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Use Stinespring’s representation theorem to prove that ||V[|* = ||¢]|., when ¢ is completely positive.
Also, use the representation theorem to prove that ¢(a)*p(a) < ||¢(1)|| ¢(a*a)

Solution: We first note by proposition 3.6 that |[¢(1)| = ||¢|| = ||¢|l,- By Stinespring’s theorem we
have ¢(1) = V*V and so [|o(1)|| = |[V*V| = |V||*. We also have,

vla)'ela) = (Vn(a)V)'V*r(a)V =V*r(a)* VVir(a)V
< IVIPVia(a)n(@)V = |[V]* Via(a*a)V
= [le(@)] p(a”a).

(Multiplicative Domains) In this exercise, we provide an alternative proof of theorem 3.19. Let A
be a C*-algebra with unit and let ¢ : A — B(H) be completely positive, ¢(1) = 1, with minimal
Stinespring representation, (m, V, ).

(i) Prove that ¢(a)*¢(a) = p(a*a) if and only if V'H is an invariant subspace for 7(a).
(ii) Use this to give an alternative proof that {a € A : ¢(a)*¢p(a) = p(a*a)} = {a € A: p(ba) =
o(b)p(a) for all b € A}. Recall that this set is the right multiplicative domain of .
(iii) Similarly show that ¢(a)*¢p(a) = ¢(a*a) and p(a)p(a)* = ¢(aa*) if and only if V'H is a reducing
subspace for 7(a). Deduce that the set of such elements is a C*-subalgebra of .A. Recall that this
subalgebra is the multiplicative domain of .

Solution: Note that since ¢ is unital, V' is an isometry and V'H is a closed subspace of L. The fact
that p(a) = V*r(a)V shows us that, relative to the decomposition & = VH @ (VH)*, 7(a) is the

operator matrix
=[50 4]

(i) Observe that the invariance of V'H under m(a) is equivalent to the requirement that B(a) = 0.
As 7 is a *-homomorphism we know that m(a*a) = m(a)*m(a) or in terms of the (1,1) entry of
the corresponding operator matrices

pla’a) = p(a)"p(a) + B(a)" B(a).

It is clear from this that ¢(a*a) = ¢(a)*¢(a) if and only if B(a)*B(a) = 0 if and only if B(a) = 0.

(ii) If p(ba) = p(b)p(a) for all b € A then by setting b = a* and noting that ¢ is self-adjoint we
see that p(a*a) = p(a)*p(a). Conversely assume that p(a*a) = ¢(a)*¢(a) and that b € A. By
equating the (1, 1) entries of 7(ba) and 7 (b)7(a) we get,

p(ba) = @ (b)(¢(a) + A(b)B(a) = ¢ (b)p(a).



(iii) From part 4.2.(i). we have that ¢(a)*¢(a) = p(a*a) and p(a)p(a)* = ¢(aa*) if and only if VH
is invariant under both 7(a) and m(a*) if and only if V'H is reducing for 7(a).
Note that a is in the multiplicative domain of ¢ if and only if V'H is reducing which happens if
and only if the (2,1) entry of both 7(a) and 7(a*) are 0. This is the collection of 7(a) that are
diagonal, which is a C*-algebra. Since the multiplicative domain is the inverse image of this set
under 7 we see that it is a C*-subalgebra of A.

4.3 (Bimodule Maps) Let A, B and C be C*-algebras with unit and suppose that C is contained in both
A and B with 1¢ = 14 and 1¢ = 1. A linear map ¢ : A — B is called a C-bimodule map if
(crace) = c1p(a)cy for all ¢1,¢ in C. Let ¢ : A — B be completely positive.

(i) If (1) = 1, the prove that ¢ is a C-bimodule map if and only if ¢(c) = ¢ for all ¢ in C.

(ii) Prove, in general, that ¢ is a C-bimodule map if and only if p(c) = cp(1) for all ¢ in C. Moreover,
in this case, ¢(1) commutes with C.

Solution:

(i) See 4.3.(i).
(ii) We give a proof of part (ii), and part (i) will follow as a special case. Assume first that ¢ is a
C-bimodule map. We have,

p(c) = p(c1?) = cp(1)1 = cp(1).

Similarly ¢(c) = ¢(1)c.

For the converse assume ¢(c) = cp(1) for all ¢ € C. Note that by taking adjoints we get
o(c*) = p(1)c*. Since C is self-adjoint it follows that ¢(c) = ¢(1)c for all ¢ € C. We assume
that B = B(H) for a Hilbert space H. Let m be a Stinespring dilation of ¢ on a Hilbert space
K and let V : H — K be the associated linear operator. We will adopt the notation used in
Theorem 4.1 (Stinespring’s Dilation Theorem). We note that C is a C*-subalgebra of B(H)
and begin by proving that Ve = 7w(¢)V. Let h € H and note that Ve(h) = 1 ® ¢(h) + N
and w(c)V(h) = n(c)1® h+ N] = ¢® h+ N. Thus equality will follow if we show that
1®c(h) — c®h € N. We have,

1@ch)—c@h1®ch)—ch) = (1®c(h),1®c(h))+ (cRh,c® h) (1)
—(c®@h,1®ch) — (1 ®c(h),c®h) (2)
= (p(@)ec(h), c(h)) + (p(cc)h, h) (3)
— {p(c)h, c(h)) = (p(c")e(h), h) (4)
= (p@)c(h), c(h)) + (p(1)c"c(h), h) ()
—{p(D)e(h), c(h)) = (p(1)c*e(h), h) =0 (6)
Note that by taking adjoints we have ¢V* = V*r(c) for all ¢ € C. Now,
e(craca) = Vir(craco)V = Vir(er)m(a)m(c2)V (7)
= caV*r(a)Ver = cip(a)cs. (8)



4.4 Let D, be the C*-subalgebra of diagonal matrices in M,,. Prove that a linear map ¢ : M,, — M, is a
Dy-bimodule map if and only if ¢ is the Schur product map, Sp, for some matrix 7'

Solution: Let J be the matrix all of whose entries are 1 and let T'= (t; ;) = ¢(J). Let {E; ;}}';_; be
the set of matrix units for M,,. We have,

o(Eij) = o(Ej;JEi;) = Ejjo(J)Eii =tijE;; =T o E; ;.

By linearity ¢ must be the Schur product map Sr.



