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5.1 Prove that if (V1,K1) and (V2,K2) are two minimal isometric dilations of a contraction operator T on
H, then there exists a unitary U : K1 → K2 such that Uh = h for all h ∈ H and UV1U

∗ = V2.

Solution: Since (Vj ,Kj), j = 1, 2 are minimal isometric dilations we know that

Hj = {V n
j h : h ∈ H, n ≥ 0} (1)

is dense in Kj . Define a map U : H1 → H2 by

U

(
N∑

k=−N

V k
1 hk

)
=

N∑
k=−N

V k
2 hk. (2)

We claim that U is an isometry. It follows from this that U has a unique extension to an isometry
from K1 → K2. We will denote this extension by U . As the range of U is dense in K2, U is unitary.
Since Vj is a dilation of T on Kj ,

V n
j =

[
Tn ∗
∗ ∗

]
, (3)

relative to the decomposition Kj = H⊕H⊥. It follows that if h, k ∈ H then
〈
V n

j h, k
〉

= 〈Tnh, k〉. We
have, ∥∥∥∥∥U

(
N∑

k=−N

V k
1 hk

)∥∥∥∥∥
2

=
N∑

k,l=−N

〈
V k

2 hk, V
l
2hl

〉
(4)

=
∑
k<l

〈
V k

2 hk, V
l
2hl

〉
+
∑
k≥l

〈
V k

2 hk, V
l
2hl

〉
(5)

=
∑
k<l

〈
hk, V

l−k
2 hl

〉
+
∑
k≥l

〈
V k−l

2 hk, hl

〉
(6)

=
∑
k<l

〈
hk, T

l−khl

〉
+
∑
k≥l

〈
T k−lhk, hl

〉
(7)

=
∑
k<l

〈
hk, V

l−k
1 hl

〉
+
∑
k≥l

〈
V k−l

1 hk, hl

〉
(8)

=

∥∥∥∥∥
(

N∑
k=−N

V k
1 hk

)∥∥∥∥∥
2

. (9)
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Now,

UV1

(
N∑

k=−N

V k
1 hk

)
=

(
N∑

k=−N

V k+1
2 hk

)
(10)

= V2

(
N∑

k=−N

V k
2 hk

)
(11)

= V2U

(
N∑

k=−N

V k
1 hk

)
. (12)

Therefore UV1 = V2U on the dense subspace Hj . It follows by a limit argument that UV1 = V2U or
UV1U

∗ = V2.

5.2 Let H1 and H2 be Hilbert spaces, let An ∈ B(H1,H2) be a sequence of operators and let A = (Ai+j) :
`2(H1) → `2(H2) be the corresponding Hankel operator. Prove the analogue of Nehari-Page in this
setting.

Solution: Let H = H1 ⊕H2, A = (Ai+j) and let

Ãn =
[

0 0
An 0

]
∈ B(H). (13)

By the Nehari-Page theorem the Hankel matrix Ã = (Ãi+j) is bounded if and only if there exists

Ãn =
[

∗ ∗
An ∗

]
(14)

for n < 0 such that ‖B̃‖∞ = sup0<r<1 ‖B̃r‖∞ < ∞ where B̃r(eiθ) =
∑∞

n=−∞ Ãnr|n|einθ. Further
‖(Ãi+j)‖ = ‖B̃‖∞. Let B =

∑∞
n=−∞Aneinθ. Since Br is a compression of B̃r we have that

‖B‖ = sup
0<r<1

‖Br‖ ≤ sup
0<r<1

‖B̃r‖ = ‖B̃‖ < ∞. (15)

All that remains to be shown is that for this choice of An, ‖(Ai+j)‖ = ‖B‖∞. We have already
proven that ‖B‖∞ ≤ ‖B̃‖∞. We can identify the Hilbert spaces `2(H1 ⊕ H2) and `2(H1) ⊕ `2(H2)

by the map (h(1)
n ⊕ h

(2)
n ) 7→ (h(1)

n ) ⊕ (h(2)
n ). The operator Ã is identified with the operator

[
0 0
A 0

]
and so ‖Ã‖ = ‖A‖. Since A is a compression of the multiplication operator MB we always have
‖(Ai+j)‖ ≤ ‖MB‖ = ‖B‖∞.

5.3 (Caratheodory’s Completion Theorem) Let a0, . . . , an be in C. Use commutant lifting to prove that∥∥∥∥∥∥∥∥∥∥


a0 0 · · · 0

a1
. . . . . .

...
...

