = diag(d1, . . . , dn) then, D(ai,j) = (diai,j) and (aij)D = (ai,jdj). Note that if
|λ| = 1, then λ = λ−1. Thus,

U∗
λ(ai,j)Uλ = (λiai,jλ

j) = (λ−iλjai,j) = (λj−iai,j).

(ii) Let A = (ai,j) and ω = e2πi/n, which is an n-th root of unity. Note that ω, . . . , ωn−1 are precisely
the non-trivial n-th roots of unity. Note that

n−1∑
k=0

ωkl =


n if l = 0

1− e2πli

1− e2πli/n
= 0 if 1 ≤ l ≤ n− 1

.

We claim that
∑n−1

k=1 U∗
ωkAUωk = nDiag(A)−A. Noting that U1 is the identity matrix, we have,

A +
n−1∑
k=1

U∗
ωkAUωk =

n−1∑
k=0

U∗
ωkAUωk =

n−1∑
k=0

(ωk(j−i)ai,j)

= (
n−1∑
k=0

ωk(j−i)ai,j) = diag(a1,1, . . . , an,n),

which proves our claim. Since any map of the form A 7→ X∗AX is completley positive and sums
of completely positive maps are completely positive we see that A 7→ nDiag(A)−A is completely
positive.
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(iii) Consider the matrix A which has 1 in every entry. Note that A is positive and that,

(n− 1)Diag(A)−A =


n− 2 −1 · · · −1
−1 n− 2 · · · −1
...

...
. . .

...
−1 −1 · · · n− 2

 .

Now,

〈
n− 2 −1 · · · −1
−1 n− 2 · · · −1
...

...
. . .

...
−1 −1 · · · n− 2




1
1
...
1

 ,


1
1
...
1


〉

=

〈
−1
−1
...
−1

 ,


1
1
...
1


〉

= −n,

which shows that (n− 1)Diag(A)−A is not positive, and hence is not completely positive.

3.7 Let A and B be C∗-algebras with unit and let ϕ1, ϕ2 : A → B be bounded linear maps with ϕ1 ± ϕ2

completely positive. Prove that ‖ϕ2‖cb ≤ ‖ϕ1(1)‖.
Solution: Define ϕ+ = ϕ1+ϕ2 and ϕ− = ϕ1−ϕ2. Note that ϕ1 = 1

2(ϕ++ϕ−) and so ϕ1 is completely
positive. Let A ∈ Mn(A) with ‖A‖ ≤ and note (by Lemma 3.1.i) that[

1 A
A∗ 1

]
and

[
1 −A

−A∗ 1

]
,

are positive. Since ϕ+ and ϕ− are completely positive we have,

0 ≤ (ϕ+)2n

([
1 A
A∗ 1

])
+ (ϕ−)2n

[
1 −A

−A∗ 1

]
= 2

[
(ϕ1)n(1) (ϕ2)n(A)
(ϕ2)n(A)∗ (ϕ1)n(1)

]
.

Applying the result of exercise 3.2.iv we get ‖(ϕ2)n(A)‖ ≤ ‖(ϕ1)n(1)‖ = ‖ϕ1(1)‖ since ϕ1 is completely
positive. Therefore ‖ϕ2‖cb ≤ ‖ϕ1(1)‖

3.8 Let A be a C∗-algebra with unit. Define T1, T2 : Mn(A) → Mn(A) by T1((ai,j)) = (bi,j), where
bi,i =

∑n
l=1 al,l, bi,j = 0, for i 6= j and T2((ai,j)) = (ci,j) where ci,j = aj,i. Fix k and l, k 6= l, and

define U±
k,l to be 1 in the (k, l)-entry, ±1 in the (l, k)-entry and 0 elsewhere.

(i) Show that

T1(A)− T2(A) =
1
2

∑
k 6=l

U−∗
k,l AU−

k,l.

(ii) Show that

T1(A) + T2(A) =
1
2

∑
k 6=l

U+∗
k,l AU+

k,l + Diag(A).

(iii) Deduce that T1 ± T2 are completely positive and that ‖T2‖cb ≤ n.

