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Solutions to Exercises

January 24, 2006

4.1 Use Stinespring’s representation theorem to prove that ‖V ‖2 = ‖ϕ‖cb when ϕ is completely positive.
Also, use the representation theorem to prove that ϕ(a)∗ϕ(a) ≤ ‖ϕ(1)‖ϕ(a∗a)

Solution: We first note by proposition 3.6 that ‖ϕ(1)‖ = ‖ϕ‖ = ‖ϕ‖cb. By Stinespring’s theorem we
have ϕ(1) = V ∗V and so ‖ϕ(1)‖ = ‖V ∗V ‖ = ‖V ‖2. We also have,

ϕ(a)∗ϕ(a) = (V ∗π(a)V )∗V ∗π(a)V = V ∗π(a)∗V V ∗π(a)V
≤ ‖V ‖2 V ∗π(a)∗π(a)V = ‖V ‖2 V ∗π(a∗a)V
= ‖ϕ(1)‖ϕ(a∗a).

4.2 (Multiplicative Domains) In this exercise, we provide an alternative proof of theorem 3.19. Let A
be a C∗-algebra with unit and let ϕ : A → B(H) be completely positive, ϕ(1) = 1, with minimal
Stinespring representation, (π, V,K).

(i) Prove that ϕ(a)∗ϕ(a) = ϕ(a∗a) if and only if VH is an invariant subspace for π(a).

(ii) Use this to give an alternative proof that {a ∈ A : ϕ(a)∗ϕ(a) = ϕ(a∗a)} = {a ∈ A : ϕ(ba) =
ϕ(b)ϕ(a) for all b ∈ A}. Recall that this set is the right multiplicative domain of ϕ.

(iii) Similarly show that ϕ(a)∗ϕ(a) = ϕ(a∗a) and ϕ(a)ϕ(a)∗ = ϕ(aa∗) if and only if VH is a reducing
subspace for π(a). Deduce that the set of such elements is a C∗-subalgebra of A. Recall that this
subalgebra is the multiplicative domain of ϕ.

Solution: Note that since ϕ is unital, V is an isometry and VH is a closed subspace of K. The fact
that ϕ(a) = V ∗π(a)V shows us that, relative to the decomposition K = VH ⊕ (VH)⊥, π(a) is the
operator matrix

π(a) =
[

ϕ(a) A(a)
B(a) C(a)

]
.

(i) Observe that the invariance of VH under π(a) is equivalent to the requirement that B(a) = 0.
As π is a ∗-homomorphism we know that π(a∗a) = π(a)∗π(a) or in terms of the (1, 1) entry of
the corresponding operator matrices

ϕ(a∗a) = ϕ(a)∗ϕ(a) + B(a)∗B(a).

It is clear from this that ϕ(a∗a) = ϕ(a)∗ϕ(a) if and only if B(a)∗B(a) = 0 if and only if B(a) = 0.

(ii) If ϕ(ba) = ϕ(b)ϕ(a) for all b ∈ A then by setting b = a∗ and noting that ϕ is self-adjoint we
see that ϕ(a∗a) = ϕ(a)∗ϕ(a). Conversely assume that ϕ(a∗a) = ϕ(a)∗ϕ(a) and that b ∈ A. By
equating the (1, 1) entries of π(ba) and π(b)π(a) we get,

ϕ(ba) = ϕ(b)(ϕ(a) + A(b)B(a) = ϕ(b)ϕ(a).
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(iii) From part 4.2.(i). we have that ϕ(a)∗ϕ(a) = ϕ(a∗a) and ϕ(a)ϕ(a)∗ = ϕ(aa∗) if and only if VH
is invariant under both π(a) and π(a∗) if and only if VH is reducing for π(a).
Note that a is in the multiplicative domain of ϕ if and only if VH is reducing which happens if
and only if the (2, 1) entry of both π(a) and π(a∗) are 0. This is the collection of π(a) that are
diagonal, which is a C∗-algebra. Since the multiplicative domain is the inverse image of this set
under π we see that it is a C∗-subalgebra of A.

4.3 (Bimodule Maps) Let A, B and C be C∗-algebras with unit and suppose that C is contained in both
A and B with 1C = 1A and 1C = 1B. A linear map ϕ : A → B is called a C-bimodule map if
ϕ(c1ac2) = c1ϕ(a)c2 for all c1, c2 in C. Let ϕ : A → B be completely positive.

(i) If ϕ(1) = 1, the prove that ϕ is a C-bimodule map if and only if ϕ(c) = c for all c in C.

(ii) Prove, in general, that ϕ is a C-bimodule map if and only if ϕ(c) = cϕ(1) for all c in C. Moreover,
in this case, ϕ(1) commutes with C.

Solution:

(i) See 4.3.(ii).

(ii) We give a proof of part (ii), and part (i) will follow as a special case. Assume first that ϕ is a
C-bimodule map. We have,

ϕ(c) = ϕ(c12) = cϕ(1)1 = cϕ(1).

Similarly ϕ(c) = ϕ(1)c.
For the converse assume ϕ(c) = cϕ(1) for all c ∈ C. Note that by taking adjoints we get
ϕ(c∗) = ϕ(1)c∗. Since C is self-adjoint it follows that ϕ(c) = ϕ(1)c for all c ∈ C. We assume
that B = B(H) for a Hilbert space H. Let π be a Stinespring dilation of ϕ on a Hilbert space
K and let V : H → K be the associated linear operator. We will adopt the notation used in
Theorem 4.1 (Stinespring’s Dilation Theorem). We note that C is a C∗-subalgebra of B(H)
and begin by proving that V c = π(c)V . Let h ∈ H and note that V c(h) = 1 ⊗ c(h) + N
and π(c)V (h) = π(c)[1 ⊗ h + N ] = c ⊗ h + N . Thus equality will follow if we show that
1⊗ c(h)− c⊗ h ∈ N . We have,

〈1⊗ c(h)− c⊗ h,1⊗ c(h)− c⊗ h〉 = 〈1⊗ c(h),1⊗ c(h)〉+ 〈c⊗ h, c⊗ h〉 (1)
−〈c⊗ h,1⊗ ch〉 − 〈1⊗ c(h), c⊗ h〉 (2)

= 〈ϕ(1)c(h), c(h)〉+ 〈ϕ(c∗c)h, h〉 (3)
−〈ϕ(c)h, c(h)〉 − 〈ϕ(c∗)c(h), h〉 (4)

= 〈ϕ(1)c(h), c(h)〉+ 〈ϕ(1)c∗c(h), h〉 (5)
−〈ϕ(1)c(h), c(h)〉 − 〈ϕ(1)c∗c(h), h〉 = 0 (6)

Note that by taking adjoints we have cV ∗ = V ∗π(c) for all c ∈ C. Now,

ϕ(c1ac2) = V ∗π(c1ac2)V = V ∗π(c1)π(a)π(c2)V (7)
= c1V

∗π(a)V c2 = c1ϕ(a)c2. (8)
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4.4 Let Dn be the C∗-subalgebra of diagonal matrices in Mn. Prove that a linear map ϕ : Mn → Mn is a
Dn-bimodule map if and only if ϕ is the Schur product map, ST , for some matrix T .

Solution: Let J be the matrix all of whose entries are 1 and let T = (ti,j) = ϕ(J). Let {Ei,j}n
i,j=1 be

the set of matrix units for Mn. We have,

ϕ(Ei,j) = ϕ(Ej,jJEi,i) = Ej,jϕ(J)Ei,i = ti,jEi,j = T ◦ Ei,j .

By linearity ϕ must be the Schur product map ST .

3