. . . . . . 0
an · · · a1 a0


∥∥∥∥∥∥∥∥∥∥

= inf

∥∥∥∥∥∥
n∑

j=0

ajz
j +

∞∑
j=n+1

bjz
j

∥∥∥∥∥∥
∞

, (16)
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where the infinum is over sequences {bj} such that the resulting power series is bounded on D and
the ∞-norm is the supremum over D. Moreover, there exists a sequence {bj} where the infimum is
attained. Thus, a polynomial can be completed to a power series whose supremum over the disk is
bounded by 1 by adding higher order terms if and only if the norm of the corresponding Toeplitz
matrix is at most 1.

Deduce that the map

f ∈ H∞(T) 7→


f̂(0) 0 · · · 0

f̂(1)
. . . . . .

...
...

. . . . . . 0
f̂(n) · · · f̂(1) f̂(0)

 ∈ Mn+1,

yields an isometric isomorphism of H∞(T)/ei(n+1)θH∞(T) into Mn+1. Generalize this to the case
where A0, . . . , An are operators in a (separable) Hilbert Space.

Solution: Denote the matrix on the left side of (16) by R and let

S =



0 · · · · · · · · · 0

1
. . .

...

0
. . . . . .

...
...

. . . . . .
...

0 · · · 0 1 0


∈ Mn+1.

Note first that the minimal unitary dilation of S is the operator U on L2(T) given by (Uf)(eiθ) =
eiθf(eiθ). We have

SR = RS =


0 · · · · · · 0

a0
. . . 0

...
. . . . . . 0

an−1 · · · a0 0

 ,

and so by the commutant lifting theorem there is an operator V commuting with U , with ‖V ‖ = ‖R‖
such that RSm = PHV Um|H. Since V commutes with U , V is multiplication by g ∈ L∞. If m < 0,
then, 〈

g, eimθ
〉

= 〈V 1, Um1〉 =
〈
V U−m1, 1

〉
=
〈
PHV U−m1, 1

〉
=
〈
RS−m1, 1

〉
= 0. (17)

Therefore, g(eiθ) =
∑∞

k=0 ake
ikθ. Let Tg denote the Toeplitz operator associated with g acting on

H2(T). We have,

‖R‖ = ‖V ‖ = ‖Tg‖ = ‖g‖H∞(T) = ‖g‖H∞(D) = sup
z∈D

∣∣∣∣∣∣
∞∑

j=0

ajz
j

∣∣∣∣∣∣ . (18)

Let {bj} be a sequence of complex numbers such that h(z) =
∑n

j=0 ajz
j +

∑∞
j=n+1 bjz

j defines a
bounded function on D. Let Th be the corresponding Toeplitz operator on H2(D) and note that R
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is the compression of Th to the subspace spanned by 1, z, . . . , zn. Therefore ‖R‖ ≤ ‖Th‖. Combining
this with (18) we see that,

‖R‖ = inf

∥∥∥∥∥∥
n∑

j=0

ajz
j +

∞∑
j=n+1

bjz
j

∥∥∥∥∥∥
∞

. (19)

Let f, g ∈ H∞(T), let Φ : H∞(T) → Mn+1 be the map

f ∈ H∞(T) 7→


f̂(0) 0 · · · 0

f̂(1)
. . . . . .

...
...

. . . . . . 0
f̂(n) · · · f̂(1) f̂(0)

 ∈ Mn+1.

Since f̂ + g(k) = f̂(k) + ĝ(k) and α̂f(k) = αf̂(k) we see that Φ is linear. To check that Φ is in fact a
homomorphism we take note of the fact that f̂g(k) =

∑k
j=0 f̂(j)ĝ(k − j) and compute,

Φ(f)Φ(g) =


f̂(0) 0 · · · 0

f̂(1)
. . . . . .

...
...

. . . . . . 0
f̂(n) · · · f̂(1) f̂(0)




ĝ(0) 0 · · · 0

ĝ(1)
. . . . . .

...
...

. . . . . . 0
ĝ(n) · · · ĝ(1) ĝ(0)



=


f̂(0)ĝ(0) 0 · · · 0

f̂(1)ĝ(0) + f̂(0)ĝ(1)
. . . . . .

...
...

. . . . . . 0
f̂(n)ĝ(0) + . . . + f̂(0)ĝ(n) · · · f̂(1)ĝ(0) + f̂(0)ĝ(1) f̂(0)ĝ(0)


= Φ(fg)

The kernel of Φ is the set of functions f ∈ H∞(T) such that f̂(0) = . . . = f̂(n) = 0, which is precisely
ei(n+1)θH∞(T). Therefore, H∞(T)/ei(n+1)θH∞(T) is isomorphic, via Φ̃(f + ei(n+1)θH∞(T)) = Φ(f),
to a subalgebra of Mn+1.