(iv) By considering, A = C, show that ‖T2‖cb = n.

Solution:
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(i) Consider first the case k = 1 and note that

U−∗
1,l AU−

1,l =


al,l · · · −al,1 · · · 0
...

...
...

−a1,l · · · −a1,1 · · · 0
...

...
...

0 · · · 0 · · · 0

 ,

where al,l is in the (1, 1)-entry, and a1,1 is in the (l, l)-entry. Therefore,

∑
l 6=1

U−∗
1,l AU−

1,l =


a2,2 + . . . + an,n −a2,1 · · · −an,1

−a1,2 a1,1 · · · 0
...

...
. . .

...
−a1,n 0 · · · a1,1

 ,

In general we have,

∑
l 6=k

U−∗
k,l AU−

k,l =


ak,k · · · −ak,1 · · · 0

...
...

...
−a1,k · · ·

∑
l 6=k al,l · · · −an,k

...
...

...
0 · · · −ak,n · · · ak,k

 .

Note that for i 6= j the element −aj,i appears twice in the (i, j)-th place, once when l = j and
k = i and once when l = i and k = j. In the k-th diagonal entry we get 2

∑
l 6=k al,l. Thus,

n∑
k=1

∑
l 6=k

U−∗
k,l AU−

k,l =


2

∑
l 6=1 al,l −2a2,1 · · · −2an,1

−2a1,2 2
∑

l 6=2 al,l · · · −2an,2

...
...

. . .
...

−2a1,n −2a2,n · · · 2
∑

l 6=n al,l


= 2(T1(A)− T2(A))

(ii) Using similar ideas to the those used in the previous part we have that,

n∑
k=1

∑
l 6=k

U+∗
k,l AU+

k,l =


2

∑
l 6=1 al,l 2a2,1 · · · 2an,1

2a1,2 2
∑

l 6=2 al,l · · · 2an,2

...
...

. . .
...

2a1,n 2a2,n · · · 2
∑

l 6=n al,l


= 2(T1(A) + T2(A)−Diag(A))

(iii) Using the fact that maps of the type A → X∗AX and A → Diag(A) are completely positive and
that sums of completely positive maps are completely positive we see that T1±T2 are completely

6



positive. From exercise 3.7 we get that

‖T2‖cb ≤ ‖T1(1)‖ =

∥∥∥∥∥∥∥∥∥


n1 0 · · · 0
0 n1 · · · 0
...

...
. . .

...
0 0 · · · n1


∥∥∥∥∥∥∥∥∥ = n

(iv) Let A = (Ej,i)n
i,j=1 ∈ Mn(Mn), where Ei,j are the matrix units in Mn. We proved in exercise

1.7 that A was unitary and that 1
n(Ei,j)n

i,j=1 = 1
n(T2)n(A) was a rank one projection. Thus,

‖(T2)n‖ ≥ ‖(T2)n(A)‖ = n which proves that ‖T2‖cb ≥ n. Combining this with the estimate from
the previous part of this exercise we get ‖T2‖cb = n.

3.9 Let A be a C∗-algebra and let Aop denote the set A with the same norm and ∗-operation, but with a
multiplication defined by a ◦ b = ba.

(i) Prove that Aop is a C∗-algebra.

(ii) Prove that M2 and Mop
2 are ∗-isomorphic via the transpose map.

(iii) Show that the identity map from A to Aop is always positive.

(iv) Prove that the identity map from M2 to Mop
2 is not 2-positive.

(v) (Walter) Let U, V , and X be elements of A with U, V unitary. Prove that 1 U X
U∗ I V
X∗ V ∗ 1

 ≥ 0 (8)

if and only if X = UV .

(vi) Prove that the identity map from A to Aop is completely positive if and only if A is commutative.

Solution:

i) It is straightforward to check that A is a ∗-algebra. The C∗-identity follows from

‖a∗ ◦ a‖ = ‖aa∗‖ = ‖(a∗)∗a∗‖ = ‖a∗‖2 = ‖a‖2 .

ii) It is clear that π : M2 → Mop
2 defined by π(A) = AT is a linear map that preserves the ∗-operation.