Finally, ∥∥∥Φ̃(f)
∥∥∥ = inf

{
‖f + g‖∞ : g ∈ ei(n+1)θH∞(T)

}
= inf


∥∥∥∥∥∥

n∑
j=0

f̂(j)zj +
∞∑

j=n+1

bjz
j

∥∥∥∥∥∥
∞

:
∞∑

j=n+1

bjz
j ∈ H∞(D)



=

∥∥∥∥∥∥∥∥∥∥


f̂(0) 0 · · · 0

f̂(1)
. . . . . .

...
...

. . . . . . 0
f̂(n) · · · f̂(1) f̂(0)


∥∥∥∥∥∥∥∥∥∥

5.4 Let {T1, . . . , Tn} be contractions on a Hilbert Space H (possibly non-commuting). Prove that there
exits a Hilbert space K containing H and unitaries {U1, . . . , Un} on K such that

T k1
i1

. . . T km
im

= PHUk1
i1

. . . Ukm
im
|H,
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where m, k1, . . . , km are arbitrary non-negative integers, and 1 ≤ il ≤ n, for l = 1, . . . , n.

Solution: We begin by recalling the construction used in Bz.-Nagy’s dilation theorem. Given a
contraction T on a Hilbert space we construct an isometric dilation V on `2(H) by defining

V (h1, h2, . . .) = (Th1, (1− T ∗T )1/2h1, h2, h3, . . .). (20)

We can dilate an isometry V on a Hilbert space H to a unitary U on H⊕H by

U =
[

V 1− V ∗V
0 V ∗

]
. (21)

If we combine these two constructions we see that a contraction T on H can be dilated to a unitary
U on `2(H)⊕ `2(H).

Given a collection of contractions T1, . . . , Tn dilate them as above to U1, . . . , Un. Let h ∈ H and note
that,

Uk
j ((0, 0, . . .)⊕ (h, 0, . . .)) = (0, 0, . . .)⊕ (T k

j h, ∗, ∗, . . .). (22)

It follows from this that,

Uk1
i1

. . . Ukm
im

((0, 0, . . .)⊕ (h, 0, . . .)) = (0, 0, . . .)⊕ (T k1
i1

. . . T km
im

h, ∗, ∗, . . .). (23)

Therefore T k1
i1

. . . T km
im

h = PHUk1
i1

. . . Ukm
im

h.

5.5 (Schaeffer) Let T be a contraction on a Hilbert space H, let `2
Z(H) =

∑∞
n=−∞⊕H denote the Hilbert

space formed as a direct sum of copies of H indexed by the integers Z. Define an operator matrix
U = (Ui,j) by setting U0,0 = T , U0,1 = (1 − TT ∗)1/2, U−1,0 = (1 − T ∗T )1/2, U−1,1 = T ∗, Un,n+1 = 1,
for n ≥ 1 or n ≤ −2 and Ui,j = 0 for all other pairs (i, j). Prove that U defines a unitary operator
on `2

Z(H) and that if we identify H with the 0-th copy of H in `2
Z(H), then Tn = PHUn|H for all

non-negative integers n.

Solution: We can check by a direct calcuation that all the diagonal entries of UU∗ and U∗U are 1,
and that all other entries, except the (−1, 0) and (0,−1) entries are 0. We find that both the (−1, 0)
entry of UU∗ and the (0,−1) entry of U∗U are (1−T ∗T )1/2T ∗−T ∗(1−TT ∗)1/2 while both the (0,−1)
entry of UU∗ and (−1, 0) entry of U∗U are T (1− T ∗T )1/2 − (1− TT ∗)1/2T .

Thus to prove that U is unitary we need to check that T (1− T ∗T )1/2 = (1− TT ∗)1/2T . Since T is a
contraction 1−T ∗T and 1−TT ∗ are positive operators whose spectrum is contained in the interval [0, 1].
Let f : [0, 1] → R denote the function f(t) =

√
1− t. Choose a sequence pn of polynomials defined on

the interval [0, 1] such that ‖pn − f‖∞ → 0 as n →∞. Note then that Tpn(T ∗T ) = pn(TT ∗)T and so
via the continuous functional calculus,

T (1− T ∗T )1/2 = lim
n→∞

Tpn(T ∗T ) = lim
n→∞

pn(TT ∗)T = (1− TT ∗)1/2T. (24)
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