We check that this map is a homorphism:

π(AB) = (AB)T = BT AT = AT ◦BT = π(A) ◦ π(B).

iii) Suppose that A is positive in A, then A = B∗B for some B. Thus, A = B ◦ B∗ = (B∗)∗ ◦ B∗

which shows that A is positive in Aop, and so the identity map is positive.

iv) Note that the map π : Mop
2 → M2 is a ∗-isomorphism and is therefore completely positive. If the

identity map id : M2 → Mop
2 were 2-positive, then id ◦ π : M2 → M2 would be 2-positive. Note

that the matrix

A =
[

E1,1 E1,2

E2,1 E2,2

]
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is positive in M2(M2), but that

id ◦ π(A) =
[

E1,1 E2,1

E1,2 E2,2

]
,

is not positive. This contradiction shows that id is not 2-positive.

(v) We present 2 proofs of this result.
Proof 1. Note that an element a of a C∗-algebra A is positive if and only if x∗ax is positive for
all x ∈ A Using this fact we get, 1 U X

U∗ 1 V
X∗ V ∗ 1

 ≥ 0 ⇐⇒

 U∗ 0 0
0 1 0
0 0 1

 1 U X
U∗ 1 V
X∗ V ∗ 1

 U 0 0
0 1 0
0 0 1

 ≥ 0

⇐⇒

 1 1 U∗X
1 1 V

X∗U V ∗ 1

 ≥ 0

⇐⇒

 1 1 0
1 −1 0
0 0 1

 1 1 U∗X
1 1 V

X∗U V ∗ 1

 1 1 0
1 −1 0
0 0 1

 ≥ 0

⇐⇒

 41 0 U∗X + V
0 0 U∗X − V

X∗U + V ∗ X∗U − V ∗ 1

 ≥ 0

It follows that the lower-left 2× 2 corner of this matrix must also be positive, and so[
0 U∗X − V

X∗U − V 1

]
≥ 0,

which implies by exercise 3.2.i that U∗X − V = 0 or X = UV , since U is invertible.
Proof 2. Cholesky lemma: Suppose that P ∈ B(H), B ∈ B(K) and A ∈ B(K,H) where H
and K are Hilbert spaces. If P is positive and invertible, then the operator matrix[

P A
A∗ B

]
(9)

is positive if and only if B −A∗P−1A is positive.
Proof of the lemma: Assume that B is invertible .The matrix in (9) is positive if and only if[

P−1/2 0
0 B−1/2

] [
P A
A∗ B

] [
P−1/2 0

0 B−1/2

]
=

[
1 P−1/2AB−1/2

B−1/2A∗P−1/2 1

]
≥ 0

(10)
which by Lemma 3.1.i happens if and only if

B−1/2A∗P−1/2P−1/2AB−1/2 ≤ 1,

which is equivalent to
A∗P−1A ≤ B.
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In the case where B is not invertible we consider the invertible operator B + ε1, with ε > 0, and
note that the matrix [

P A
A∗ B + ε1

]
is positive if and only if B + ε1−A∗P−1A ≥ 0. We now have our result by letting ε → 0.

If we apply this result to the matrix in (8) with P = 1, B =
[

1 V
V ∗ 1

]
A =

[
U X

]
we get,

0 ≤
[

1 V
V ∗ 1

]
−

[
U∗

X∗

] [
U X

]
=

[
1− U∗U V − U∗X

V ∗ −X∗U 1−X∗X

]
=

[
0 V − U∗X

V ∗ −X∗U 1−X∗X

]
.

Once again by exercise 3.2.i we have V − U∗X = 0 or X = UV .

(vi) Note that if A is commutative then Aop = A and the identity map from a C∗-algebra to itself is
completely positive.
For the converse we use the fact that the unitary elements span a C∗-algebra. Let U, V be two
unitary elements in A. If the identity map is completely positive then 1 U UV

U∗ 1 V
V ∗U∗ V ∗ 1


is positive in Aop and so UV = U ◦ V = V U , by exercise 3.9.v. Thus, any two unitaries in A
commute and so A is commutative.
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